Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Pharmacological targeting of the cancer epigenome

Abstract

Epigenetic dysregulation is increasingly appreciated as a hallmark of cancer, including disease initiation, maintenance and therapy resistance. As a result, there have been advances in the development and evaluation of epigenetic therapies for cancer, revealing substantial promise but also challenges. Three epigenetic inhibitor classes are approved in the USA, and many more are currently undergoing clinical investigation. In this Review, we discuss recent developments for each epigenetic drug class and their implications for therapy, as well as highlight new insights into the role of epigenetics in cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Epigenetic targets in cancer.
Fig. 2: Therapeutic targeting of the epigenome.
Fig. 3: New epigenetic targets in cancer.
Fig. 4: Epigenetic or lineage plasticity as a mechanism of therapeutic resistance.

Similar content being viewed by others

References

  1. Allis, C. D. & Jenuwein, T. The molecular hallmarks of epigenetic control. Nat. Rev. Genet. 17, 487–500 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. Mashtalir, N. et al. A structural model of the endogenous human BAF complex informs disease mechanisms. Cell 183, 802–817 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

    Article  CAS  PubMed  Google Scholar 

  4. Lai, W. K. M. & Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nat. Rev. Mol. Cell Biol. 18, 548–562 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Mittal, P. & Roberts, C. W. M. The SWI/SNF complex in cancer—biology, biomarkers and therapy. Nat. Rev. Clin. Oncol. 17, 435–448 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cramer, P. Organization and regulation of gene transcription. Nature 573, 45–54 (2019).

    Article  CAS  PubMed  Google Scholar 

  7. Chi, P., Allis, C. D. & Wang, G. G. Covalent histone modifications—miswritten, misinterpreted and mis-erased in human cancers. Nat. Rev. Cancer 10, 457–469 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Conery, A. R., Rocnik, J. L. & Trojer, P. Small molecule targeting of chromatin writers in cancer. Nat. Chem. Biol. 18, 124–133 (2022).

    Article  CAS  PubMed  Google Scholar 

  9. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dharia, N. V. et al. A first-generation pediatric cancer dependency map. Nat. Genet. 53, 529–538 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lyko, F. The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat. Rev. Genet. 19, 81–92 (2018).

    Article  CAS  PubMed  Google Scholar 

  12. Baylin, S. B. & Jones, P. A. Epigenetic determinants of cancer. Cold Spring Harb. Perspect. Biol. https://doi.org/10.1101/cshperspect.a019505 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Whittaker, S. J. et al. Final results from a multicenter, international, pivotal study of romidepsin in refractory cutaneous T-cell lymphoma. J. Clin. Oncol. 28, 4485–4491 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. O’Connor, O. A. et al. Belinostat in patients with relapsed or refractory peripheral T-cell lymphoma: results of the pivotal phase II BELIEF (CLN-19) study. J. Clin. Oncol. 33, 2492–2499 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  15. San-Miguel, J. F. et al. Overall survival of patients with relapsed multiple myeloma treated with panobinostat or placebo plus bortezomib and dexamethasone (the PANORAMA 1 trial): a randomised, placebo-controlled, phase 3 trial. Lancet Haematol. 3, e506–e515 (2016).

    Article  PubMed  Google Scholar 

  16. Eckschlager, T., Plch, J., Stiborova, M. & Hrabeta, J. Histone deacetylase inhibitors as anticancer drugs. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18071414 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lechner, S. et al. Target deconvolution of HDAC pharmacopoeia reveals MBLAC2 as common off-target. Nat. Chem. Biol. 18, 812–820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Najm, F. J. et al. Chromatin complex dependencies reveal targeting opportunities in leukemia. Nat. Commun. 14, 448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang, Y. et al. Collateral lethality between HDAC1 and HDAC2 exploits cancer-specific NuRD complex vulnerabilities. Nat. Struct. Mol. Biol. 30, 1160–1171 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chang, L., Ruiz, P., Ito, T. & Sellers, W. R. Targeting pan-essential genes in cancer: challenges and opportunities. Cancer Cell 39, 466–479 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yang, Z. et al. Recruitment of P-TEFb for stimulation of transcriptional elongation by the bromodomain protein Brd4. Mol. Cell 19, 535–545 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Delmore, J. E. et al. BET bromodomain inhibition as a therapeutic strategy to target c-Myc. Cell 146, 904–917 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Puissant, A. et al. Targeting MYCN in neuroblastoma by BET bromodomain inhibition. Cancer Discov. 3, 308–323 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hensel, T. et al. Targeting the EWS–ETS transcriptional program by BET bromodomain inhibition in Ewing sarcoma. Oncotarget 7, 1451–1463 (2016).

    Article  PubMed  Google Scholar 

  25. Filippakopoulos, P. et al. Selective inhibition of BET bromodomains. Nature 468, 1067–1073 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dawson, M. A. et al. Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia. Nature 478, 529–533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Doroshow, D. B., Eder, J. P. & LoRusso, P. M. BET inhibitors: a novel epigenetic approach. Ann. Oncol. 28, 1776–1787 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Piha-Paul, S. A. et al. Phase 1 study of molibresib (GSK525762), a bromodomain and extra-terminal domain protein inhibitor, in NUT carcinoma and other solid tumors. JNCI Cancer Spectr. 4, pkz093 (2020).

