Table 1 Comparison of the crossNN model to ad-hoc RFs23 and the Sturgeon DNN approach25
Cohort | Number of cases | Metric | crossNN | Sturgeon 0.8 | Sturgeon 0.95 | Ad-hoc RF |
|---|---|---|---|---|---|---|
450K | 610 | Accuracy | 0.979 | 0.962 | 0.962 | 0.97 |
Precision | 0.996 | 0.973 | 0.988 | 0.972 | ||
Sensitivity | 0.93 | 0.861 | 0.792 | 0.966 | ||
AUC | 0.973 | 0.892 | 0.892 | 0.921 | ||
EPICv1 | 554 | Accuracy | 0.948 | 0.955 | 0.955 | 0.966 |
Precision | 0.99 | 0.963 | 0.967 | 0.971 | ||
Sensitivity | 0.894 | 0.944 | 0.908 | 0.96 | ||
AUC | 0.953 | 0.773 | 0.773 | 0.884 | ||
EPICv2 | 133 | Accuracy | 0.97 | 1 | 1 | 0.985 |
Precision | 1 | 1 | 1 | 0.992 | ||
Sensitivity | 0.895 | 0.977 | 0.94 | 0.985 | ||
AUC | 0.986 | NaN | NaN | 0.992 | ||
Nanopore R9 | 415 | Accuracy | 0.964 | 0.925 | 0.925 | 0.937 |
Precision | 0.99 | 0.964 | 0.973 | 0.99 | ||
Sensitivity | 0.908 | 0.824 | 0.61 | 0.718 | ||
AUC | 0.967 | 0.843 | 0.843 | 0.917 | ||
Nanopore R10 | 129 | Accuracy | 0.922 | 0.884 | 0.884 | 0.899 |
precision | 0.965 | 0.954 | 0.987 | 1 | ||
sensitivity | 0.853 | 0.791 | 0.581 | 0.674 | ||
AUC | 0.931 | 0.905 | 0.905 | 0.914 | ||
Targeted sequencing | 124 | Accuracy | 0.895 | 0.855 | 0.855 | 0.839 |
Precision | 0.991 | 0.994 | 1 | 0.99 | ||
Sensitivity | 0.879 | 0.806 | 0.726 | 0.766 | ||
AUC | 0.997 | 0.954 | 0.954 | 0.958 | ||
WGBS | 125 | Accuracy | 0.936 | 0.808 | 0.808 | 0.88 |
Precision | 0.991 | 0.892 | 0.922 | 0.979 | ||
Sensitivity | 0.848 | 0.616 | 0.432 | 0.736 | ||
AUC | 0.94 | 0.79 | 0.79 | 0.918 | ||
Overall | 2,090 | Accuracy | 0.956 | 0.935 | 0.935 | 0.946 |
Precision | 0.991 | 0.963 | 0.978 | 0.947 | ||
Sensitivity | 0.901 | 0.861 | 0.757 | 0.873 | ||
AUC | 0.953 | 0.865 | 0.865 | 0.9 |