Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What neuroscience can tell AI about learning in continuously changing environments

Abstract

Modern artificial intelligence (AI) models, such as large language models, are usually trained once on a huge corpus of data, potentially fine-tuned for a specific task and then deployed with fixed parameters. Their training is costly, slow and gradual, requiring billions of repetitions. In stark contrast, animals continuously adapt to the ever-changing contingencies in their environments. This is particularly important for social species, where behavioural policies and reward outcomes may frequently change in interaction with peers. The underlying computational processes are often marked by rapid shifts in an animal’s behaviour and rather sudden transitions in neuronal population activity. Such computational capacities are of growing importance for AI systems operating in the real world, like those guiding robots or autonomous vehicles, or for agentic AI interacting with humans online. Can AI learn from neuroscience? This Perspective explores this question, integrating the literature on continual and in-context learning in AI with the neuroscience of learning on behavioural tasks with shifting rules, reward probabilities or outcomes. We outline an agenda for how the links between neuroscience and AI could be tightened, thus supporting the transfer of ideas and findings between both areas and contributing to the evolving field of NeuroAI.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Continual and in-context learning.
Fig. 2: Sudden transitions in behaviour and neural population representations during rule learning.
Fig. 3: Dynamical mechanisms and their experimental support.
Fig. 4: Fast plasticity mechanisms supporting episodic memory.
Fig. 5: Learning computational surrogate models from neuronal and behavioural data.

Similar content being viewed by others

References

  1. Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2014).

    Article  Google Scholar 

  2. Mazza, V. & Šlipogor, V. Behavioral flexibility and novel environments: integrating current perspectives for future directions. Curr. Zool. 70, 304–309 (2024).

    Article  Google Scholar 

  3. Jones, C. B. Behavioral Flexibility in Primates: Causes and Consequences (Springer, 2005).

  4. Finn, C., Abbeel, P. & Levine, S. Model-agnostic meta-learning for fast adaptation of deep networks. In Proc. 34th International Conference on Machine Learning Vol. 70, 1126–1135 (PMLR, 2017).

  5. Koutra, D. et al. Towards agentic AI for science: hypothesis generation, comprehension, quantification, and validation. In ICLR 2025 Workshop Proposals (2025).

  6. Faraboschi, P., Giles, E., Hotard, J., Owczarek, K. & Wheeler, A. Reducing the barriers to entry for foundation model training. Preprint at https://doi.org/10.48550/arXiv.2404.08811 (2024).

  7. Magee, J. C. & Grienberger, C. Synaptic plasticity forms and functions. Annu. Rev. Neurosci. 43, 95–117 (2020).

    Article  Google Scholar 

  8. Wu, Y. & Maass, W. A simple model for behavioral time scale synaptic plasticity (BTSP) provides content addressable memory with binary synapses and one-shot learning. Nat. Commun. 16, 342 (2025).

    Article  Google Scholar 

  9. Zhao, C. et al. Is chain-of-thought reasoning of LLMs a mirage? A data distribution lens. Preprint at https://doi.org/10.48550/arXiv.2508.01191 (2025).

  10. Parisi, G. I., Kemker, R., Part, J. L., Kanan, C. & Wermter, S. Continual lifelong learning with neural networks: a review. Neural Netw. 113, 54–71 (2019).

    Article  Google Scholar 

  11. Kudithipudi, D. et al. Biological underpinnings for lifelong learning machines. Nat. Mach. Intell. 4, 196–210 (2022).

    Article  Google Scholar 

  12. Gupta, R. et al. Personalized artificial general intelligence (AGI) via neuroscience-inspired continuous learning systems. Preprint at https://doi.org/10.48550/arXiv.2504.20109 (2025).

  13. Mazurek, S., Caputa, J., Argasiński, J. K. & Wielgosz, M. Three-factor learning in spiking neural networks: an overview of methods and trends from a machine learning perspective. Preprint at https://doi.org/10.48550/arXiv.2504.05341 (2025).

  14. Bittner, K. C., Milstein, A. D., Grienberger, C., Romani, S. & Magee, J. C. Behavioral time scale synaptic plasticity underlies CA1 place fields. Science 357, 1033–1036 (2017).

    Article  Google Scholar 

  15. Grazzi, R., Siems, J. N., Schrodi, S., Brox, T. & Hutter, F. Is mamba capable of in-context learning? In Proc. International Conference on Automated Machine Learning 1–26 (AutoML, 2024).

  16. Singh, A. K. et al. The transient nature of emergent in-context learning in transformers. Adv. Neural Inf. Process. Syst. 36, 27801–27819 (2023).

  17. Bai, Y., Chen, F., Wang, H., Xiong, C. & Mei, S. Transformers as statisticians: provable in-context learning with in-context algorithm selection. Adv. Neural Inf. Process. Syst. 36, 57125–57211 (2023).

    Google Scholar 

  18. Brown, T. B. et al. Language models are few-shot learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901 (2020).

  19. Dai, D. et al. Why can GPT learn incontext? Language models implicitly perform gradient descent as meta-optimizers. In Workshop on Mathematical and Empirical Understanding of Foundation Models (2023).

  20. Garg, S., Tsipras, D., Liang, P. S. & Valiant, G. What can transformers learn in-context? A case study of simple function classes. Adv. Neural Inf. Process. Syst. 35, 30583–30598 (2022).

    Google Scholar 

  21. Wei, J. et al. Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural Inf. Process. Syst. 35, 24824–24837 (2022).

  22. Liu, L. et al. On the variance of the adaptive learning rate and beyond. In Proc. 8th International Conference on Learning Representations (ICLR, 2020).

  23. Hemmer, C. J. & Durstewitz, D. True zero-shot inference of dynamical systems preserving long-term statistics. Adv. Neural Inf. Process. Syst. 39, 1–44 (2025).

  24. Touvron, H. et al. Llama 2: open foundation and fine-tuned chat models. Preprint at https://doi.org/10.48550/arXiv.2307.09288 (2023).

  25. Goodfellow, I. J., Mirza, M., Xiao, D., Courville, A. & Bengio, Y. An empirical investigation of catastrophic forgetting in gradient-based neural networks. Preprint at https://arxiv.org/abs/1312.6211 (2013).