    Article  PubMed  Google Scholar 

  29. Stathis, A. et al. Clinical response of carcinomas harboring the BRD4–NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8628. Cancer Discov. 6, 492–500 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shorstova, T., Foulkes, W. D. & Witcher, M. Achieving clinical success with BET inhibitors as anti-cancer agents. Br. J. Cancer 124, 1478–1490 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sun, Y. et al. Safety and efficacy of bromodomain and extra-terminal inhibitors for the treatment of hematological malignancies and solid tumors: a systematic study of clinical trials. Front. Pharmacol. 11, 621093 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Garraway, L. A. & Lander, E. S. Lessons from the cancer genome. Cell 153, 17–37 (2013).

    Article  CAS  PubMed  Google Scholar 

  33. Morschhauser, F. et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: an open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 21, 1433–1442 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ogiwara, H. et al. Targeting p300 addiction in CBP-deficient cancers causes synthetic lethality by apoptotic cell death due to abrogation of MYC expression. Cancer Discov. 6, 430–445 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Scheller, M. et al. Hotspot DNMT3A mutations in clonal hematopoiesis and acute myeloid leukemia sensitize cells to azacytidine via viral mimicry response. Nat. Cancer 2, 527–544 (2021).

    Article  CAS  PubMed  Google Scholar 

  36. Bejar, R. et al. TET2 mutations predict response to hypomethylating agents in myelodysplastic syndrome patients. Blood 124, 2705–2712 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gounder, M. et al. Tazemetostat in advanced epithelioid sarcoma with loss of INI1/SMARCB1: an international, open-label, phase 2 basket study. Lancet Oncol. 21, 1423–1432 (2020).

    Article  CAS  PubMed  Google Scholar 

  38. Czermin, B. et al. Drosophila enhancer of Zeste/ESC complexes have a histone H3 methyltransferase activity that marks chromosomal Polycomb sites. Cell 111, 185–196 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Müller, J. et al. Histone methyltransferase activity of a Drosophila Polycomb group repressor complex. Cell 111, 197–208 (2002).

    Article  PubMed  Google Scholar 

  40. Hodis, E. et al. A landscape of driver mutations in melanoma. Cell 150, 251–263 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McKinney, M. et al. The genetic basis of hepatosplenic T-cell lymphoma. Cancer Discov. 7, 369–379 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Morin, R. D. et al. Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 476, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pikman, Y. et al. Targeting EZH2 for the treatment of hepatosplenic T-cell lymphoma. Blood Adv. 4, 1265–1269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tirode, F. et al. Genomic landscape of Ewing sarcoma defines an aggressive subtype with co-association of STAG2 and TP53 mutations. Cancer Discov. 4, 1342–1353 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen, L. et al. CRISPR–Cas9 screen reveals a MYCN-amplified neuroblastoma dependency on EZH2. J. Clin. Invest. 128, 446–462 (2018).

    Article  PubMed  Google Scholar 

  46. Duan, R., Du, W. & Guo, W. EZH2: a novel target for cancer treatment. J. Hematol. Oncol. 13, 104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Qi, W. et al. Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation. Proc. Natl Acad. Sci. USA 109, 21360–21365 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Richter, G. H. S. et al. EZH2 is a mediator of EWS/FLI1 driven tumor growth and metastasis blocking endothelial and neuro-ectodermal differentiation. Proc. Natl Acad. Sci. USA 106, 5324–5329 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wilson, B. G. et al. Epigenetic antagonism between polycomb and SWI/SNF complexes during oncogenic transformation. Cancer Cell 18, 316–328 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kadoch, C. et al. Dynamics of BAF–Polycomb complex opposition on heterochromatin in normal and oncogenic states. Nat. Genet. 49, 213–222 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Bitler, B. G. et al. Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers. Nat. Med. 21, 231–238 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Knutson, S. K. et al. Durable tumor regression in genetically altered malignant rhabdoid tumors by inhibition of methyltransferase EZH2. Proc. Natl Acad. Sci. USA 110, 7922–7927 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ntziachristos, P. et al. Genetic inactivation of the polycomb repressive complex 2 in T cell acute lymphoblastic leukemia. Nat. Med. 18, 298–301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, J. et al. The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157–163 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ernst, T. et al. Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders. Nat. Genet. 42, 722–726 (2010).

    Article  CAS  PubMed  Google Scholar 

  56. Nikoloski, G. et al. Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat. Genet. 42, 665–667 (2010).

    Article  CAS  PubMed  Google Scholar 

  57. Lee, W. et al. PRC2 is recurrently inactivated through EED or SUZ12 loss in malignant peripheral nerve sheath tumors. Nat. Genet. 46, 1227–1232 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Lewis, P. W. et al. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340, 857–861 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Chi, S. et al. Abstract A175: phase 1 study of the EZH2 inhibitor, tazemetostat, in children with relapsed or refractory INI1-negative tumors including rhabdoid tumors, epithelioid sarcoma, chordoma, and synovial sarcoma. Mol. Cancer Ther. 17, A175 (2018).

    Article  Google Scholar 

  60. Honma, D. et al. Novel orally bioavailable EZH1/2 dual inhibitors with greater antitumor efficacy than an EZH2 selective inhibitor. Cancer Sci. 108, 2069–2078 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ribrag, V. et al. Phase I/II study of MAK683 in patients with advanced malignancies, including diffuse large B-cell lymphoma. Blood 138, 1422 (2021).

    Article  Google Scholar 

  62. Centore, R. C., Sandoval, G. J., Soares, L. M. M., Kadoch, C. & Chan, H. M. Mammalian SWI/SNF chromatin remodeling complexes: emerging mechanisms and therapeutic strategies. Trends Genet. 36, 936–950 (2020).

    Article  CAS  PubMed  Google Scholar 

  63. Ehrenhöfer-Wölfer, K. et al. SMARCA2-deficiency confers sensitivity to targeted inhibition of SMARCA4 in esophageal squamous cell carcinoma cell lines. Sci. Rep. 9, 11661 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Hoffman, G. R. et al. Functional epigenetics approach identifies BRM/SMARCA2 as a critical synthetic lethal target in BRG1-deficient cancers. Proc. Natl Acad. Sci. USA 111, 3128–3133 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Schick, S. et al. Systematic characterization of BAF mutations provides insights into intracomplex synthetic lethalities in human cancers. Nat. Genet. 51, 1399–1410 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kofink, C. et al. A selective and orally bioavailable VHL-recruiting PROTAC achieves SMARCA2 degradation in vivo. Nat. Commun. 13, 5969 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Cantley, J. et al. Selective PROTAC-mediated degradation of SMARCA2 is efficacious in SMARCA4 mutant cancers. Nat. Commun. 13, 6814 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Hodges, C., Kirkland, J. G. & Crabtree, G. R. The many roles of BAF (mSWI/SNF) and PBAF complexes in cancer. Cold Spring Harb. Perspect. Med. https://doi.org/10.1101/cshperspect.a026930 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Michel, B. C. et al. A non-canonical SWI/SNF complex is a synthetic lethal target in cancers driven by BAF complex perturbation. Nat. Cell Biol. 20, 1410–1420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang, X. et al. SMARCB1-mediated SWI/SNF complex function is essential for enhancer regulation. Nat. Genet. 49, 289–295 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Li, J. et al. A role for SMARCB1 in synovial sarcomagenesis reveals that SS18–SSX induces canonical BAF destruction. Cancer Discov. 11, 2620–2637 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Brien, G. L. et al. Targeted degradation of BRD9 reverses oncogenic gene expression in synovial sarcoma. eLife https://doi.org/10.7554/eLife.41305 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  73. Jackson, K. L. et al. Abstract ND09: the discovery and characterization of CFT8634: a potent and selective degrader of BRD9 for the treatment of SMARCB1-perturbed cancers. Cancer Res. 82, ND09 (2022).

    Article  Google Scholar 

  74. Milne, T. A. et al. MLL targets SET domain methyltransferase activity to Hox gene promoters. Mol. Cell 10, 1107–1117 (2002).

    Article  CAS  PubMed  Google Scholar 

  75. Mohan, M., Lin, C., Guest, E. & Shilatifard, A. Licensed to elongate: a molecular mechanism for MLL-based leukaemogenesis. Nat. Rev. Cancer 10, 721–728 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Grembecka, J. et al. Menin–MLL inhibitors reverse oncogenic activity of MLL fusion proteins in leukemia. Nat. Chem. Biol. 8, 277–284 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Daigle, S. R. et al. Selective killing of mixed lineage leukemia cells by a potent small-molecule DOT1L inhibitor. Cancer Cell 20, 53–65 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Heikamp, E. B. et al. The menin–MLL1 interaction is a molecular dependency in NUP98-rearranged AML. Blood 139, 894–906 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Uckelmann, H. J. et al. Therapeutic targeting of preleukemia cells in a mouse model of NPM1 mutant acute myeloid leukemia. Science 367, 586–590 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Schübeler, D. et al. The histone modification pattern of active genes revealed through genome-wide chromatin analysis of a higher eukaryote. Genes Dev. 18, 1263–1271 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Mohan, M. et al. Linking H3K79 trimethylation to Wnt signaling through a novel Dot1-containing complex (DotCom). Genes Dev. 24, 574–589 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Min, J., Feng, Q., Li, Z., Zhang, Y. & Xu, R.-M. Structure of the catalytic domain of human DOT1L, a non-SET domain nucleosomal histone methyltransferase. Cell 112, 711–723 (2003).

    Article  CAS  PubMed  Google Scholar 

  83. Sun, Y. et al. HOXA9 reprograms the enhancer landscape to promote leukemogenesis. Cancer Cell 34, 643–658 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Daigle, S. R. et al. Potent inhibition of DOT1L as treatment of MLL-fusion leukemia. Blood 122, 1017–1025 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Stein, E. M. et al. The DOT1L inhibitor pinometostat reduces H3K79 methylation and has modest clinical activity in adult acute leukemia. Blood 131, 2661–2669 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin, J. et al. Menin ‘reads’ H3K79me2 mark in a nucleosomal context. Science 379, 717–723 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Yokoyama, A. et al. The menin tumor suppressor protein is an essential oncogenic cofactor for MLL-associated leukemogenesis. Cell 123, 207–218 (2005).

    Article  CAS  PubMed  Google Scholar 

  88. Krivtsov, A. V. et al. A Menin–MLL inhibitor induces specific chromatin changes and eradicates disease in models of MLL-rearranged leukemia. Cancer Cell 36, 660–673 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Shi, A. et al. Structural insights into inhibition of the bivalent menin–MLL interaction by small molecules in leukemia. Blood 120, 4461–4469 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Issa, G. C. et al. The menin inhibitor revumenib in KMT2A-rearranged or NPM1-mutant leukaemia. Nature 615, 920–924 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Erba, H. P. et al. Update on a phase 1/2 first-in-human study of the menin–KMT2A (MLL) inhibitor ziftomenib (KO-539) in patients with relapsed or refractory acute myeloid leukemia. Blood 140, 153–156 (2022).

    Article  Google Scholar 

  92. Malik, R. et al. Targeting the MLL complex in castration-resistant prostate cancer. Nat. Med. 21, 344–352 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Svoboda, L. K. et al. Tumorigenicity of Ewing sarcoma is critically dependent on the trithorax proteins MLL1 and menin. Oncotarget 8, 458–471 (2017).

    Article  PubMed  Google Scholar 

  94. Hemming, M. L. et al. MOZ and Menin–MLL complexes are complementary regulators of chromatin association and transcriptional output in gastrointestinal stromal tumor. Cancer Discov. 12, 1804–1823 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Perner, F. et al. MEN1 mutations mediate clinical resistance to menin inhibition. Nature 615, 913–919 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Lee, K. K. & Workman, J. L. Histone acetyltransferase complexes: one size doesn’t fit all. Nat. Rev. Mol. Cell Biol. 8, 284–295 (2007).

    Article  CAS  PubMed  Google Scholar 

  97. Yang, X.-J. & Seto, E. Lysine acetylation: codified crosstalk with other posttranslational modifications. Mol. Cell 31, 449–461 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Welti, J. et al. Targeting the p300/CBP axis in lethal prostate cancer. Cancer Discov. 11, 1118–1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Nie, M. et al. Genome-wide CRISPR screens reveal synthetic lethal interaction between CREBBP and EP300 in diffuse large B-cell lymphoma. Cell Death Dis. 12, 419 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Durbin, A. D. et al. EP300 selectively controls the enhancer landscape of MYCN-amplified neuroblastoma. Cancer Discov. 12, 730–751 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Hay, D. A. et al. Discovery and optimization of small-molecule ligands for the CBP/p300 bromodomains. J. Am. Chem. Soc. 136, 9308–9319 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Lasko, L. M. et al. Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours. Nature 550, 128–132 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Morrison-Smith, C. D. et al. Combined targeting of the BRD4–NUT–p300 axis in NUT midline carcinoma by dual selective bromodomain inhibitor, NEO2734. Mol. Cancer Ther. 19, 1406–1414 (2020).

    Article  CAS  PubMed  Google Scholar 

  104. Thomas, J. E. 2nd et al. Discovery of exceptionally potent, selective, and efficacious PROTAC degraders of CBP and p300 proteins. J. Med. Chem. 66, 8178–8199 (2023).

    Article  PubMed  Google Scholar 

  105. Vannam, R. et al. Targeted degradation of the enhancer lysine acetyltransferases CBP and p300. Cell Chem. Biol. 28, 503–514 (2021).

    Article  CAS  PubMed  Google Scholar 

  106. Borrow, J. et al. The translocation t(8;16)(p11;p13) of acute myeloid leukaemia fuses a putative acetyltransferase to the CREB-binding protein. Nat. Genet. 14, 33–41 (1996).

    Article  CAS  PubMed  Google Scholar 

  107. Yan, F. et al. KAT6A and ENL form an epigenetic transcriptional control module to drive critical leukemogenic gene-expression programs. Cancer Discov. 12, 792–811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Northcott, P. A. et al. Multiple recurrent genetic events converge on control of histone lysine methylation in medulloblastoma. Nat. Genet. 41, 465–472 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zack, T. I. et al. Pan-cancer patterns of somatic copy number alteration. Nat. Genet. 45, 1134–1140 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Turner-Ivey, B. et al. KAT6A, a chromatin modifier from the 8p11-p12 amplicon is a candidate oncogene in luminal breast cancer. Neoplasia 16, 644–655 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saglam, O., Tang, Z., Tang, G., Medeiros, L. J. & Toruner, G. A. KAT6A amplifications are associated with shorter progression-free survival and overall survival in patients with endometrial serous carcinoma. PLoS ONE 15, e0238477 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Baell, J. B. et al. Inhibitors of histone acetyltransferases KAT6A/B induce senescence and arrest tumour growth. Nature 560, 253–257 (2018).

    Article  CAS  PubMed  Google Scholar 

  113. Lv, D. et al. Histone acetyltransferase KAT6A upregulates PI3K/AKT signaling through TRIM24 binding. Cancer Res. 77, 6190–6201 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Sharma, S. et al. Abstract 1130: first-in-class KAT6A/KAT6B inhibitor CTx-648 (PF-9363) demonstrates potent anti-tumor activity in ER+ breast cancer with KAT6A dysregulation. Cancer Res. 81, 1130 (2021).

    Article  Google Scholar 

  115. Grant, P. A. et al. Expanded lysine acetylation specificity of Gcn5 in native complexes. J. Biol. Chem. 274, 5895–5900 (1999).

    Article  CAS  PubMed  Google Scholar 

  116. Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    Article  CAS  PubMed  Google Scholar 

  117. Farria, A. T. et al. Transcriptional activation of MYC-induced genes by GCN5 promotes B-cell lymphomagenesis. Cancer Res. 80, 5543–5553 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Mustachio, L. M., Roszik, J., Farria, A. & Dent, S. Y. R. Targeting the SAGA and ATAC transcriptional coactivator complexes in MYC-driven cancers. Cancer Res. 80, 1905–1911 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Bassi, Z. I. et al. Modulating PCAF/GCN5 immune cell function through a PROTAC approach. ACS Chem. Biol. 13, 2862–2867 (2018).

