Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Personalized uncertainty quantification in artificial intelligence

Abstract

Artificial intelligence (AI) tools are increasingly being used to help make consequential decisions about individuals. While AI models may be accurate on average, they can simultaneously be highly uncertain about outcomes associated with specific individuals or groups of individuals. For high-stakes applications (such as healthcare and medicine, defence and security, banking and finance), AI decision-support systems must be able to make personalized assessments of uncertainty in a rigorous manner. However, the statistical frameworks needed to do so are currently incomplete. Here, we outline current approaches to personalized uncertainty quantification (PUQ) and define a set of grand challenges associated with the development and use of PUQ in a range of areas, including multimodal AI, explainable AI, generative AI and AI fairness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CP for PUQ.
Fig. 2: Grand challenges in PUQ.

Similar content being viewed by others

References

  1. Allen, B. The promise of explainable AI in digital health for precision medicine: a systematic review. J. Personalized Med. 14, 277 (2024).

    Article  Google Scholar 

  2. Battaglini, M. & Rasmussen, S. Transparency, automated decision-making processes and personal profiling. J. Data Prot. Priv. 2, 331–349 (2019).

    Google Scholar 

  3. Christensen, J. in Demystifying AI for the Enterprise 149–192 (Productivity, 2021).

  4. Hüllermeier, E. & Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach. Learn. 110, 457–506 (2021).

    Article  MathSciNet  Google Scholar 

  5. Der Kiureghian, A. & Ditlevsen, O. Aleatory or epistemic? Does it matter? Struct. Saf. 31, 105–112 (2009).

    Article  Google Scholar 

  6. Volodina, V. & Challenor, P. The importance of uncertainty quantification in model reproducibility. Philos. Trans. R. Soc. A 379 (2021).

  7. Walther, B. A. & Moore, J. L. The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815–829 (2005).

    Article  Google Scholar 

  8. Krishnan, R. & Tickoo, O. Improving model calibration with accuracy versus uncertainty optimization. Adv. Neural Inf. Process. Syst. 33, 18237–18248 (2020).

  9. Rogers, W. A. & Walker, M. J. Fragility, uncertainty, and healthcare. Theor. Med. Bioeth. 37, 71–83 (2016).

    Article  Google Scholar 

  10. Podkopaev, A. & Ramdas, A. Distribution-free uncertainty quantification for classification under label shift. Proc. Mach. Learn. Res. 161, 844–853 (2021).

  11. Thuy, A. & Benoit, D. F. Explainability through uncertainty: trustworthy decision-making with neural networks. Eur. J. Oper. Res. 317, 330–340 (2024).

    MathSciNet  Google Scholar 

  12. Kumar, S. & Srivastava, A. Bootstrap prediction intervals in non-parametric regression with applications to anomaly detection. In Proc. 18th ACM SIGKDD Conference on Knowledge Discovery and Data Mining (2012).

  13. Gal, Y. & Ghahramani, Z. Dropout as a Bayesian approximation: representing model uncertainty in deep learning. Proc. Mach. Learn. Res. 48, 1050–1059 (2016).

  14. Milanés-Hermosilla, D. et al. Monte Carlo dropout for uncertainty estimation and motor imagery classification. Sensors 21, 7241 (2021).

    Article  Google Scholar 

  15. Kotelevskii, N., Horváth, S., Nandakumar, K., Takáč, M. & Panov, M. Dirichlet-based uncertainty quantification for personalized federated learning with improved posterior networks. In Proc. Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI-24) 7127–7135 (2023).

  16. Wang, X. & Kadıoğlu, S. Modeling uncertainty to improve personalized recommendations via bayesian deep learning. Int. J. Data Sci. Anal. 16, 191–201 (2023).

    Article  Google Scholar 

  17. Vovk, V., Gammerman, A. & Shafer, G. Algorithmic Learning in a Random World Vol. 29 (Springer, 2005).

  18. Angelopoulos, A. N. & Bates, S. A gentle introduction to conformal prediction and distribution-free uncertainty quantification. Foundations and Trends in Machine Learning 16, 494–591 (2023).

