Table 1 Comparison of the crossNN model to ad-hoc RFs23 and the Sturgeon DNN approach25

From: crossNN is an explainable framework for cross-platform DNA methylation-based classification of tumors

Cohort

Number of cases

Metric

crossNN

Sturgeon 0.8

Sturgeon 0.95

Ad-hoc RF

450K

610

Accuracy

0.979

0.962

0.962

0.97

Precision

0.996

0.973

0.988

0.972

Sensitivity

0.93

0.861

0.792

0.966

AUC

0.973

0.892

0.892

0.921

EPICv1

554

Accuracy

0.948

0.955

0.955

0.966

Precision

0.99

0.963

0.967

0.971

Sensitivity

0.894

0.944

0.908

0.96

AUC

0.953

0.773

0.773

0.884

EPICv2

133

Accuracy

0.97

1

1

0.985

Precision

1

1

1

0.992

Sensitivity

0.895

0.977

0.94

0.985

AUC

0.986

NaN

NaN

0.992

Nanopore

R9

415

Accuracy

0.964

0.925

0.925

0.937

Precision

0.99

0.964

0.973

0.99

Sensitivity

0.908

0.824

0.61

0.718

AUC

0.967

0.843

0.843

0.917

Nanopore

R10

129

Accuracy

0.922

0.884

0.884

0.899

precision

0.965

0.954

0.987

1

sensitivity

0.853

0.791

0.581

0.674

AUC

0.931

0.905

0.905

0.914

Targeted sequencing

124

Accuracy

0.895

0.855

0.855

0.839

Precision

0.991

0.994

1

0.99

Sensitivity

0.879

0.806

0.726

0.766

AUC

0.997

0.954

0.954

0.958

WGBS

125

Accuracy

0.936

0.808

0.808

0.88

Precision

0.991

0.892

0.922

0.979

Sensitivity

0.848

0.616

0.432

0.736

AUC

0.94

0.79

0.79

0.918

Overall

2,090

Accuracy

0.956

0.935

0.935

0.946

Precision

0.991

0.963

0.978

0.947

Sensitivity

0.901

0.861

0.757

0.873

AUC

0.953

0.865

0.865

0.9

  1. For each model, MCF-level raw accuracy before the application of cutoffs, precision with platform-specific cutoffs and AUC of the ROC for the (calibrated) score to predict the correct classification are given. For crossNN, the following cutoffs, as derived above, were used: microarray > 0.4; crossNN nanopore/targeted methyl-seq/WGBS > 0.2. Published validated cutoffs were used for ad-hoc RF and the Sturgeon DNN (ad-hoc RF > 0.15; Sturgeon DNN > 0.8 or > 0.95, respectively). NaN, not a number. Bold indicates row-wise maximum values.