    Article  CAS  PubMed  Google Scholar 

  120. Fang, Y., Liao, G. & Yu, B. LSD1/KDM1A inhibitors in clinical trials: advances and prospects. J. Hematol. Oncol. 12, 129 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Wang, Y. et al. LSD1 is a subunit of the NuRD complex and targets the metastasis programs in breast cancer. Cell 138, 660–672 (2009).

    Article  CAS  PubMed  Google Scholar 

  122. Kim, S.-A., Zhu, J., Yennawar, N., Eek, P. & Tan, S. Crystal structure of the LSD1/CoREST histone demethylase bound to its nucleosome substrate. Mol. Cell 78, 903–914 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Metzger, E. et al. LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 437, 436–439 (2005).

    Article  CAS  PubMed  Google Scholar 

  124. Maes, T. et al. ORY-1001, a potent and selective covalent KDM1A inhibitor, for the treatment of acute leukemia. Cancer Cell 33, 495–511 (2018).

    Article  CAS  PubMed  Google Scholar 

  125. Augert, A. et al. Targeting NOTCH activation in small cell lung cancer through LSD1 inhibition. Sci. Signal. https://doi.org/10.1126/scisignal.aau2922 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Mohammad, H. P. et al. A DNA hypomethylation signature predicts antitumor activity of LSD1 inhibitors in SCLC. Cancer Cell 28, 57–69 (2015).

    Article  CAS  PubMed  Google Scholar 

  127. Sehrawat, A. et al. LSD1 activates a lethal prostate cancer gene network independently of its demethylase function. Proc. Natl Acad. Sci. USA 115, E4179–E4188 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Salamero, O. et al. First-in-human phase I study of iadademstat (ORY-1001): a first-in-class lysine-specific histone demethylase 1A inhibitor, in relapsed or refractory acute myeloid leukemia. J. Clin. Oncol. 38, 4260–4273 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Bauer, T. M. et al. Phase I, open-label, dose-escalation study of the safety, pharmacokinetics, pharmacodynamics, and efficacy of GSK2879552 in relapsed/refractory SCLC. J. Thorac. Oncol. 14, 1828–1838 (2019).

    Article  CAS  PubMed  Google Scholar 

  130. McGinty, R. K., Henrici, R. C. & Tan, S. Crystal structure of the PRC1 ubiquitylation module bound to the nucleosome. Nature 514, 591–596 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Fursova, N. A. et al. Synergy between variant PRC1 complexes defines Polycomb-mediated gene repression. Mol. Cell 74, 1020–1036 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Parreno, V., Martinez, A.-M. & Cavalli, G. Mechanisms of Polycomb group protein function in cancer. Cell Res. 32, 231–253 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Scelfo, A. et al. Functional landscape of PCGF proteins reveals both RING1A/B-dependent- and RING1A/B-independent-specific activities. Mol. Cell 74, 1037–1052 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Schaefer, E. J. et al. BCOR and BCORL1 mutations drive epigenetic reprogramming and oncogenic signaling by unlinking PRC1.1 from target genes. Blood Cancer Discov. 3, 116–135 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Kang, J. H. et al. The mutation of BCOR is highly recurrent and oncogenic in mature T-cell lymphoma. BMC Cancer 21, 82 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Astolfi, A. et al. BCOR involvement in cancer. Epigenomics 11, 835–855 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Pisapia, D. J. et al. Fusions involving BCOR and CREBBP are rare events in infiltrating glioma. Acta Neuropathol. Commun. 8, 80 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Yamamoto, Y. et al. BCOR as a novel fusion partner of retinoic acid receptor α in a t(X;17)(p11;q12) variant of acute promyelocytic leukemia. Blood 116, 4274–4283 (2010).

    Article  CAS  PubMed  Google Scholar 

  139. Tauziède-Espariat, A. et al. The EP300:BCOR fusion extends the genetic alteration spectrum defining the new tumoral entity of ‘CNS tumors with BCOR internal tandem duplication’. Acta Neuropathol. Commun. 8, 178 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  140. Shukla, S. et al. Small-molecule inhibitors targeting Polycomb repressive complex 1 RING domain. Nat. Chem. Biol. 17, 784–793 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Rizo, A. et al. Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis. Blood 114, 1498–1505 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Maat, H. et al. The USP7–TRIM27 axis mediates non-canonical PRC1.1 function and is a druggable target in leukemia. iScience 24, 102435 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Wang, S. et al. A potent, selective CBX2 chromodomain ligand and its cellular activity during prostate cancer neuroendocrine differentiation. Chembiochem 22, 2335–2344 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Stuckey, J. I. et al. A cellular chemical probe targeting the chromodomains of Polycomb repressive complex 1. Nat. Chem. Biol. 12, 180–187 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Milosevich, N. et al. Selective inhibition of CBX6: a methyllysine reader protein in the polycomb family. ACS Med. Chem. Lett. 7, 139–144 (2016).

    Article  CAS  PubMed  Google Scholar 

  146. Milosevich, N. et al. Polycomb paralog chromodomain inhibitors active against both CBX6 and CBX8*. ChemMedChem 16, 3027–3034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Wang, S. et al. Optimization of ligands using focused DNA-encoded libraries to develop a selective, cell-permeable CBX8 chromodomain inhibitor. ACS Chem. Biol. 15, 112–131 (2020).

    Article  CAS  PubMed  Google Scholar 

  148. Erb, M. A. et al. Transcription control by the ENL YEATS domain in acute leukaemia. Nature 543, 270–274 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wan, L. et al. ENL links histone acetylation to oncogenic gene expression in acute myeloid leukaemia. Nature 543, 265–269 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Hu, H. et al. The ENL YEATS epigenetic reader domain critically links MLL–ENL to leukemic stem cell frequency in t(11;19) leukemia. Leukemia 37, 190–201 (2023).

    Article  CAS  PubMed  Google Scholar 

  151. Perlman, E. J. et al. MLLT1 YEATS domain mutations in clinically distinctive favourable histology Wilms tumours. Nat. Commun. 6, 10013 (2015).

    Article  CAS  PubMed  Google Scholar 

  152. Wan, L. et al. Impaired cell fate through gain-of-function mutations in a chromatin reader. Nature 577, 121–126 (2020).

    Article  CAS  PubMed  Google Scholar 

  153. Asiaban, J. N. et al. Cell-based ligand discovery for the ENL YEATS domain. ACS Chem. Biol. 15, 895–903 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Christott, T. et al. Discovery of a selective inhibitor for the YEATS domains of ENL/AF9. SLAS Discov. 24, 133–141 (2019).

    Article  CAS  PubMed  Google Scholar 

  155. Garnar-Wortzel, L. et al. Chemical inhibition of ENL/AF9 YEATS domains in acute leukemia. ACS Cent. Sci. 7, 815–830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Jiang, Y. et al. Selective targeting of AF9 YEATS domain by cyclopeptide inhibitors with preorganized conformation. J. Am. Chem. Soc. 142, 21450–21459 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Li, X. et al. Structure-guided development of YEATS domain inhibitors by targeting π–π–π stacking. Nat. Chem. Biol. 14, 1140–1149 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Liu, Y. et al. Small-molecule inhibition of the acyl-lysine reader ENL as a strategy against acute myeloid leukemia. Cancer Discov. 12, 2684–2709 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ma, X. R. et al. Discovery of selective small-molecule inhibitors for the ENL YEATS domain. J. Med. Chem. 64, 10997–11013 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Moustakim, M. et al. Discovery of an MLLT1/3 YEATS domain chemical probe. Angew. Chem. Int. Ed. Engl. 57, 16302–16307 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Li, X., Yao, Y., Wu, F. & Song, Y. A proteolysis-targeting chimera molecule selectively degrades ENL and inhibits malignant gene expression and tumor growth. J. Hematol. Oncol. 15, 41 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Pina, C., May, G., Soneji, S., Hong, D. & Enver, T. MLLT3 regulates early human erythroid and megakaryocytic cell fate. Cell Stem Cell 2, 264–273 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Gilan, O. et al. CRISPR–ChIP reveals selective regulation of H3K79me2 by Menin in MLL leukemia. Nat. Struct. Mol. Biol. 30, 1592–1606 (2023).

    Article  CAS  PubMed  Google Scholar 

  164. Zhu, L. et al. ASH1L links histone H3 lysine 36 dimethylation to MLL leukemia. Cancer Discov. 6, 770–783 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Aljazi, M. B., Gao, Y., Wu, Y., Mias, G. I. & He, J. Histone H3K36me2-specific methyltransferase ASH1L promotes MLL-AF9-induced leukemogenesis. Front. Oncol. 11, 754093 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Fujimoto, A. et al. Whole-genome mutational landscape and characterization of noncoding and structural mutations in liver cancer. Nat. Genet. 48, 500–509 (2016).

    Article  CAS  PubMed  Google Scholar 

  167. Liu, L., Kimball, S., Liu, H., Holowatyj, A. & Yang, Z.-Q. Genetic alterations of histone lysine methyltransferases and their significance in breast cancer. Oncotarget 6, 2466–2482 (2015).

    Article  PubMed  Google Scholar 

  168. Xu, B. et al. Novel role of ASH1L histone methyltransferase in anaplastic thyroid carcinoma. J. Biol. Chem. 295, 8834–8845 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Rogawski, D. S. et al. Discovery of first-in-class inhibitors of ASH1L histone methyltransferase with anti-leukemic activity. Nat. Commun. 12, 2792 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Zhang, C., Xu, L., Zheng, X., Liu, S. & Che, F. Role of Ash1l in Tourette syndrome and other neurodevelopmental disorders. Dev. Neurobiol. 81, 79–91 (2021).

    Article  CAS  PubMed  Google Scholar 

  171. Walens, A. et al. Adaptation and selection shape clonal evolution of tumors during residual disease and recurrence. Nat. Commun. 11, 5017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Sharma, S. V. et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 141, 69–80 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gupta, P. B. et al. Stochastic state transitions give rise to phenotypic equilibrium in populations of cancer cells. Cell 146, 633–644 (2011).

    Article  CAS  PubMed  Google Scholar 

  174. Shaffer, S. M. et al. Rare cell variability and drug-induced reprogramming as a mode of cancer drug resistance. Nature 546, 431–435 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Yang, D. et al. Lineage tracing reveals the phylodynamics, plasticity, and paths of tumor evolution. Cell 185, 1905–1923 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Neftel, C. et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell 178, 835–849 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Goyal, Y. et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature 620, 651–659 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Oren, Y. et al. Cycling cancer persister cells arise from lineages with distinct programs. Nature 596, 576–582 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Álvarez-Varela, A. et al. Mex3a marks drug-tolerant persister colorectal cancer cells that mediate relapse after chemotherapy. Nat. Cancer 3, 1052–1070 (2022).

    Article  PubMed  Google Scholar 

  180. Voigt, P., Tee, W.-W. & Reinberg, D. A double take on bivalent promoters. Genes Dev. 27, 1318–1338 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Marsolier, J. et al. H3K27me3 conditions chemotolerance in triple-negative breast cancer. Nat. Genet. 54, 459–468 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Mabe, N. W. et al. Epigenetic silencing of tumor suppressor Par-4 promotes chemoresistance in recurrent breast cancer. J. Clin. Invest. 128, 4413–4428 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Chaffer, C. L. et al. Poised chromatin at the ZEB1 promoter enables breast cancer cell plasticity and enhances tumorigenicity. Cell 154, 61–74 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Iniguez, A. B. et al. Resistance to epigenetic-targeted therapy engenders tumor cell vulnerabilities associated with enhancer remodeling. Cancer Cell 34, 922–938 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ohta, Y. et al. Cell–matrix interface regulates dormancy in human colon cancer stem cells. Nature 608, 784–794 (2022).

    Article  CAS  PubMed  Google Scholar 

  186. Fane, M. E. et al. Stromal changes in the aged lung induce an emergence from melanoma dormancy. Nature 606, 396–405 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Warren, A. et al. Global computational alignment of tumor and cell line transcriptional profiles. Nat. Commun. 12, 22 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Murthy, P. K. L. et al. Epigenetic basis of oncogenic-Kras-mediated epithelial–cellular proliferation and plasticity. Dev. Cell 57, 310–328 (2022).

    Article  PubMed Central  Google Scholar 

  189. Filbin, M. G. et al. Developmental and oncogenic programs in H3K27M gliomas dissected by single-cell RNA-seq. Science 360, 331–335 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. Emt: 2016. Cell 166, 21–45 (2016).

    Article  CAS  PubMed  Google Scholar 

  191. Yang, J. et al. Guidelines and definitions for research on epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 21, 341–352 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. van Groningen, T. et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat. Genet. 49, 1261–1266 (2017).

    Article  PubMed  Google Scholar 

  193. Boeva, V. et al. Heterogeneity of neuroblastoma cell identity defined by transcriptional circuitries. Nat. Genet. 49, 1408–1413 (2017).

    Article  CAS  PubMed  Google Scholar 

  194. Mabe, N. W. et al. Transition to a mesenchymal state in neuroblastoma confers resistance to anti-GD2 antibody via reduced expression of ST8SIA1. Nat. Cancer 3, 976–993 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Gartlgruber, M. et al. Super enhancers define regulatory subtypes and cell identity in neuroblastoma. Nat. Cancer 2, 114–128 (2021).

    Article  CAS  PubMed  Google Scholar 

  196. Linder, S. et al. Drug-induced epigenomic plasticity reprograms circadian rhythm regulation to drive prostate cancer toward androgen independence. Cancer Discov. https://doi.org/10.1158/2159-8290.CD-21-0576 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Apfelbaum, A. A. et al. EWS::FLI1 and HOXD13 control tumor cell plasticity in Ewing sarcoma. Clin. Cancer Res. 28, 4466–4478 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Rubin, M. A., Bristow, R. G., Thienger, P. D., Dive, C. & Imielinski, M. Impact of lineage plasticity to and from a neuroendocrine phenotype on progression and response in prostate and lung cancers. Mol. Cell 80, 562–577 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Oser, M. G., Niederst, M. J., Sequist, L. V. & Engelman, J. A. Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. Lancet Oncol. 16, e165–e172 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Hoek, K. S. et al. In vivo switching of human melanoma cells between proliferative and invasive states. Cancer Res. 68, 650–656 (2008).

    Article  CAS  PubMed  Google Scholar 

  201. Gardner, R. et al. Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. Blood 127, 2406–2410 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Sáez-Ayala, M. et al. Directed phenotype switching as an effective antimelanoma strategy. Cancer Cell 24, 105–119 (2013).

    Article  PubMed  Google Scholar 

  203. Davies, A. et al. An androgen receptor switch underlies lineage infidelity in treatment-resistant prostate cancer. Nat. Cell Biol. 23, 1023–1034 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Yamamoto, S. et al. JARID1B is a luminal lineage-driving oncogene in breast cancer. Cancer Cell 25, 762–777 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hinohara, K. et al. KDM5 histone demethylase activity links cellular transcriptomic heterogeneity to therapeutic resistance. Cancer Cell 34, 939–953 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Drosos, Y. et al. NSD1 mediates antagonism between SWI/SNF and polycomb complexes and is required for transcriptional activation upon EZH2 inhibition. Mol. Cell 82, 2472–2489 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Sparbier, C. E. et al. Targeting Menin disrupts the KMT2A/B and polycomb balance to paradoxically activate bivalent genes. Nat. Cell Biol. 25, 258–272 (2023).

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Zhang, Y. et al. Genome-wide CRISPR screen identifies PRC2 and KMT2D–COMPASS as regulators of distinct EMT trajectories that contribute differentially to metastasis. Nat. Cell Biol. 24, 554–564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Avgustinova, A. et al. Loss of G9a preserves mutation patterns but increases chromatin accessibility, genomic instability and aggressiveness in skin tumours. Nat. Cell Biol. 20, 1400–1409 (2018).

    Article  CAS  PubMed  Google Scholar 

  210. Hogg, S. J. et al. Targeting histone acetylation dynamics and oncogenic transcription by catalytic P300/CBP inhibition. Mol. Cell 81, 2183–2200 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. DuBois, S. G. et al. Randomized phase II trial of MIBG versus MIBG, vincristine, and irinotecan versus MIBG and vorinostat for patients with relapsed or refractory neuroblastoma: a report from NANT consortium. J. Clin. Oncol. 39, 3506–3514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Gardner, E. E. et al. Chemosensitive relapse in small cell lung cancer proceeds through an EZH2–SLFN11 axis. Cancer Cell 31, 286–299 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Kailayangiri, S. et al. EZH2 inhibition in Ewing sarcoma upregulates GD2 expression for targeting with gene-modified T cells. Mol. Ther. 27, 933–946 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Reppel, L. et al. Targeting disialoganglioside GD2 with chimeric antigen receptor-redirected T cells in lung cancer. J. Immunother. Cancer https://doi.org/10.1136/jitc-2021-003897 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Ennishi, D. et al. Molecular and genetic characterization of MHC deficiency identifies EZH2 as therapeutic target for enhancing immune recognition. Cancer Discov. 9, 546–563 (2019).

    Article  PubMed  Google Scholar 

  216. Palikyras, S. & Papantonis, A. Modes of phase separation affecting chromatin regulation. Open Biol. 9, 190167 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Lyon, A. S., Peeples, W. B. & Rosen, M. K. A framework for understanding the functions of biomolecular condensates across scales. Nat. Rev. Mol. Cell Biol. 22, 215–235 (2021).

    Article  CAS  PubMed  Google Scholar 

  218. Shin, Y. & Brangwynne, C. P. Liquid phase condensation in cell physiology and disease. Science 357, eaaf4382 (2017).

    Article  PubMed  Google Scholar 

  219. van der Lee, R. et al. Classification of intrinsically disordered regions and proteins. Chem. Rev. 114, 6589–6631 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Hansen, J. C., Lu, X., Ross, E. D. & Woody, R. W. Intrinsic protein disorder, amino acid composition, and histone terminal domains. J. Biol. Chem. 281, 1853–1856 (2006).

    Article  CAS  PubMed  Google Scholar 

  221. Kilgore, H. R. & Young, R. A. Learning the chemical grammar of biomolecular condensates. Nat. Chem. Biol. 18, 1298–1306 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Klein, I. A. et al. Partitioning of cancer therapeutics in nuclear condensates. Science 368, 1386–1392 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Chandra, B. et al. Phase separation mediates NUP98 fusion oncoprotein leukemic transformation. Cancer Discov. 12, 1152–1169 (2022).

    Article  CAS  PubMed  Google Scholar 

  224. Tripathi, S. et al. Defining the condensate landscape of fusion oncoproteins. Nat. Commun. 14, 6008 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Chong, S. et al. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82, 2084–2097 (2022).

    Article  CAS  PubMed  Google Scholar 

  226. Seong, B. K. A. et al. TRIM8 modulates the EWS/FLI oncoprotein to promote survival in Ewing sarcoma. Cancer Cell 39, 1262–1278 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Chen, S. et al. Constitutive protein degradation induces acute cell death via proteolysis products. Preprint at bioRxiv https://doi.org/10.1101/2023.02.06.527237 (2023).

  228. Belk, J. A., Daniel, B. & Satpathy, A. T. Epigenetic regulation of T cell exhaustion. Nat. Immunol. 23, 848–860 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Villanueva, L., Álvarez-Errico, D. & Esteller, M. The contribution of epigenetics to cancer immunotherapy. Trends Immunol. 41, 676–691 (2020).

    Article  CAS  PubMed  Google Scholar 

  230. Hiatt, J. B. et al. Inhibition of LSD1 with bomedemstat sensitizes small cell lung cancer to immune checkpoint blockade and T-cell killing. Clin. Cancer Res. 28, 4551–4564 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Institutes of Health (P01 CA217959 (K.S.), R35 CA283977 (K.S.), CA261035 (N.W.M.), CA279915 (N.W.M.), CA243266 (C.F.M.)), the Leukemia and Lymphoma Society, the Rally Foundation, and a Pediatric Stand Up to Cancer Catalyst Grant supported by Bristol-Myers Squibb (SU2C 6143). K.S. is also funded by the St. Jude Children’s Research Hospital Collaborative Research Program. We recognize that no review can be perfectly comprehensive. We apologize for any omissions of targets, drugs, or references due to the constraints of a Review article.

Author information

Authors and Affiliations

Authors

Contributions

N.W.M. was responsible for the writing of the manuscript, assembling of the figures and cataloging of clinical trial information tables. J.A.P. edited the manuscript and assisted in assembling clinical trial tables. C.F.M. wrote the section on histone acetyltransferases. K.S. supervised, edited and provided funding.

Corresponding author

Correspondence to Kimberly Stegmaier.

Ethics declarations

Competing interests

K.S. receives grant funding from the DFCI/Novartis Drug Discovery Program and KronosBio, is a member of the scientific advisory board of and has stock options with Auron Therapeutics, and has consulted for AstraZeneca. C.F.M. is a current employee and has stock options at InduPro. All other authors have no disclosures.

Peer review

Peer review information

Nature Cancer thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mabe, N.W., Perry, J.A., Malone, C.F. et al. Pharmacological targeting of the cancer epigenome. Nat Cancer 5, 844–865 (2024). https://doi.org/10.1038/s43018-024-00777-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-024-00777-2

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer