Table 1 Comparison of generated drug-like molecules on DUD-E targets (n = 101)
From: Generation of 3D molecules in pockets via a language model
Random test | Pocket2Mol | TargetDiff | Lingo3DMol (ours) | |
|---|---|---|---|---|
Number of molecules generated | 100,195 | 98,332 | 92,727 | 100,428 |
Mean QED (↑) | 0.69 | 0.46 | 0.50 | 0.53 |
Mean SAS (↓) | 2.6 | 4.0 | 4.9 | 3.3 |
Number of drug-like molecules | 98,432 | 59,936 | 45,210 | 82,637 |
Drug-like molecules as % of total generated molecules (↑) | 98% | 61% | 49% | 82% |
The comparison below involves only drug-like molecules | ||||
Mean molecular weight | 370 | 386 | 299 | 348 |
ECFP_TS > 0.5 (↑) | 17% | 8% | 3% | 33% |
Mean min-in-place GlideSP score (↓) | N/A | −6.7 | −6.2 | −6.8 |
Mean GlideSP redocking score (↓) | −6.4 | −7.5 | −7.0 | −7.8 |
Mean QED (↑) | 0.70 | 0.56 | 0.60 | 0.59 |
Mean SAS (↓) | 2.6 | 3.5 | 4.0 | 3.1 |
Diversity (↑) | 0.85 | 0.84 | 0.88 | 0.82 |
Dice (↑) | 0.21 | 0.24 | 0.28 | 0.25 |
Mean r.m.s.d. versus low-energy conformer (Å,↓) | 4.0 | 1.1 | 1.1 | 0.9 |