  26. Kirkpatrick, J. et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl Acad. Sci. USA 114, 3521–3526 (2017).

    Article  MathSciNet  Google Scholar 

  27. Ramasesh, V., Lewkowycz, A. & Dyer, E. Effect of scale on catastrophic forgetting in neural networks. In Proc. 10th International Conference on Learning Representations (ICLR, 2022).

  28. Carpenter, G. A. & Grossberg, S. ART 2: self-organization of stable category recognition codes for analog input patterns. Appl. Opt. 26, 4919–4930 (1987).

    Article  Google Scholar 

  29. Jung, D. et al. New insights for the stability-plasticity dilemma in online continual learning. In Proc. 11th International Conference on Learning Representations (ICLR, 2023).

  30. McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learn. Motiv. 24, 109–165 (1989).

    Article  Google Scholar 

  31. French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).

    Article  Google Scholar 

  32. Wang, Z., Li, Y., Shen, L. & Huang, H. A unified and general framework for continual learning. In Proc. 12th International Conference on Learning Representations (ICLR, 2024).

  33. Wang, L., Zhang, X., Su, H. & Zhu, J. A comprehensive survey of continual learning: theory, method and application. IEEE Trans. Pattern Anal. Mach. Intell 46, 5362–5383 (2024).

  34. Zheng, W.-L., Wu, Z., Hummos, A., Yang, G. R. & Halassa, M. M. Rapid context inference in a thalamocortical model using recurrent neural networks. Nat. Commun. 15, 8275 (2024).

    Article  Google Scholar 

  35. Nguyen, C. V., Li, Y., Bui, T. D. & Turner, R. E. Variational continual learning. In Proc. 6th International Conference on Learning Representations (ICLR, 2018).

  36. Wu, Y., Huang, L.-K., Wang, R., Meng, D. & Wei, Y. Meta continual learning revisited: implicitly enhancing online Hessian approximation via variance reduction. In Proc. 12th International Conference on Learning Representations Vol. 2 (ICLR, 2024).

  37. Li, Z. & Hoiem, D. Learning without forgetting. IEEE Trans. Pattern Anal. Mach. Intell. 40, 2935–2947 (2018).

    Article  Google Scholar 

  38. McDonnell, M. D., Gong, D., Parvaneh, A., Abbasnejad, E. & Van den Hengel, A. Ranpac: random projections and pre-trained models for continual learning. Adv. Neural Inf. Process. Syst. 36, 12022–12053 (2023).

    Google Scholar 

  39. Ostapenko, O., Rodriguez, P., Caccia, M. & Charlin, L. Continual learning via local module composition. Adv. Neural Inf. Process. Syst. 34, 30298–30312 (2021).

    Google Scholar 

  40. Sorscher, B., Ganguli, S. & Sompolinsky, H. Neural representational geometry underlies few-shot concept learning. Proc. Natl Acad. Sci. USA 119, e2200800119 (2022).

    Article  MathSciNet  Google Scholar 

  41. Riemer, M. et al. Learning to learn without forgetting by maximizing transfer and minimizing interference. In Proc. 7th International Conference on Learning Representations (ICLR, 2019).

  42. Shin, H., Lee, J. K., Kim, J. & Kim, J. Continual learning with deep generative replay. Adv. Neural Inf. Process. Syst. 30, 2994–3003 (2017).

    Google Scholar 

  43. Dohare, S. et al. Loss of plasticity in deep continual learning. Nature 632, 768–774 (2024).

    Article  Google Scholar 

  44. van de Ven, G. M., Tuytelaars, T. & Tolias, A. S. Three types of incremental learning. Nat. Mach. Intell. 4, 1185–1197 (2022).

    Article  Google Scholar 

  45. Houlsby, N. Parameter-efficient transfer learning for NLP. In Proc. 36th International Conference on Machine Learning Vol. 97, 2790–2799 (PMLR, 2019).

  46. Hu, E. J. et al. LoRA: low-rank adaptation of large language models. In Proc. 10th International Conference on Learning Representations (ICLR, 2022).

  47. Mendez, J. A., van Seijen, H. & EATON, E. Modular lifelong reinforcement learning via neural composition. In Proc.10th International Conference on Learning Representations (ICLR, 2022).

  48. Graves, A., Wayne, G. & Danihelka, I. Neural Turing machines. Preprint at https://arxiv.org/abs/1410.5401 (2014).

  49. Lewis, P. et al. Retrieval-augmented generation for knowledge-intensive NLP tasks. Adv. Neural Inf. Process. Syst. 33, 9459–9474 (2020).

  50. Yu, Y. et al. RankRAG: unifying context ranking with retrieval-augmented generation in LLMs. Adv. Neural Inf. Process. Syst. 37, 121156–121184 (2024).

  51. Santoro, A., Bartunov, S., Botvinick, M., Wierstra, D. & Lillicrap, T. Meta-learning with memory-augmented neural networks. In Proc. 33rd International Conference on Machine Learning Vol. 48, 1842–(PMLR, 2016).

  52. Skaggs, W. E. & McNaughton, B. L. Replay of neuronal firing sequences in rat hippocampus during sleep following spatial experience. Science 271, 1870–1873 (1996).

    Article  Google Scholar 

  53. Mallory, C. S., Widloski, J. & Foster, D. J. The time course and organization of hippocampal replay. Science 387, 541–548 (2025).

    Article  Google Scholar 

  54. Grienberger, C. & Magee, J. C. Entorhinal cortex directs learning-related changes in CA1 representations. Nature 611, 554–562 (2022).

    Article  Google Scholar 

  55. Krueger, D. et al. Out-of-distribution generalization via risk extrapolation (REx). In Proc. 38th International Conference on Machine Learning Vol. 139, 5815–5826 (PMLR, 2021).

  56. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, 2009).

  57. Göring, N. A., Hess, F., Brenner, M., Monfared, Z. & Durstewitz, D. Out-of-domain generalization in dynamical systems reconstruction. In Proc. 41st International Conference on Machine Learning Vol. 235, 16071–16114 (PMLR, 2024).

  58. Lampinen, A. K., Chan, S. C., Singh, A. K. & Shanahan, M. The broader spectrum of in-context learning. Preprint at https://arxiv.org/abs/2412.03782 (2024).