    Article  Google Scholar 

  19. Papadopoulos, H., Proedrou, K., Vovk, V. & Gammerman, A. Inductive confidence machines for regression. In Machine Learning: ECML 2002 (eds Elomaa, T. et al.) 345–356 (Lecture Notes in Computer Science Vol. 2430, Springer, 2002).

  20. Barber, R. F., Candes, E. J., Ramdas, A. & Tibshirani, R. J. Conformal prediction beyond exchangeability. Ann. Stat. 51, 816–845 (2023).

    Article  MathSciNet  Google Scholar 

  21. Gibbs, I. & Candes, E. Adaptive conformal inference under distribution shift. Adv. Neural Inf. Process. Syst. 34, 1660–1672 (2021).

    Google Scholar 

  22. Gibbs, I. & Candes, E. Conformal inference for online prediction with arbitrary distribution shifts. J. Mach. Learn. Res. 25.162, 1–36 (2024).

    MathSciNet  Google Scholar 

  23. Angelopoulos, A. N., Barber, R. F. & Bates, S. Online conformal prediction with decaying step sizes. Proc. Mach. Learn. Res. 235, 1616–1630 (2024).

    Google Scholar 

  24. Zaffran, M., Féron, O., Goude, Y., Josse, J. & Dieuleveut, A. Adaptive conformal predictions for time series. Proc. Mach. Learn. Res. 162, 25834–25866 (2022).

  25. Lei, J. & Wasserman, L. Distribution-free prediction bands for non-parametric regression. J. R. Stat. Soc. B 76, 71–96 (2014).

    Article  MathSciNet  Google Scholar 

  26. Löfström, T., Boström, H., Linusson, H. & Johansson, U. Bias reduction through conditional conformal prediction. Intell. Data Anal. 19, 1355–1375 (2015).

    Article  Google Scholar 

  27. Foygel Barber, R., Candes, E. J., Ramdas, A. & Tibshirani, R. J. The limits of distribution-free conditional predictive inference. Inf. Inference 10, 455–482 (2021).

    MathSciNet  Google Scholar 

  28. Romano, Y., Patterson, E. & Candes, E. Conformalized quantile regression. Adv. Neural Inf. Process. Syst. 32 (2019).

  29. Romano, Y., Sesia, M. & Candes, E. Classification with valid and adaptive coverage. Adv. Neural Inf. Process. Syst. 33, 3581–3591 (2020).

    Google Scholar 

  30. Guan, L. Localized conformal prediction: a generalized inference framework for conformal prediction. Biometrika 110, 33–50 (2023).

    Article  MathSciNet  Google Scholar 

  31. Ding, T., Angelopoulos, A., Bates, S., Jordan, M. & Tibshirani, R. J. Class-conditional conformal prediction with many classes. Adv. Neural Inf. Process. Syst. 36 (2024).

  32. Romano, Y., Barber, R. F., Sabatti, C. & Candès, E. With malice toward none: assessing uncertainty via equalized coverage. Harv. Data Sci. Rev. 2, 4 (2020).

    Google Scholar 

  33. Sadinle, M., Lei, J. & Wasserman, L. Least ambiguous set-valued classifiers with bounded error levels. J. Am. Stat. Assoc. 114, 223–234 (2019).

    Article  MathSciNet  Google Scholar 

  34. Gibbs, I., Cherian, J. J. & Candès, E. J. Conformal prediction with conditional guarantees. Journal of the Royal Statistical Society Series B: Statistical Methodology, 2025.

  35. Ye, D. et al. Uncertainty quantification patterns for multiscale models. Philos. Trans. R. Soc. A 379, 20200072 (2021).

    Article  Google Scholar 

  36. Akbari, A. & Jafari, R. Personalizing activity recognition models through quantifying different types of uncertainty using wearable sensors. IEEE Trans. Biomed. Eng. 67, 2530–2541 (2020).

    Article  Google Scholar 

  37. Fontana, M., Zeni, G. & Vantini, S. Conformal prediction: a unified review of theory and new challenges. Preprint at https://arxiv.org/abs/2005.07972 (2021).

  38. Abdar, M. et al. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Inf. Fusion 76, 243–297 (2021).

    Article  Google Scholar 

  39. Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet. 19, 299–310 (2018).

    Article  Google Scholar 

  40. Ji, Q. et al. Multimodal omics approaches to aging and age-related diseases. Phenomics 4, 56–71 (2024).

    Article  Google Scholar 

  41. Canali, S., Schiaffonati, V. & Aliverti, A. Challenges and recommendations for wearable devices in digital health: data quality, interoperability, health equity, fairness. PLoS Digit. Health 1, e0000104 (2022).

    Article  Google Scholar 

  42. Futoma, J. et al. As good as it gets? A new approach to estimating possible prediction performance. PLoS ONE 19, e0296904 (2024).

    Article  Google Scholar 

  43. Boehm, K. M., Khosravi, P., Vanguri, R., Gao, J. & Shah, S. P. Harnessing multimodal data integration to advance precision oncology. Nat. Rev. Cancer 22, 114–126 (2022).

    Article  Google Scholar 

  44. Baltrušaitis, T., Ahuja, C. & Morency, L.-P. Multimodal machine learning: a survey and taxonomy. IEEE Trans. Pattern Anal. Mach. Intell. 41, 423–443 (2018).

    Article  Google Scholar 

  45. Rahate, A., Walambe, R., Ramanna, S. & Kotecha, K. Multimodal co-learning: challenges, applications with datasets, recent advances and future directions. Inf. Fusion 81, 203–239 (2022).

    Article  Google Scholar 

  46. Longo, L. et al. Explainable Artificial Intelligence (XAI) 2.0: a manifesto of open challenges and interdisciplinary research directions. Inf. Fusion 106, 102301 (2024).

    Article  Google Scholar 

  47. Ayci, G., Sensoy, M., Özgür, A. & Yolum, P. Uncertainty-aware personal assistant for making personalized privacy decisions. ACM Trans. Internet Technol. 23, 13 (2023).

    Article  Google Scholar 

  48. Tjoa, E. & Guan, C. A survey on Explainable Artificial Intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32, 4793–4813 (2020).

    Article  Google Scholar 

  49. Qian, W. et al. Towards modeling uncertainties of self-explaining neural networks via conformal prediction. In Proc. AAAI Conference on Artificial Intelligence Vol. 38 14651–14659 (2024).

  50. Almaslukh, B. A reliable breast cancer diagnosis approach using an optimized deep learning and conformal prediction. Biomed. Signal Process. Control 98, 106743 (2024).

    Article  Google Scholar 

  51. Quinonero-Candela, J. et al. Dataset Shift in Machine Learning (MIT Press, 2009).

  52. Mougan, C. & Nielsen, D. Monitoring model deterioration with explainable uncertainty estimation via non-parametric bootstrap. In Proc. AAAI Conference on Artificial Intelligence Vol. 37:12 15037–15045 (2023).

  53. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M. & Bouchachia, A. A survey on concept drift adaptation. ACM Comput. Surv. 46, 44 (2014).

    Article  Google Scholar 

  54. Sebastiao, R. & Gama, J. On evaluating stream learning algorithms. Mach. Learn. 90, 317–346 (2013).

    Article  MathSciNet  Google Scholar 

  55. Sebastiao, R. & Gama, J. A study on change detection methods. In Progress in Artificial Intelligence, 14th Portuguese Conference on Artificial Intelligence, EPIA 12–15 (2009).

  56. Bayram, F., Ahmed, B. & Kassler, A. From concept drift to model degradation: an overview on performance-aware drift detectors. Knowl.-Based Syst. 245, 108632 (2022).

    Article  Google Scholar 

  57. Garg, S., Balakrishnan, S., Lipton, Z., Neyshabur, B. & Sedghi, H. Leveraging unlabeled data to predict out-of-distribution performance. In NeurIPS 2021 Workshop on Distribution Shifts: Connecting Methods and Applications (2021).

  58. Barber, R., Candes, E., Ramdas, A. & Tibshirani, R. Predictive inference with the jackknife+. Ann. Stat. 49, 486–507 (2021).

    Article  MathSciNet  Google Scholar 

  59. Tibshirani, R. J., Foygel Barber, R., Candes, E. & Ramdas, A. Conformal prediction under covariate shift. Adv. Neural Inf. Process. Syst. 32 (2019).

  60. de Barros, R. & de Carvalho Santos, S. An overview and comprehensive comparison of ensembles for concept drift. Inf. Fusion 52, 213–244 (2019).

    Article  Google Scholar 

  61. Barros, R. & Santos, S. A large-scale comparison of concept drift detectors. Inf. Sci. 451, 348–370 (2018).

    Article  MathSciNet  Google Scholar 

  62. Ovadia, Y. et al. Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. Proceedings of NeurIPS (2019).

  63. Lobo, J., Del Ser, J., Bifet, A. & Kasabov, N. Spiking neural networks and online learning: an overview and perspectives. Neural Netw. 121, 88–100 (2020).

    Article  Google Scholar 

  64. Cao, Y. et al. Knowledge-preserving incremental social event detection via heterogeneous GNNs. In Proc. Web Conference 2021 3383–3395 (2021).

  65. Mitra, R. et al. Learning from data with structured missingness. Nat. Mach. Intell. 5, 13–23 (2023).

    Article  Google Scholar 

  66. Jackson, J., Mitra, R., Hagenbuch, N., McGough, S. & Harbron, C. A complete characterisation of structured missingness. Preprint at https://arxiv.org/abs/2307.02650 (2023).

  67. Bianconi, G. Multilayer Networks (Oxford Univ. Press, 2018).

  68. Bianconi, G. Higher-Order Networks (Cambridge Univ. Press, 2021).

  69. Baptista, A., Sánchez-García, R. J., Baudot, A. & Bianconi, G. Zoo guide to network embedding. Journal of Physics: Complexity. 4 (2023).

  70. Gutknecht, A. J., Wibral, M. & Makkeh, A. Bits and pieces: understanding information decomposition from part–whole relationships and formal logic. Proc. R. Soc. A 477, 20210110 (2021).

  71. Kiang, M. V. et al. Sociodemographic characteristics of missing data in digital phenotyping. Sci. Rep. 11, 14447 (2021).

    Article  Google Scholar 

  72. Tsiampalis, T. & Panagiotakos, D. B. Missing-data analysis: socio-demographic, clinical and lifestyle determinants of low response rate on self-reported psychological and nutrition related multi-item instruments in the context of the ATTICA epidemiological study. BMC Med. Res. Methodol. 20, 148 (2020).

    Article  Google Scholar 

  73. Angwin, J., Larson, J., Mattu, S. & Kirchner, L. Machine bias. ProPublica https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing (2016).

  74. Vyas, D. A., Eisenstein, L. G. & Jones, D. S. Hidden in plain sight—reconsidering the use of race correction in clinical algorithms. N. Engl. J. Med. 382, 2465–2474 (2020).

    Google Scholar 

  75. Ibrahim, H., Liu, X., Zariffa, N., Morris, A. D. & Denniston, A. K. Health data poverty: an assailable barrier to equitable digital health care. Lancet Digit. Health 2, E666–E676 (2020).

    Google Scholar 

  76. Fatumo, S. et al. A roadmap to increase diversity in genomic studies. Nat. Med. 27, 24–29 (2021).

    Google Scholar 

  77. Martin, A. R. et al. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat. Genet. 51, 1565–1576 (2019).

    Article  Google Scholar 

  78. Buolamwini, J. & Gebru, T. Gender shades: intersectional accuracy disparities in commercial gender classification. In Proc. 1st Conference on Fairness, Accountability and Transparency 77–91 (2018).

  79. Seyyed-Kalantari, L., Zhang, H., McDermott, M. B. A., Chen, I. Y. & Ghassemi, M. Underdiagnosis bias of artificial intelligence algorithms applied to chest radiographs in under-served patient populations. Nat. Med. 27, 111–120 (2021).

    Article  Google Scholar 

  80. Chen, I. Y., Johansson, F. D. & Sontag, D. Why is my classifier discriminatory? In Proc. NIPS 3543–3554 (2018).

  81. Matovu, E. et al. Enabling the genomic revolution in Africa. Science 344, 1260792 (2014).

    Google Scholar 

  82. Suriyakumar, V. & Narayanan, A. Proc. Mach. Learn. Res. 202, 7395–7405 (2023).

  83. Régis, C., Denis, J.-L., Axente, M. L. & Kishimoto, A. Human-Centered AI: a Multidisciplinary Perspective for Policy-Makers, Auditors, and Users (Chapman & Hall, 2024).

  84. Combs, K., Moyer, A. & Bihl, T. J. Uncertainty in visual generative AI. Algorithms 17, 136 (2024).

    Article  Google Scholar 

  85. Farquhar, S., Kossen, J., Kuhn, L. & Gal, Y. Detecting hallucinations in large language models using semantic entropy. Nature 630, 625–630 (2024).

    Article  Google Scholar 

  86. Kanwal, N. et al. Are you sure it’s an artifact? Artifact detection and uncertainty quantification in histological images. Comput. Med. Imaging Graph. 112, 102321 (2024).

    Article  Google Scholar 

  87. Zhou, E. & Lee, D. Generative artificial intelligence, human creativity, and art. PNAS nexus 3, pgae052 (2024).

    Article  Google Scholar 

  88. Grant, N. Google chatbot’s A.I. images put people of color in Nazi-era uniforms. New York Times https://www.nytimes.com/2024/02/22/technology/google-gemini-german-uniforms.html (2024).

  89. Subramanian, H. V., Canfield, C., Shank, D. B. & Kinnison, M. Combining uncertainty information with AI recommendations supports calibration with domain knowledge. J. Risk Res. 26, 1137–1152 (2023).

    Article  Google Scholar 

  90. Harish, V., Morgado, F., Stern, A. D. & Das, S. Artificial intelligence and clinical decision making: the new nature of medical uncertainty. Acad. Med. 96, 31–36 (2021).

    Article  Google Scholar 

  91. DeFrank, J. & Luiz, A. AI-based personalized treatment recommendation for cancer patients. J. Carcinogenesis 21, 57–63 (2022).

    Google Scholar 

  92. European Union. Regulation (EU) 2024/1689. Official J. Eur. Union (2024).

Download references

Acknowledgements

This work is supported by the Turing–Roche Strategic Partnership. C.R.S.B. was supported by the CRUK City of London Centre Award (CTRQQR-2021\100004). A.F.F. acknowledges support from the Royal Academy of Engineering under the RAEng Chair in Emerging Technologies (INSILEX CiET1919\/19), ERC Advanced Grant – UKRI Frontier Research Guarantee (INSILICO EP\/Y030494/1). A.F.F. also acknowledges the National Institute for Health and Care Research (NIHR) Manchester Biomedical Research Centre (BRC) (NIHR203308). T.C. is supported by a principal research fewllowship from the UCL Biomedical Research Centre (BRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapabrata Chakraborti.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborti, T., Banerji, C.R.S., Marandon, A. et al. Personalized uncertainty quantification in artificial intelligence. Nat Mach Intell 7, 522–530 (2025). https://doi.org/10.1038/s42256-025-01024-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42256-025-01024-8

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics