Table 1 Benchmark on the Navier–Stokes and Burgers’ equations

From: Learning integral operators via neural integral equations

 

Navier–Stokes

Burgers’

t = 3

t = 5

t = 10

t = 20

t = 10

t = 15

t = 25

 

s = 256

s = 512

s = 256

s = 512

s = 256

s = 512

LSTM

0.1384

0.2337

0.1422

0.2465

ResNet

0.0295

0.0309

0.0280

0.0232

0.0194

0.0204

Conv1DLSTM

0.0132

0.0133

0.0132

0.0136

0.0124

0.0134

Conv2DLSTM

0.4935

0.4393

0.3931

0.2999

FNO1D

0.0088

0.088

0.0087

0.087

0.083

0.086

Galerkin

0.525

NA

0.521

NA

0.518

NA

FNO2D

0.2795

0.2724

NA

NA

FNO3D

NA

NA

0.1751

0.701

ViT

0.1093

0.877

0.2473

0.2367

0.430

0.423

0.423

0.422

0.422

0.424

ViTsmall

0.926

0.702

0.677

0.655

0.429

0.429

0.426

0.427

0.417

0.424

ViTparallel

0.2901

0.2660

0.2475

0.2368

0.433

0.702

0.573

0.861

0.435

0.700

ViT3D

0.360

0.365

0.433

0.406

ANIE (this work)

0.0194

0.0220

0.0193

0.0117

0.0024

0.0026

0.0024

0.0024

0.0022

0.0023

  1. We evaluate the models on predicting dynamics of different lengths (t = 3, 5, 10, 20) for unseen initial conditions. The models that use a single time point are ANIE (this work), FNO2D, ViT80, ViTsmall81 and ViTparallel82 models, whereas the convolutional LSTM, FNO3D and ViT3D use more time points (2, 10 and 2, respectively) to predict the rest of the dynamics. ANIE even outperforms models that use more data points for initialization. Right, benchmark on the Burgers’ equation with different time intervals t = 10, 15, 25 and space resolutions s = 256, 512, where a time interpolation task is performed. The symbol ‘−’ indicates models that were not suitable for certain experiments (for example, wrong dimensionality), whereas ‘NA’ indicates models that did not converge or did not fit in memory.