  59. Li, Y., Ildiz, M. E., Papailiopoulos, D. & Oymak, S. Transformers as algorithms: generalization and stability in in-context learning. In Proc. 40th International Conference on Machine Learning Vol. 202, 19565–19594 (PMLR, 2023).

  60. Li, Y., Wei, X., Zhao, H. & Ma, T. Can Mamba in-context learn task mixtures? In ICML 2024 Workshop on In-Context Learning (2024).

  61. Oswald, J. V. et al. Transformers learn in-context by gradient descent. In Proc. 40th International Conference on Machine Learning Vol. 202, 35151–35174 (PMLR, 2023).

  62. Shen, L., Mishra, A. & Khashabi, D. Position: do pretrained transformers learn in-context by gradient descent? In Proc. 41st International Conference on Machine Learning Vol. 235, 44712–44740 (PMLR, 2024).

  63. Li, J., Hou, Y., Sachan, M. & Cotterell, R. What do language models learn in context? The structured task hypothesis. In Proc. 62nd Annual Meeting of the Association for Computational Linguistics Vol. 1, 12365–12379 (Association for Computational Linguistics, 2024).

  64. Deutch, G., Magar, N., Natan, T. & Dar, G. In-context learning and gradient descent revisited. In Proc. 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) 1017–1028 (Association for Computational Linguistics, 2024).

  65. Yadlowsky, S., Doshi, L. & Tripuraneni, N. Pretraining data mixtures enable narrow model selection capabilities in transformer models. Preprint at https://arxiv.org/abs/2311.00871 (2023).

  66. Hahn, M. & Goyal, N. A theory of emergent in-context learning as implicit structure induction. Preprint at https://arxiv.org/abs/2303.07971 (2023).

  67. Chan, S. et al. Data distributional properties drive emergent in-context learning in transformers. Adv. Neural Inf. Process. Syst. 35, 18878–18891 (2022).

  68. Snell, C., Lee, J., Xu, K. & Kumar, A. Scaling LLM test-time compute optimally can be more effective than scaling model parameters. In Proc. 13th International Conference on Learning Representations, 1-37 (ICLR, 2025).

  69. Domjan, M. The Principles of Learning and Behavior 7th edn (Cengage Learning, 2014).

  70. Shettleworth, S. J. Cognition, Evolution, and Behavior 2nd edn (Oxford Univ. Press, 2009).

  71. Bähner, F. et al. Abstract rule learning promotes cognitive flexibility in complex environments across species. Nat. Commun. 16, 5396 (2025).

    Article  Google Scholar 

  72. Bouchacourt, F., Tafazoli, S., Mattar, M. G., Buschman, T. J. & Daw, N. D. Fast rule switching and slow rule updating in a perceptual categorization task. eLife 11, e82531 (2022).

    Article  Google Scholar 

  73. Stokes, M. G. et al. Dynamic coding for cognitive control in prefrontal cortex. Neuron 78, 364–375 (2013).

    Article  Google Scholar 

  74. Beiran, M., Meirhaeghe, N., Sohn, H., Jazayeri, M. & Ostojic, S. Parametric control of flexible timing through low-dimensional neural manifolds. Neuron 111, 739–753.e738 (2023).

    Article  Google Scholar 

  75. Evenden, J. L. & Robbins, T. W. Win–stay behaviour in the rat. Q. J. Exp. Psychol. B 36, 1–26 (1984).

    Article  Google Scholar 

  76. Cohen, Y., Schneidman, E. & Paz, R. The geometry of neuronal representations during rule learning reveals complementary roles of cingulate cortex and putamen. Neuron 109, 839–851.e839 (2021).

    Article  Google Scholar 

  77. Tang, H., Costa, V. D., Bartolo, R. & Averbeck, B. B. Differential coding of goals and actions in ventral and dorsal corticostriatal circuits during goal-directed behavior. Cell Rep. 38, 110198 (2022).

    Article  Google Scholar 

  78. Passecker, J. et al. Activity of prefrontal neurons predict future choices during gambling. Neuron 101, 152–164.e157 (2019).

    Article  Google Scholar 

  79. Pereira-Obilinovic, U., Hou, H., Svoboda, K. & Wang, X.-J. Brain mechanism of foraging: reward-dependent synaptic plasticity versus neural integration of values. Proc. Natl Acad. Sci. USA 121, e2318521121 (2024).

    Article  Google Scholar 

  80. Egner, T. & Siqi-Liu, A. Insights into control over cognitive flexibility from studies of task-switching. Curr. Opin. Syst. Biol. 55, 101342 (2024).

    Google Scholar 

  81. Uddin, L. Q. Cognitive and behavioural flexibility: neural mechanisms and clinical considerations. Nat. Rev. Neurosci. 22, 167–179 (2021).

    Article  Google Scholar 

  82. Durstewitz, D. & Seamans, J. K. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-O-methyltransferase genotypes and schizophrenia. Biol. Psychiatry 64, 739–749 (2008).

    Article  Google Scholar 

  83. Goudar, V., Peysakhovich, B., Freedman, D. J., Buffalo, E. A. & Wang, X.-J. Schema formation in a neural population subspace underlies learning-to-learn in flexible sensorimotor problem-solving. Nat. Neurosci. 26, 879–890 (2023).

    Article  Google Scholar 

  84. Driscoll, L. N., Shenoy, K. & Sussillo, D. Flexible multitask computation in recurrent networks utilizes shared dynamical motifs. Nat. Neurosci. 27, 1349–1363 (2024).

    Article  Google Scholar 

  85. Bakermans, J. J. W., Warren, J., Whittington, J. C. R. & Behrens, T. E. J. Constructing future behavior in the hippocampal formation through composition and replay. Nat. Neurosci. 28, 1061–1072 (2025).

    Article  Google Scholar 

  86. Gallistel, C. R., Fairhurst, S. & Balsam, P. The learning curve: Implications of a quantitative analysis. Proc. Natl Acad. Sci. USA 101, 13124–13131 (2004).

    Article  Google Scholar 

  87. Papachristos, E. B. & Gallistel, C. Autoshaped head poking in the mouse: a quantitative analysis of the learning curve. J. Exp. Anal. Behav. 85, 293–308 (2006).

    Article  Google Scholar 

  88. Durstewitz, D., Vittoz, N. M., Floresco, S. B. & Seamans, J. K. Abrupt transitions between prefrontal neural ensemble states accompany behavioral transitions during rule learning. Neuron 66, 438–448 (2010).

    Article  Google Scholar 

  89. Powell, N. J. & Redish, A. D. Representational changes of latent strategies in rat medial prefrontal cortex precede changes in behaviour. Nat. Commun. 7, 12830 (2016).

    Article  Google Scholar 

  90. Karlsson, M. P., Tervo, D. G. R. & Karpova, A. Y. Network resets in medial prefrontal cortex mark the onset of behavioral uncertainty. Science 338, 135–139 (2012).

    Article  Google Scholar 

  91. Russo, E. et al. Coordinated prefrontal state transition leads extinction of reward-seeking behaviors. J. Neurosci. 41, 2406–2419 (2021).

    Article  Google Scholar 

  92. Miles, J. T., Mullins, G. L. & Mizumori, S. J. Flexible decision-making is related to strategy learning, vicarious trial and error, and medial prefrontal rhythms during spatial set-shifting. Learn. Mem. 31, a053911 (2024).

    Article  Google Scholar 

  93. Gottlieb, J. & Oudeyer, P.-Y. Towards a neuroscience of active sampling and curiosity. Nat. Rev. Neurosci. 19, 758–770 (2018).

    Article  Google Scholar 

  94. Friston, K. The free-energy principle: a unified brain theory? Nat. Rev. Neurosci. 11, 127–138 (2010).

    Article  Google Scholar 

  95. Burda, Y., Edwards, H., Storkey, A. & Klimov, O. Exploration by random network distillation. In Proc. 7th International Conference on Learning Representations 1–17 (ICLR, 2019).

  96. Li, D. et al. A survey on deep active learning: recent advances and new frontiers. IEEE Trans. Neural. Networks. Learn. Syst. 36, 5879–5899 (2025).

    Article  Google Scholar 

  97. Millidge, B. Deep active inference as variational policy gradients. J. Math. Psychol. 96, 102348 (2020).

    Article  MathSciNet  Google Scholar 

  98. Pathak, D., Agrawal, P., Efros, A. A. & Darrell, T. Curiosity-driven exploration by self-supervised prediction. In Proc. 34th International Conference on Machine Learning Vol. 70, 2778–2787 (PMLR, 2017).

  99. Settles, B. Active Learning Literature Survey 1648 (Univ. Wisconsin-Madison Department of Computer Sciences, 1995).

  100. van der Himst, O. & Lanillos, P. in Active Inference (eds Verbelen, T. et al.) 61–71 (Springer, 2020).

  101. Branicky, M. S. Universal computation and other capabilities of hybrid and continuous dynamical systems. Theor. Comput. Sci. 138, 67–100 (1995).

    Article  MathSciNet  Google Scholar 

  102. Koiran, P., Cosnard, M. & Garzon, M. Computability with low-dimensional dynamical systems. Theor. Comput. Sci. 132, 113–128 (1994).

    Article  MathSciNet  Google Scholar 

  103. Siegelmann, H. T. & Sontag, E. D. On the computational power of neural nets. J. Comput. Syst. Sci. 50, 132–150 (1995).

    Article  MathSciNet  Google Scholar 

  104. Fernando, J. & Guitchounts, G. Transformer dynamics: a neuroscientific approach to interpretability of large language models. Preprint at https://arxiv.org/abs/2502.12131 (2025).

  105. Geshkovski, B., Letrouit, C., Polyanskiy, Y., & Rigollet, P. A mathematical perspective on transformers. Bull. Amer. Math. Soc. 62, 427-479 (2025).

  106. Mikhaeil, J. M., Monfared, Z. & Durstewitz, D. On the difficulty of learning chaotic dynamics with RNNs. Adv. Neural Inf. Process. Syst. Vol. 35, 11297–11312 (2022).

  107. Monfared, Z. & Durstewitz, D. Transformation of ReLU-based recurrent neural networks from discrete-time to continuous-time. In Proc. 37th International Conference on Machine Learning Vol. 119, 6999–7009 (PMLR, 2020).

  108. Eisenmann, L., Monfared, Z., Göring, N. & Durstewitz, D. Bifurcations and loss jumps in RNN training. Adv. Neural Inf. Process. Syst. 36, 70511–70547 (2023).

    Google Scholar 

  109. Ibayashi, H. & Imaizumi, M. Why does sgd prefer flat minima?: Through the lens of dynamical systems. In AAAI Workshop When Machine Learning meets Dynamical Systems: Theory and Applications (2023).

  110. Şimşekli, U., Sener, O., Deligiannidis, G. & Erdogdu, M. A. Hausdorff dimension, heavy tails, and generalization in neural networks. Adv. Neural Inf. Process. Syst. 33, 5138–5151 (2020).

  111. Zhang, Y., Singh, A.K., Latham, P.E. & Saxe, A. Training dynamics of in-context learning in linear attention. Proc. 42nd International Conference on Machine Learning 267, 76047-76087 (PMLR, 2025).

  112. Hopfield, J. J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 79, 2554–2558 (1982).

    Article  MathSciNet  Google Scholar 

  113. Hinton, G. E. & Salakhutdinov, R. R. Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006).

    Article  MathSciNet  Google Scholar 

  114. Hinton, G. E. & Sejnowski, T. J. in Parallel Distributed Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations (eds Rumelhart, D. E. & McClelland, J. L.) 282–317 (MIT Press, 1986).

  115. Ambrogioni, L. In search of dispersed memories: generative diffusion models are associative memory networks. Entropy 26, 381 (2024).

    Article  Google Scholar 

  116. Pham, B. et al. Memorization to generalization: the emergence of diffusion models from associative memory. In NeurIPS 2024 Workshop on Scientific Methods for Understanding Deep Learning (2024).

  117. Aksay, E., Gamkrelidze, G., Seung, H. S., Baker, R. & Tank, D. W. In vivo intracellular recording and perturbation of persistent activity in a neural integrator. Nat. Neurosci. 4, 184–193 (2001).

    Article  Google Scholar 

  118. Khona, M. & Fiete, I. R. Attractor and integrator networks in the brain. Nat. Rev. Neurosci. 23, 744–766 (2022).

    Article  Google Scholar 

  119. Nair, A. et al. An approximate line attractor in the hypothalamus encodes an aggressive state. Cell 186, 178–193.e115 (2023).

    Article  Google Scholar 

  120. Zhang, K. Representation of spatial orientation by the intrinsic dynamics of the head-direction cell ensemble: a theory. J. Neurosci. 16, 2112–2126 (1996).

    Article  Google Scholar 

  121. Gardner, R. J. et al. Toroidal topology of population activity in grid cells. Nature 602, 123–128 (2022).

    Article  Google Scholar 

  122. Machens, C. K., Romo, R. & Brody, C. D. Flexible control of mutual inhibition: a neural model of two-interval discrimination. Science 307, 1121–1124 (2005).

    Article  Google Scholar 

  123. Durstewitz, D. Self-organizing neural integrator predicts interval times through climbing activity. J. Neurosci. 23, 5342–5353 (2003).

    Article  Google Scholar 

  124. Seung, H. S., Lee, D. D., Reis, B. Y. & Tank, D. W. Stability of the memory of eye position in a recurrent network of conductance-based model neurons. Neuron 26, 259–271 (2000).

    Article  Google Scholar 

  125. Mensh, B. D., Aksay, E., Lee, D. D., Seung, H. S. & Tank, D. W. Spontaneous eye movements in goldfish: oculomotor integrator performance, plasticity, and dependence on visual feedback. Vis. Res. 44, 711–726 (2004).

    Article  Google Scholar 

  126. Gallego, J. A., Perich, M. G., Miller, L. E. & Solla, S. A. Neural manifolds for the control of movement. Neuron 94, 978–984 (2017).

    Article  Google Scholar 

  127. Fransén, E., Tahvildari, B., Egorov, A. V., Hasselmo, M. E. & Alonso, A. A. Mechanism of graded persistent cellular activity of entorhinal cortex layer V neurons. Neuron 49, 735–746 (2006).

    Article  Google Scholar 

  128. Vinograd, A., Nair, A., Kim, J. H., Linderman, S. W. & Anderson, D. J. Causal evidence of a line attractor encoding an affective state. Nature 634, 910–918 (2024).

    Article  Google Scholar 

  129. Schmidt, D., Koppe, G., Monfared, Z., Beutelspacher, M. & Durstewitz, D. Identifying nonlinear dynamical systems with multiple time scales and long-range dependencies. In Proc. 9th International Conference on Learning Representations e1007263 (ICLR, 2021).

  130. Hochreiter, S. & Schmidhuber, J. Long short-term memory. Neural Comput. 9, 1735–1780 (1997).

    Article  Google Scholar 

  131. Perko, L. Differential Equations and Dynamical Systems 7 (Springer, 2001).

  132. Rabinovich, M. I., Huerta, R., Varona, P. & Afraimovich, V. S. Transient cognitive dynamics, metastability, and decision making. PLoS Comput. Biol. 4, e1000072 (2008).

    Article  MathSciNet  Google Scholar 

  133. Rabinovich, M. I., Varona, P., Selverston, A. I. & Abarbanel, H. D. I. Dynamical principles in neuroscience. Rev. Mod. Phys. 78, 1213–1265 (2006).

    Article  Google Scholar 

  134. Tsuda, I. Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav. Brain Sci. 24, 793–848 (2001).

    Article  Google Scholar 

  135. Tsuda, I. Chaotic itinerancy and its roles in cognitive neurodynamics. Curr. Opin. Neurobiol. 31, 67–71 (2015).

    Article  Google Scholar 

  136. Koch, D. et al. Ghost channels and ghost cycles guiding long transients in dynamical systems. Phys. Rev. Lett. 133, 047202 (2024).

    Article  MathSciNet  Google Scholar 

  137. Lapish, C. C., Balaguer-Ballester, E., Seamans, J. K., Phillips, A. G. & Durstewitz, D. Amphetamine exerts dose-dependent changes in prefrontal cortex attractor dynamics during working memory. J. Neurosci. 35, 10172 (2015).

    Article  Google Scholar 

  138. Komura, Y. et al. Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412, 546–549 (2001).

    Article  Google Scholar 

  139. Wang, J., Narain, D., Hosseini, E. A. & Jazayeri, M. Flexible timing by temporal scaling of cortical responses. Nat. Neurosci. 21, 102–110 (2018).

    Article  Google Scholar 

  140. Spisak, T. & Friston, K. Self-orthogonalizing attractor neural networks emerging from the free energy principle. Preprint at https://doi.org/10.48550/arXiv.2505.22749 (2025).

  141. Rouse, N. A. & Daltorio, K. A. Visualization of stable heteroclinic channel-based movement primitives. IEEE Rob. Autom. Lett. 6, 2343–2348 (2021).

    Article  Google Scholar 

  142. Mengers, N., Rouse, N. & Daltorio, K. A. Stable heteroclinic channels for controlling a simulated aquatic serpentine robot in narrow crevices. Front. Electron. 6, 1507644 (2025).

    Article  Google Scholar 

  143. Durstewitz, D. & Seamans, J. K. The computational role of dopamine D1 receptors in working memory. Neural Netw. 15, 561–572 (2002).

    Article  Google Scholar 

  144. Chahine, M. et al. Robust flight navigation out of distribution with liquid neural networks. Sci. Rob. 8, eadc8892 (2023).

    Article  Google Scholar 

  145. Baronig, M., Ferrand, R., Sabathiel, S. & Legenstein, R. Advancing spatio-temporal processing through adaptation in spiking neural networks. Nat. Commun. 16, 5776 (2025).

    Article  Google Scholar 

  146. Wang, G. et al. Hierarchical reasoning model. Preprint at https://doi.org/10.48550/arXiv.2506.21734 (2025).

  147. Doya, K. Bifurcations in the learning of recurrent neural networks. In Proc. 1992 IEEE International Symposium on Circuits and Systems Vol. 6, 2777–2780 (IEEE, 1992).

  148. Beggs, J. M. & Plenz, D. Neuronal avalanches in neocortical circuits. J. Neurosci. 23, 11167–11177 (2003).

    Article  Google Scholar 

  149. Bertschinger, N. & Natschläger, T. Real-time computation at the edge of chaos in recurrent neural networks. Neural Comput. 16, 1413–1436 (2004).

    Article  Google Scholar 

  150. Shew, W. L., Yang, H., Petermann, T., Roy, R. & Plenz, D. Neuronal avalanches imply maximum dynamic range in cortical networks at criticality. J. Neurosci. 29, 15595–15600 (2009).

    Article  Google Scholar 

  151. Cocchi, L., Gollo, L. L., Zalesky, A. & Breakspear, M. Criticality in the brain: a synthesis of neurobiology, models and cognition. Prog. Neurobiol. 158, 132–152 (2017).

    Article  Google Scholar 

  152. Murray, J. D. et al. A hierarchy of intrinsic timescales across primate cortex. Nat. Neurosci. 17, 1661–1663 (2014).

    Article  Google Scholar 

  153. Stemmler, M. & Koch, C. How voltage-dependent conductances can adapt to maximize the information encoded by neuronal firing rate. Nat. Neurosci. 2, 521–527 (1999).

    Article  Google Scholar 

  154. Zhong, L. et al. Unsupervised pretraining in biological neural networks. Nature 644, 741–748 (2025).

  155. Citri, A. & Malenka, R. C. Synaptic Plasticity: Multiple Forms, Functions, and Mechanisms. Neuropsychopharmacology 33, 18–41 (2008).

    Article  Google Scholar 

  156. Holtmaat, A. & Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009).

    Article  Google Scholar 

  157. Fu, M. & Zuo, Y. Experience-dependent structural plasticity in the cortex. Trends Neurosci. 34, 177–187 (2011).

    Article  Google Scholar 

  158. Sagi, Y. et al. Learning in the fast lane: new insights into neuroplasticity. Neuron 73, 1195–1203 (2012).

    Article  Google Scholar 

  159. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. In Proc. 32nd International conference on machine learning Vol. 37, 448–456 (PMLR, 2015).

  160. Salimans, T. & Kingma, D. P. Weight normalization: a simple reparameterization to accelerate training of deep neural networks. Adv. Neural Inf. Process. Syst. 29, 901–909 (2016).

  161. Turrigiano, G. G., Leslie, K. R., Desai, N. S., Rutherford, L. C. & Nelson, S. B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 391, 892–896 (1998).

    Article  Google Scholar 

  162. Kaplanis, C., Shanahan, M. & Clopath, C. Continual reinforcement learning with complex synapses. In Proc. 35th International Conference on Machine Learning 2497–2506 (PMLR, 2018).

  163. Laborieux, A., Ernoult, M., Hirtzlin, T. & Querlioz, D. Synaptic metaplasticity in binarized neural networks. Nat. Commun. 12, 2549 (2021).

    Article  Google Scholar 

  164. Schultz, W. Dopamine reward prediction-error signalling: a two-component response. Nat. Rev. Neurosci. 17, 183–195 (2016).

    Article  Google Scholar 

  165. Doya, K. Metalearning and neuromodulation. Neural Netw. 15, 495–506 (2002).

    Article  Google Scholar 

  166. Izhikevich, E. M. Solving the distal reward problem through linkage of stdp and dopamine signaling. Cereb. Cortex 17, 2443–2452 (2007).

    Article  Google Scholar 

  167. Huttenlocher, P. R. & Dabholkar, A. S. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387, 167–178 (1997).

    Article  Google Scholar 

  168. Hensch, T. K. Critical period regulation. Annu. Rev. Neurosci. 27, 549–579 (2004).

    Article  Google Scholar 

  169. Ba, J., Hinton, G. E., Mnih, V., Leibo, J. Z. & Ionescu, C. Using fast weights to attend to the recent past. Adv. Neural Inf. Process. Syst. 29, 4331–4339 (2016).

    Google Scholar 

  170. Hofmann, M., Becker, M. F. P., Tetzlaff, C. & Mäder, P. Concept transfer of synaptic diversity from biological to artificial neural networks. Nat. Commun. 16, 5112 (2025).

    Article  Google Scholar 

  171. Benna, M. K. & Fusi, S. Computational principles of synaptic memory consolidation. Nat. Neurosci. 19, 1697–1706 (2016).

    Article  Google Scholar 

  172. Ralambomihanta, T. R. et al. Learning from the past with cascading eligibility traces. Preprint at https://doi.org/10.48550/arXiv.2506.14598 (2025).

  173. Wang, J. X. Meta-learning in natural and artificial intelligence. Curr. Opin. Syst. Biol. 38, 90–95 (2021).

    Google Scholar 

  174. Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P. & Nabi, M. Learning to remember: a synaptic plasticity driven framework for continual learning. In Proc. IEEE/CVF Conference on Computer Vision and Pattern Recognition 11321–11329 (IEEE, 2019).

  175. Ben-Iwhiwhu, E., Nath, S., Pilly, P. K., Kolouri, S. & Soltoggio, A. Lifelong reinforcement learning with modulating masks. Trans. Mach. Learn. Res. https://openreview.net/forum?id=V7tahqGrOq (2023).

  176. Miconi, T., Stanley, K. & Clune, J. Differentiable plasticity: training plastic neural networks with backpropagation. In Proc. 35th International Conference on Machine Learning Vol. 80, 3559–3568 (PMLR, 2018).

  177. Shervani-Tabar, N. & Rosenbaum, R. Meta-learning biologically plausible plasticity rules with random feedback pathways. Nat. Commun. 14, 1805 (2023).

    Article  Google Scholar 

  178. Yu, Y., Jin, Y., Xiao, Y. & Yan, Y. A Recurrent spiking network with hierarchical intrinsic excitability modulation for schema learning. Preprint at https://doi.org/10.48550/arXiv.2501.14539 (2025).

  179. Bengio, Y., Louradour, J., Collobert, R. & Weston, J. Curriculum learning. In Proc. 26th Annual International Conference on Machine Learning 41–48 (Association for Computing Machinery, 2009).

  180. Brock, A., Lim, T., Ritchie, J. M. & Weston, N. J. FreezeOut: accelerate training by progressively freezing layers. In 10th NIPS Workshop on Optimization for Machine Learning Vol. 10 (NIPS, 2017).

  181. Sorrenti, A. et al. Selective freezing for efficient continual learning. In 2023 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) 3542–3551 (IEEE, 2023).

  182. Shi, T., Wu, Y., Song, L., Zhou, T. & Zhao, J. Efficient reinforcement finetuning via adaptive curriculum learning. Preprint at https://doi.org/10.48550/arXiv.2504.05520 (2025).

  183. Tolman, E. C. Purposive Behavior in Animals and Men (Appleton-Century-Crofts, 1932).

  184. Tolman, E. C. & Honzik, C. H. Introduction and removal of reward, and maze performance in rats. Univ. Calif. Pub. Psychol. 4, 257–275 (1930).

    Google Scholar 

  185. Ke, N. R. et al. Sparse attentive backtracking: temporal credit assignment through reminding. Adv. Neural Inf. Process. Syst. 31, 7651–7662 (2018).

    Google Scholar 

  186. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419 (1995).

    Article  Google Scholar 

  187. Sun, W., Advani, M., Spruston, N., Saxe, A. & Fitzgerald, J. E. Organizing memories for generalization in complementary learning systems. Nat. Neurosci. 26, 1438–1448 (2023).

    Article  Google Scholar 

  188. Samborska, V., Butler, J. L., Walton, M. E., Behrens, T. E. J. & Akam, T. Complementary task representations in hippocampus and prefrontal cortex for generalizing the structure of problems. Nat. Neurosci. 25, 1314–1326 (2022).

    Article  Google Scholar 

  189. Moscovitch, M., Cabeza, R., Winocur, G. & Nadel, L. Episodic memory and beyond: the hippocampus and neocortex in transformation. Annu. Rev. Psychol. 67, 105–134 (2016).

    Article  Google Scholar 

  190. Treves, A. & Rolls, E. T. Computational analysis of the role of the hippocampus in memory. Hippocampus 4, 374–391 (1994).

    Article  Google Scholar 

  191. Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016).

    Article  Google Scholar 

  192. Wilson, M. A. & McNaughton, B. L. Reactivation of hippocampal ensemble memories during sleep. Science 265, 676–679 (1994).

    Article  Google Scholar 

  193. Foster, D. J. Replay comes of age. Annu. Rev. Neurosci. 40, 581–602 (2017).

    Article  Google Scholar 

  194. Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T. & Wayne, G. Experience replay for continual learning. Adv. Neural Inf. Process. Syst. 32, 350–360 (2019).

    Google Scholar 

  195. Shi, Q. et al. Hybrid neural networks for continual learning inspired by corticohippocampal circuits. Nat. Commun. 16, 1272 (2025).

    Article  Google Scholar 

  196. Du, J. -l, Wei, H. -p, Wang, Z. -r, Wong, S. T. & Poo, M. -m Long-range retrograde spread of LTP and LTD from optic tectum to retina. Proc. Natl Acad. Sci. USA 106, 18890–18896 (2009).

    Article  Google Scholar 

  197. Zhang, T. et al. Self-backpropagation of synaptic modifications elevates the efficiency of spiking and artificial neural networks. Sci. Adv. 7, eabh0146 (2021).

    Article  MathSciNet  Google Scholar 

  198. Kohonen, T. Self-organized formation of topologically correct feature maps. Biol. Cybern. 43, 59–69 (1982).

    Article  Google Scholar 

  199. Kohonen, T. Analysis of a simple self-organizing process. Biol. Cybern. 44, 135–140 (1982).

    Article  MathSciNet  Google Scholar 

  200. Oja, E. Simplified neuron model as a principal component analyzer. J. Math. Biol. 15, 267–273 (1982).

    Article  MathSciNet  Google Scholar 

  201. Oja, E. & Karhunen, J. On stochastic approximation of the eigenvectors and eigenvalues of the expectation of a random matrix. J. Math. Anal. Appl. 106, 69–84 (1985).

    Article  MathSciNet  Google Scholar 

  202. Hertz, J. A., Krogh, A. & Palmer, R. G. Introduction To The Theory Of Neural Computation, I. (Westview Press, 1991).

  203. Kuriscak, E., Marsalek, P., Stroffek, J. & Toth, P. G. Biological context of Hebb learning in artificial neural networks, a review. Neurocomputing 152, 27–35 (2015).

    Article  Google Scholar 

  204. Schmidgall, S. et al. Brain-inspired learning in artificial neural networks: a review. APL Mach. Learn. 2, 021501 (2024).

    Article  Google Scholar 

  205. Drew, P. J. & Abbott, L. F. Extending the effects of spike-timing-dependent plasticity to behavioral timescales. Proc. Natl Acad. Sci. USA 103, 8876–8881 (2006).

    Article  Google Scholar 

  206. Soltoggio, A. Short-term plasticity as cause–effect hypothesis testing in distal reward learning. Biol. Cybern. 109, 75–94 (2015).

    Article  MathSciNet  Google Scholar 

  207. Lu, S. & Sengupta, A. Deep unsupervised learning using spike-timing-dependent plasticity. Neuromorphic Comput. Eng. 4, 024004 (2024).

    Article  Google Scholar 

  208. Apolinario, M. P. E. & Roy, K. S-TLLR: STDP-inspired temporal local learning rule for spiking neural networks. Trans. Mach. Learn. Res. https://openreview.net/forum?id=vlQ56aWJhl (2025).

  209. Rahman, N. A. & Yusoff, N. Modulated spike-time dependent plasticity (STDP)-based learning for spiking neural network (SNN): a review. Neurocomputing 618, 129170 (2025).

    Article  Google Scholar 

  210. Kudithipudi, D. et al. Neuromorphic computing at scale. Nature 637, 801–812 (2025).

    Article  Google Scholar 

  211. Bittner, K. C. et al. Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons. Nat. Neurosci. 18, 1133–1142 (2015).

    Article  Google Scholar 

  212. Qian, F. K., Li, Y. & Magee, J. C. Mechanisms of experience-dependent place-cell referencing in hippocampal area CA1. Nat. Neurosci. 28, 1486–1496 (2025).

    Article  Google Scholar 

  213. Pang, R. & Recanatesi, S. A non-Hebbian code for episodic memory. Sci. Adv. 11, eado4112 (2025).

    Article  Google Scholar 

  214. Fusi, S., Asaad, W. F., Miller, E. K. & Wang, X.-J. A neural circuit model of flexible sensorimotor mapping: learning and forgetting on multiple timescales. Neuron 54, 319–333 (2007).

    Article  Google Scholar 

  215. Russo, E. & Durstewitz, D. Cell assemblies at multiple time scales with arbitrary lag constellations. eLife 6, e19428 (2017).

    Article  Google Scholar 

  216. Cavanagh, S. E., Hunt, L. T. & Kennerley, S. W. A diversity of intrinsic timescales underlie neural computations. Front. Neural Circuits 14, 615626 (2020).

    Article  Google Scholar 

  217. Gao, R., van den Brink, R. L., Pfeffer, T. & Voytek, B. Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture. eLife 9, e61277 (2020).

    Article  Google Scholar 

  218. Zijlmans, M. et al. High-frequency oscillations as a new biomarker in epilepsy. Ann. Neurol. 71, 169–178 (2012).

    Article  Google Scholar 

  219. Spaak, E., de Lange, F. P. & Jensen, O. Local entrainment of alpha oscillations by visual stimuli causes cyclic modulation of perception. J. Neurosci. 34, 3536–3544 (2014).

    Article  Google Scholar 

  220. Momtaz, S. & Bidelman, G. M. Effects of stimulus rate and periodicity on auditory cortical entrainment to continuous sounds. eneuro 11, ENEURO.0027-0023.2024 (2024).

    Article  Google Scholar 

  221. Durstewitz, D. Neural representation of interval time. NeuroReport 15, 745–749 (2004).

    Article  Google Scholar 

  222. Rosenberg, M., Zhang, T., Perona, P. & Meister, M. Mice in a labyrinth show rapid learning, sudden insight, and efficient exploration. eLife 10, e66175 (2021).

    Article  Google Scholar 

  223. Zipser, D. Recurrent network model of the neural mechanism of short-term active memory. Neural Comput. 3, 179–193 (1991).

    Article  Google Scholar 

  224. Rajalingham, R., Piccato, A. & Jazayeri, M. Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task. Nat. Commun. 13, 5865 (2022).

    Article  Google Scholar 

  225. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Article  Google Scholar 

  226. Gu, A. & Dao, T. Mamba: linear-time sequence modeling with selective state spaces. Preprint at https://doi.org/10.48550/arXiv.2312.00752 (2023).

  227. Bulatov, A., Kuratov, Y. & Burtsev, M. Recurrent memory transformer. Adv. Neural Inf. Process. Syst. 35, 11079–11091 (2022).

  228. Hutchins, D., Schlag, I., Wu, Y., Dyer, E. & Neyshabur, B. Block-recurrent transformers. Adv. Neural Inf. Process. Syst. 35, 33248–33261 (2022).

    Google Scholar 

  229. Kriegeskorte, N. Deep neural networks: a new framework for modeling biological vision and brain information processing. Annu. Rev. Vision Sci. 1, 417–446 (2015).

    Article  Google Scholar 

  230. Kumar, S. et al. Shared functional specialization in transformer-based language models and the human brain. Nat. Commun. 15, 5523 (2024).

    Article  Google Scholar 

  231. Whittington, J. C., Warren, J. & Behrens, T. E. Relating transformers to models and neural representations of the hippocampal formation. Preprint at https://doi.org/10.48550/arXiv.2112.04035 (2021).

  232. Miikkulainen, R. Neuroevolution insights into biological neural computation. Science 387, eadp7478 (2025).

    Article  Google Scholar 

  233. Durstewitz, D., Koppe, G. & Thurm, M. I. Reconstructing computational system dynamics from neural data with recurrent neural networks. Nat. Rev. Neurosci. 24, 693–710 (2023).

    Article  Google Scholar 

  234. Brenner, M., Weber, E., Koppe, G. & Durstewitz, D. Learning interpretable hierarchical dynamical systems models from time series data. In Proc. 13th International Conference on Learning Representations 1–37 (ICLR, 2025).

  235. Brenner, M., Hess, F., Koppe, G. & Durstewitz, D. Integrating multimodal data for joint generative modeling of complex dynamics. In Proc. 41st International Conference on Machine Learning Vol. 235, 4482–4516 (PMLR, 2024).

  236. Glaser, J., Whiteway, M., Cunningham, J. P., Paninski, L. & Linderman, S. Recurrent switching dynamical systems models for multiple interacting neural populations. Adv. Neural Inf. Process. Syst. 33, 14867–14878 (2020).

    Google Scholar 

  237. Pals, M., Sağtekin, A. E., Pei, F., Gloeckler, M. & Macke, J. H. Inferring stochastic low-rank recurrent neural networks from neural data. Adv. Neural Inf. Process. Syst. 37, 18225–18264 (2024).

    Google Scholar 

  238. Hess, F., Monfared, Z., Brenner, M. & Durstewitz, D. Generalized teacher forcing for learning chaotic dynamics. In Proc. 11th International Conference on Machine Learning 13017–13049 (ICML, 2023).

  239. Platt, J. A., Penny, S. G., Smith, T. A., Chen, T.-C. & Abarbanel, H. D. I. Constraining chaos: enforcing dynamical invariants in the training of reservoir computers. Chaos 33, 103107 (2023).

    Article  MathSciNet  Google Scholar 

  240. Lim, S. et al. Inferring learning rules from distributions of firing rates in cortical neurons. Nat. Neurosci. 18, 1804–1810 (2015).

    Article  Google Scholar 

  241. Mehta, Y. et al. Model based inference of synaptic plasticity rules. Adv. Neural Inf. Process. Syst. 37, 48519–48540 (2024).

    Google Scholar 

  242. Chen, S., Yang, Q. & Lim, S. Efficient inference of synaptic plasticity rule with Gaussian process regression. iScience 26, 106182 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

D.D. appreciates funding from the German Science Foundation (DFG) via grants Du 354/14-1 (within the research cluster FOR-5159 dedicated to prefrontal flexibility), Du 354/15-1 and Du 354/18-1. B.A. was supported by the Intramural Research Program of the NIMH (ZIA MH002928-01). G.K. acknowledges funding from the Hector II foundation. We thank M. Kaden for her help with the figures and references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Durstewitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Machine Intelligence thanks Andrea Soltoggio, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durstewitz, D., Averbeck, B. & Koppe, G. What neuroscience can tell AI about learning in continuously changing environments. Nat Mach Intell 7, 1897–1912 (2025). https://doi.org/10.1038/s42256-025-01146-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s42256-025-01146-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing