Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The rapidly evolving paradigm of neoadjuvant immunotherapy across cancer types

Abstract

Neoadjuvant immunotherapy is rapidly changing the treatment landscape for many tumor types. The superiority of neoadjuvant compared to adjuvant immunotherapy has now been established in both preclinical studies and clinical trials. Neoadjuvant immunotherapy, either as monotherapy or in combination with other immune checkpoint inhibitors or other agents, has become a standard of care for several cancer types, while many new indications are expected. Future research should focus on determining the benefit of treatment combinations versus monotherapy and the contribution of adjuvant after neoadjuvant (or perioperative) treatment versus neoadjuvant treatment alone as well as on identifying predictive biomarkers of response.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Rationale for neoadjuvant versus adjuvant immunotherapy.

Similar content being viewed by others

References

  1. Boutros, A. et al. The treatment of advanced melanoma: current approaches and new challenges. Crit. Rev. Oncol. Hematol. 196, 104276 (2024).

    Article  PubMed  Google Scholar 

  2. Powles, T. et al. ESMO Clinical Practice Guideline interim update on first-line therapy in advanced urothelial carcinoma. Ann. Oncol. 35, 485–490 (2024).

    Article  CAS  PubMed  Google Scholar 

  3. Hendriks, L. E. et al. Non-oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 358–376 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Patruni, S., Fayyaz, F., Bien, J., Phillip, T. & King, D. A. Immunotherapy in the management of esophagogastric cancer: a practical review. JCO Oncol. Pract. 19, 107–115 (2023).

    Article  PubMed  Google Scholar 

  5. Andre, T. et al. Nivolumab plus ipilimumab in microsatellite-instability-high metastatic colorectal cancer. N. Engl. J. Med. 391, 2014–2026 (2024).

    Article  CAS  PubMed  Google Scholar 

  6. Tran, J. & Ornstein, M. C. Clinical review on the management of metastatic renal cell carcinoma. JCO Oncol. Pract. 18, 187–196 (2022).

    Article  PubMed  Google Scholar 

  7. Cortes, J. et al. Pembrolizumab plus chemotherapy in advanced triple-negative breast cancer. N. Engl. J. Med. 387, 217–226 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Orland, M. D., Ullah, F., Yilmaz, E. & Geiger, J. L. Immunotherapy for head and neck squamous cell carcinoma: present and future approaches and challenges. JCO Oncol. Pract. 20, 1588–1595 (2024).

  9. D’Angelo, S. P. et al. First-line avelumab treatment in patients with metastatic Merkel cell carcinoma: 4-year follow-up from part B of the JAVELIN Merkel 200 study. ESMO Open 9, 103461 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dall’Olio, F. G. et al. Tumour burden and efficacy of immune-checkpoint inhibitors. Nat. Rev. Clin. Oncol. 19, 75–90 (2022).

    Article  PubMed  Google Scholar 

  11. Haynes, N. M., Chadwick, T. B. & Parker, B. S. The complexity of immune evasion mechanisms throughout the metastatic cascade. Nat. Immunol. 25, 1793–1808 (2024).

    Article  CAS  PubMed  Google Scholar 

  12. Shrotriya, S., Walsh, D., Bennani-Baiti, N., Thomas, S. & Lorton, C. C-reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLoS ONE 10, e0143080 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Le Bourgeois, T. et al. Targeting T cell metabolism for improvement of cancer immunotherapy. Front. Oncol. 8, 237 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eggermont, A. M. M. et al. Five-year analysis of adjuvant pembrolizumab or placebo in stage III melanoma. NEJM Evid. 1, EVIDoa2200214 (2022).

    Article  PubMed  Google Scholar 

  15. Larkin, J. et al. Adjuvant nivolumab versus ipilimumab in resected stage III/IV melanoma: 5-year efficacy and biomarker results from CheckMate 238. Clin. Cancer Res. 29, 3352–3361 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luke, J. J. et al. Pembrolizumab versus placebo as adjuvant therapy in resected stage IIB or IIC melanoma: final analysis of distant metastasis-free survival in the phase III KEYNOTE-716 study. J. Clin. Oncol. 42, 1619–1624 (2024).

    Article  CAS  PubMed  Google Scholar 

  17. Tang, W. F. et al. Adjuvant immunotherapy in early-stage resectable non-small cell lung cancer: a new milestone. Front. Oncol. 13, 1063183 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kelly, R. J. et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 384, 1191–1203 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Choueiri, T. K. et al. Overall survival with adjuvant pembrolizumab in renal-cell carcinoma. N. Engl. J. Med. 390, 1359–1371 (2024).

    Article  CAS  PubMed  Google Scholar 

  20. Bajorin, D. F. et al. Adjuvant nivolumab versus placebo in muscle-invasive urothelial carcinoma. N. Engl. J. Med. 384, 2102–2114 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dubsky, P. et al. Breast conservation and axillary management after primary systemic therapy in patients with early-stage breast cancer: the Lucerne toolbox. Lancet Oncol. 22, e18–e28 (2021).

    Article  PubMed  Google Scholar 

  22. Rödel, C. et al. Combined-modality treatment and selective organ preservation in invasive bladder cancer: long-term results. J. Clin. Oncol. 20, 3061–3071 (2002).

    Article  PubMed  Google Scholar 

  23. Garcia-Aguilar, J. et al. Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J. Clin. Oncol. 40, 2546–2556 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. von Minckwitz, G. et al. Definition and impact of pathologic complete response on prognosis after neoadjuvant chemotherapy in various intrinsic breast cancer subtypes. J. Clin. Oncol. 30, 1796–1804 (2012).

    Article  Google Scholar 

  25. Rosenblatt, R. et al. Pathologic downstaging is a surrogate marker for efficacy and increased survival following neoadjuvant chemotherapy and radical cystectomy for muscle-invasive urothelial bladder cancer. Eur. Urol. 61, 1229–1238 (2012).

    Article  PubMed  Google Scholar 

  26. Petrelli, F. et al. Correlation of pathologic complete response with survival after neoadjuvant chemotherapy in bladder cancer treated with cystectomy: a meta-analysis. Eur. Urol. 65, 350–357 (2014).

    Article  PubMed  Google Scholar 

  27. Zwart, W. H. et al. Oncological outcomes after a pathological complete response following total neoadjuvant therapy or chemoradiotherapy for high-risk locally advanced rectal cancer in the RAPIDO trial. Eur. J. Cancer 204, 114044 (2024).

    Article  CAS  PubMed  Google Scholar 

  28. Masuda, N. et al. Adjuvant capecitabine for breast cancer after preoperative chemotherapy. N. Engl. J. Med. 376, 2147–2159 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. von Minckwitz, G. et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N. Engl. J. Med. 380, 617–628 (2019).

    Article  Google Scholar 

  30. Lordick, F. & Gockel, I. Chances, risks and limitations of neoadjuvant therapy in surgical oncology. Innov. Surg. Sci. 1, 3–11 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Versluis, J. M., Long, G. V. & Blank, C. U. Learning from clinical trials of neoadjuvant checkpoint blockade. Nat. Med. 26, 475–484 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, J. et al. Improved efficacy of neoadjuvant compared to adjuvant immunotherapy to eradicate metastatic disease. Cancer Discov. 6, 1382–1399 (2016).

    Article  CAS  PubMed  Google Scholar 

  33. Cascone, T. et al. Superior efficacy of neoadjuvant compared to adjuvant immune checkpoint blockade in non-small cell lung cancer. Cancer Res. 78, 1719 (2018).

    Article  Google Scholar 

  34. Kaptein, P. et al. Addition of interleukin-2 overcomes resistance to neoadjuvant CTLA4 and PD1 blockade in ex vivo patient tumors. Sci. Transl. Med. 14, eabj9779 (2022).

    Article  CAS  PubMed  Google Scholar 

  35. Pardoll, D. M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immunity 39, 1–10 (2013).

    Article  PubMed  Google Scholar 

  37. Topalian, S. L., Taube, J. M. & Pardoll, D. M. Neoadjuvant checkpoint blockade for cancer immunotherapy. Science 367, eaax0182 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blank, C. U. et al. Neoadjuvant versus adjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma. Nat. Med. 24, 1655–1661 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Topalian, S. L. et al. Neoadjuvant immune checkpoint blockade: a window of opportunity to advance cancer immunotherapy. Cancer Cell 41, 1551–1566 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Eisenhauer, E. A. et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45, 228–247 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Tetzlaff, M. T. et al. Pathological assessment of resection specimens after neoadjuvant therapy for metastatic melanoma. Ann. Oncol. 29, 1861–1868 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hieken, T. J. et al. Neoadjuvant immunotherapy in melanoma: the paradigm shift. Am. Soc. Clin. Oncol. Educ. Book 43, e390614 (2023).

    Article  PubMed  Google Scholar 

  43. US Food and Drug Administration. Pathological Complete Response in Neoadjuvant Treatment of High-Risk Early-Stage Breast Cancer: Use as an Endpoint to Support Accelerated Approval. FDA-2012-D-0432 (FDA, 2020).

  44. Menzies, A. M. et al. Pathological response and survival with neoadjuvant therapy in melanoma: a pooled analysis from the International Neoadjuvant Melanoma Consortium (INMC). Nat. Med. 27, 301–309 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Forde, P. M. et al. Neoadjuvant PD-1 blockade in resectable lung cancer. N. Engl. J. Med. 378, 1976–1986 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Vos, J. L. et al. Neoadjuvant immunotherapy with nivolumab and ipilimumab induces major pathological responses in patients with head and neck squamous cell carcinoma. Nat. Commun. 12, 7348 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Blank, C. U. et al. Neoadjuvant nivolumab and ipilimumab in resectable stage III melanoma. N. Engl. J. Med. 391, 1696–1708 (2024).

    Article  CAS  PubMed  Google Scholar 

  48. Moschos, S. J. et al. Neoadjuvant treatment of regional stage IIIB melanoma with high-dose interferon alfa-2b induces objective tumor regression in association with modulation of tumor infiltrating host cellular immune responses. J. Clin. Oncol. 24, 3164–3171 (2006).

    Article  CAS  PubMed  Google Scholar 

  49. Tarhini, A. et al. Neoadjuvant ipilimumab (3 mg/kg or 10 mg/kg) and high dose IFN-α2b in locally/regionally advanced melanoma: safety, efficacy and impact on T-cell repertoire. J. Immunother. Cancer 6, 112 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Tarhini, A. A. et al. Immune monitoring of the circulation and the tumor microenvironment in patients with regionally advanced melanoma receiving neoadjuvant ipilimumab. PLoS ONE 9, e87705 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Gao, J. et al. VISTA is an inhibitory immune checkpoint that is increased after ipilimumab therapy in patients with prostate cancer. Nat. Med. 23, 551–555 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tarhini, A. A. Neoadjuvant therapy for melanoma: a promising therapeutic approach and an ideal platform in drug development. Am. Soc. Clin. Oncol. Educ. Book 35, e535–e542 (2015).

  53. Blank, C. et al. (Neo-)adjuvant ipilimumab + nivolumab (IPI + NIVO) in palpable stage 3 melanoma — initial data from the OpACIN trial. Ann. Oncol. 27, vi575 (2016).

  54. Hoeijmakers, L. L., Reijers, I. L. M. & Blank, C. U. Biomarker-driven personalization of neoadjuvant immunotherapy in melanoma. Cancer Discov. 13, 2319–2338 (2023).

    Article  CAS  PubMed  Google Scholar 

  55. Amaria, R. N. et al. Neoadjuvant immune checkpoint blockade in high-risk resectable melanoma. Nat. Med. 24, 1649–1654 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rozeman, E. A. et al. Identification of the optimal combination dosing schedule of neoadjuvant ipilimumab plus nivolumab in macroscopic stage III melanoma (OpACIN-neo): a multicentre, phase 2, randomised, controlled trial. Lancet Oncol. 20, 948–960 (2019).

    Article  CAS  PubMed  Google Scholar 

  57. Najjar, Y. G. et al. Neoadjuvant pembrolizumab and high-dose IFNα-2b in resectable regionally advanced melanoma. Clin. Cancer Res. 27, 4195–4204 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Long, G. V. et al. Neoadjuvant pembrolizumab, dabrafenib and trametinib in BRAFV600-mutant resectable melanoma: the randomized phase 2 NeoTrio trial. Nat. Med. 30, 2540–2548 (2024).

  59. Patel, S. P. et al. Neoadjuvant-adjuvant or adjuvant-only pembrolizumab in advanced melanoma. N. Engl. J. Med. 388, 813–823 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lucas, M. W. et al. LBA42 Distant metastasis-free survival of neoadjuvant nivolumab plus ipilimumab versus adjuvant nivolumab in resectable, macroscopic stage III melanoma: the NADINA trial. Ann. Oncol. 35, S1233–S1234 (2024).

    Article  Google Scholar 

  61. Amaria, R. N. et al. Neoadjuvant relatlimab and nivolumab in resectable melanoma. Nature 611, 155–160 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Long, G. V. et al. 1082O KEYMAKER-U02 substudy 02C: neoadjuvant pembrolizumab (pembro) and investigational agents followed by adjuvant pembro for stage IIIB–D melanoma. Ann. Oncol. 35, S712–S713 (2024).

    Article  Google Scholar 

  63. Ascierto, P. et al. Efficacy and safety of triplet nivolumab, relatlimab, and ipilimumab (NIVO + RELA + IPI) in advanced melanoma: results from RELATIVITY-048. J. Clin. Oncol. 42, 9504 (2024).

    Article  Google Scholar 

  64. Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Reijers, I. L. M. et al. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J. Exp. Med. 220, e20221952 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lucas, M. W., Versluis, J. M., Rozeman, E. A. & Blank, C. U. Personalizing neoadjuvant immune-checkpoint inhibition in patients with melanoma. Nat. Rev. Clin. Oncol. 20, 408–422 (2023).

    Article  PubMed  Google Scholar 

  67. Rosner, S. et al. Five-year clinical outcomes after neoadjuvant nivolumab in resectable non-small cell lung cancer. Clin. Cancer Res. 29, 705–710 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gao, S. et al. Neoadjuvant PD-1 inhibitor (sintilimab) in NSCLC. J. Thorac. Oncol. 15, 816–826 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. Besse, B. et al. 1215O - SC Neoadjuvant atezolizumab (A) for resectable non-small cell lung cancer (NSCLC): results from the phase II PRINCEPS trial. Ann. Oncol. 31, S794–S795 (2020).

    Article  Google Scholar 

  70. Cascone, T. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in operable non-small cell lung cancer: the phase 2 randomized NEOSTAR trial. Nat. Med. 27, 504–514 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Altorki, N. K. et al. Neoadjuvant durvalumab with or without stereotactic body radiotherapy in patients with early-stage non-small-cell lung cancer: a single-centre, randomised phase 2 trial. Lancet Oncol. 22, 824–835 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Tong, B. C. et al. Perioperative outcomes of pulmonary resection after neoadjuvant pembrolizumab in patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 163, 427–436 (2022).

    Article  PubMed  Google Scholar 

  73. Chaft, J. E. et al. Neoadjuvant atezolizumab for resectable non-small cell lung cancer: an open-label, single-arm phase II trial. Nat. Med. 28, 2155–2161 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wislez, M. et al. Neoadjuvant durvalumab for resectable non-small-cell lung cancer (NSCLC): results from a multicenter study (IFCT-1601 IONESCO). J. Immunother. Cancer 10, e005636 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Cascone, T. et al. Neoadjuvant durvalumab alone or combined with novel immuno-oncology agents in resectable lung cancer: the phase II NeoCOAST platform trial. Cancer Discov. 13, 2394–2411 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Awad, M. M. et al. 1261O Neoadjuvant nivolumab (N) + ipilimumab (I) vs chemotherapy (C) in the phase III CheckMate 816 trial. Ann. Oncol. 34, S731 (2023).

    Article  Google Scholar 

  77. Schuler, M. et al. Neoadjuvant nivolumab with or without relatlimab in resectable non-small-cell lung cancer: a randomized phase 2 trial. Nat. Med. 30, 1602–1611 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Shu, C. A. et al. Neoadjuvant atezolizumab and chemotherapy in patients with resectable non-small-cell lung cancer: an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 786–795 (2020).

    Article  CAS  PubMed  Google Scholar 

  79. Provencio, M. et al. Neoadjuvant chemotherapy and nivolumab in resectable non-small-cell lung cancer (NADIM): an open-label, multicentre, single-arm, phase 2 trial. Lancet Oncol. 21, 1413–1422 (2020).

    Article  CAS  PubMed  Google Scholar 

  80. Zhao, Z. R. et al. Phase 2 trial of neoadjuvant toripalimab with chemotherapy for resectable stage III non-small-cell lung cancer. Oncoimmunology 10, 1996000 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Provencio, M. et al. Perioperative nivolumab and chemotherapy in stage III non-small-cell lung cancer. N. Engl. J. Med. 389, 504–513 (2023).

    Article  CAS  PubMed  Google Scholar 

  82. Rothschild, S. I. et al. SAKK 16/14: Durvalumab in addition to neoadjuvant chemotherapy in patients with stage IIIA(N2) non-small-cell lung cancer—a multicenter single-arm phase II trial. J. Clin. Oncol. 39, 2872–2880 (2021).

    Article  CAS  PubMed  Google Scholar 

  83. Cascone, T. et al. Neoadjuvant chemotherapy plus nivolumab with or without ipilimumab in operable non-small cell lung cancer: the phase 2 platform NEOSTAR trial. Nat. Med. 29, 593–604 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Forde, P. M. et al. Neoadjuvant nivolumab plus chemotherapy in resectable lung cancer. N. Engl. J. Med. 386, 1973–1985 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Spicer, J. et al. Neoadjuvant nivolumab (NIVO) + chemotherapy (chemo) vs chemo in patients (pts) with resectable NSCLC: 4-year update from CheckMate 816. J. Clin. Oncol. 42, LBA8010 (2024).

    Article  Google Scholar 

  86. US Food and Drug Administration. FDA approves neoadjuvant nivolumab and platinum-doublet chemotherapy for early-stage non-small cell lung cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neoadjuvant-nivolumab-and-platinum-doublet-chemotherapy-early-stage-non-small-cell-lung (2022).

  87. European Medicines Agency. Opdivo. EMA https://www.ema.europa.eu/en/medicines/human/EPAR/opdivo (2023).

  88. Wakelee, H. et al. Perioperative pembrolizumab for early-stage non-small-cell lung cancer. N. Engl. J. Med. 389, 491–503 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Heymach, J. V. et al. Perioperative durvalumab for resectable non-small-cell lung cancer. N. Engl. J. Med. 389, 1672–1684 (2023).

    Article  CAS  PubMed  Google Scholar 

  90. Cascone, T. et al. Perioperative nivolumab in resectable lung cancer. N. Engl. J. Med. 390, 1756–1769 (2024).

    Article  CAS  PubMed  Google Scholar 

  91. Spicer, J. D. et al. Neoadjuvant pembrolizumab plus chemotherapy followed by adjuvant pembrolizumab compared with neoadjuvant chemotherapy alone in patients with early-stage non-small-cell lung cancer (KEYNOTE-671): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 404, 1240–1252 (2024).

    Article  CAS  PubMed  Google Scholar 

  92. US Food and Drug Administration. FDA approves neoadjuvant/ adjuvant pembrolizumab for resectable non-small cell lung cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neoadjuvant-adjuvant-pembrolizumab-resectable-non-small-cell-lung-cancer (2023).

  93. US Food and Drug Administration. FDA approves neoadjuvant/adjuvant durvalumab for resectable non-small cell lung cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neoadjuvantadjuvant-durvalumab-resectable-non-small-cell-lung-cancer (2024).

  94. US Food and Drug Administration. FDA approves neoadjuvant/adjuvant nivolumab for resectable non-small cell lung cancer. FDA https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-neoadjuvantadjuvant-nivolumab-resectable-non-small-cell-lung-cancer (2024).

  95. Heymach, J. V. et al. OA13.03 Perioperative durvalumab for resectable NSCLC (R-NSCLC): updated outcomes from the phase 3 AEGEAN trial. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2024.09.069 (2024).

  96. Provencio Pulla, M. et al. LBA50 Perioperative nivolumab (NIVO) v placebo (PBO) in patients (pts) with resectable NSCLC: clinical update from the phase III CheckMate 77T study. Ann. Oncol. 35, S1239–S1240 (2024).

    Article  Google Scholar 

  97. André, T. et al. Pembrolizumab in microsatellite-instability-high advanced colorectal cancer. N. Engl. J. Med. 383, 2207–2218 (2020).

    Article  PubMed  Google Scholar 

  98. Chalabi, M. et al. Neoadjuvant immunotherapy in locally advanced mismatch repair-deficient colon cancer. N. Engl. J. Med. 390, 1949–1958 (2024).

    Article  CAS  PubMed  Google Scholar 

  99. Fokas, E. et al. Early efficacy end points in neoadjuvant rectal cancer trials: surrogacy revisited. J. Clin. Oncol. 42, 872–875 (2024).

    Article  PubMed  Google Scholar 

  100. Chalabi, M. et al. LBA24 Neoadjuvant immunotherapy in locally advanced MMR-deficient colon cancer: 3-year disease-free survival from NICHE-2. Ann. Oncol. 35, S1217–S1218 (2024).

    Article  Google Scholar 

  101. Rousseau, B., White, J. R., Cercek, A. & Diaz, L. A. Jr. The duration of immunotherapy for mismatch repair-deficient cancers. N. Engl. J. Med. 392, 824–826 (2025).

    Article  PubMed  Google Scholar 

  102. Shiu, K.-K. et al. NEOPRISM-CRC: neoadjuvant pembrolizumab stratified to tumour mutation burden for high risk stage 2 or stage 3 deficient-MMR/MSI-high colorectal cancer. J. Clin. Oncol. 42, LBA3504 (2024).

    Article  Google Scholar 

  103. Verschoor, Y. L. et al. LBA31 Neoadjuvant nivolumab plus relatlimab (anti-LAG3) in locally advanced MMR-deficient colon cancers: the NICHE-3 study. Ann. Oncol. 34, S1270 (2023).

    Article  Google Scholar 

  104. de Gooyer, P. G. M. et al. Neoadjuvant nivolumab and relatlimab in locally advanced MMR-deficient colon cancer: a phase 2 trial. Nat. Med. 30, 3284–3290 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  105. de la Fouchardiere, C. et al. 504O IMHOTEP phase II trial of neoadjuvant pembrolizumab in dMMR/MSI tumors: results of the colorectal cancer cohort. Ann. Oncol. 35, S429 (2024).

    Article  Google Scholar 

  106. Hu, H. et al. Neoadjuvant PD-1 blockade with toripalimab, with or without celecoxib, in mismatch repair-deficient or microsatellite instability-high, locally advanced, colorectal cancer (PICC): a single-centre, parallel-group, non-comparative, randomised, phase 2 trial. Lancet Gastroenterol. Hepatol. 7, 38–48 (2022).

    Article  CAS  PubMed  Google Scholar 

  107. Xu, R. et al. Neoadjuvant treatment of IBI310 (anti-CTLA-4 antibody) plus sintilimab (anti-PD-1 antibody) in patients with microsatellite instability-high/mismatch repair-deficient colorectal cancer: results from a randomized, open-labeled, phase Ib study. J. Clin. Oncol. 42, 3505 (2024).

    Article  Google Scholar 

  108. Cercek, A. et al. PD-1 blockade in mismatch repair-deficient, locally advanced rectal cancer. N. Engl. J. Med. 386, 2363–2376 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Cercek, A. et al. Durable complete responses to PD-1 blockade alone in mismatch repair deficient locally advanced rectal cancer. J. Clin. Oncol. 42, LBA3512 (2024).

    Article  Google Scholar 

  110. Chalabi, M. et al. Neoadjuvant immunotherapy leads to pathological responses in MMR-proficient and MMR-deficient early-stage colon cancers. Nat. Med. 26, 566–576 (2020).

    Article  CAS  PubMed  Google Scholar 

  111. Hissong, E. et al. Neoadjuvant botensilimab (BOT) plus balstilimab (BAL) in resectable mismatch repair proficient (pMMR) and deficient (dMMR) colorectal cancer (CRC): NEST clinical trial update. J. Clin. Oncol. 43, 207 (2025).

    Article  Google Scholar 

  112. Ghelardi, F. et al. Preoperative botensilimab (BOT) with or without balstilimab (BAL) for patients with resectable locally advanced pMMR or dMMR colon cancer: results from the UNICORN trial by GONO. J. Clin. Oncol. 43, 158 (2025).

    Article  Google Scholar 

  113. Sobral-Leite, M. et al. Assessment of PD-L1 expression across breast cancer molecular subtypes, in relation to mutation rate, BRCA1-like status, tumor-infiltrating immune cells and survival. Oncoimmunology 7, e1509820 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Schmid, P. et al. Pembrolizumab for early triple-negative breast cancer. N. Engl. J. Med. 382, 810–821 (2020).

    Article  CAS  PubMed  Google Scholar 

  115. Schmid, P. et al. Event-free survival with pembrolizumab in early triple-negative breast cancer. N. Engl. J. Med. 386, 556–567 (2022).

    Article  CAS  PubMed  Google Scholar 

  116. Schmid, P. et al. Overall survival with pembrolizumab in early-stage triple-negative breast cancer. N. Engl. J. Med. 391, 1981–1991 (2024).

  117. Pusztai, L. et al. Event-free survival by residual cancer burden with pembrolizumab in early-stage TNBC: exploratory analysis from KEYNOTE-522. Ann. Oncol. 35, 429–436 (2024).

    Article  CAS  PubMed  Google Scholar 

  118. Schmid, P. et al. LBA4 Neoadjuvant pembrolizumab or placebo plus chemotherapy followed by adjuvant pembrolizumab or placebo for high-risk early-stage TNBC: overall survival results from the phase III KEYNOTE-522 study. Ann. Oncol. 35, S1204–S1205 (2024).

    Article  Google Scholar 

  119. Mittendorf, E. A. et al. Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet 396, 1090–1100 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Loibl, S. et al. Neoadjuvant durvalumab improves survival in early triple-negative breast cancer independent of pathological complete response. Ann. Oncol. 33, 1149–1158 (2022).

    Article  CAS  PubMed  Google Scholar 

  121. Sharma, P. et al. Clinical and biomarker findings of neoadjuvant pembrolizumab and carboplatin plus docetaxel in triple-negative breast cancer: NeoPACT phase 2 clinical trial. JAMA Oncol. 10, 227–235 (2024).

    Article  PubMed  Google Scholar 

  122. Ignatiadis, M. et al. Abstract GS01-03: Adding atezolizumab to adjuvant chemotherapy for stage II and III triple-negative breast cancer is unlikely to improve efficacy: interim analysis of the ALEXANDRA/IMpassion030 phase 3 trial. Cancer Res. 84, GS01-03 (2024).

    Article  Google Scholar 

  123. Conte, P. F. et al. A-BRAVE trial: a phase III randomized trial with avelumab in early triple-negative breast cancer with residual disease after neoadjuvant chemotherapy or at high risk after primary surgery and adjuvant chemotherapy. J. Clin. Oncol. 42, LBA500 (2024).

    Article  Google Scholar 

  124. Nederlof, I. et al. Neoadjuvant nivolumab or nivolumab plus ipilimumab in early-stage triple-negative breast cancer: a phase 2 adaptive trial. Nat. Med. 30, 3223–3235 (2024).

  125. Nederlof, I. et al. LBA11 Neoadjuvant nivolumab/relatlimab or nivolumab/ipilimumab in triple negative breast cancer with high tumor-infiltrating lymphocytes (TILs). Ann. Oncol. 35, S1206 (2024).

    Article  Google Scholar 

  126. Huober, J. et al. Atezolizumab with neoadjuvant anti-human epidermal growth factor receptor 2 therapy and chemotherapy in human epidermal growth factor receptor 2-positive early breast cancer: primary results of the randomized phase III IMpassion050 trial. J. Clin. Oncol. 40, 2946–2956 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Rinnerthaler, G. et al. 123O Randomized phase II trial of neoadjuvant atezolizumab in combination with dual HER2 blockade plus epirubicin in early HER2-positive breast cancer (ABCSG-52/ATHENE). ESMO Open 8, 101462 (2023).

    Article  Google Scholar 

  128. Voorwerk, L. et al. Immune landscape of breast tumors with low and intermediate estrogen receptor expression. NPJ Breast Cancer 9, 39 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Nanda, R. et al. Effect of pembrolizumab plus neoadjuvant chemotherapy on pathologic complete response in women with early-stage breast cancer: an analysis of the ongoing phase 2 adaptively randomized I-SPY2 trial. JAMA Oncol. 6, 676–684 (2020).

    Article  PubMed  Google Scholar 

  130. Pusztai, L. et al. Durvalumab with olaparib and paclitaxel for high-risk HER2-negative stage II/III breast cancer: results from the adaptively randomized I-SPY2 trial. Cancer Cell 39, 989–998 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Loi, S. et al. LBA20 A randomized, double-blind trial of nivolumab (NIVO) vs placebo (PBO) with neoadjuvant chemotherapy (NACT) followed by adjuvant endocrine therapy (ET) ± NIVO in patients (pts) with high-risk, ER+ HER2 primary breast cancer (BC). Ann. Oncol. 34, S1259–S1260 (2023).

    Article  Google Scholar 

  132. Loi, S. et al. Neoadjuvant nivolumab and chemotherapy in early estrogen receptor-positive breast cancer: a randomized phase 3 trial. Nat. Med. 31, 433–441 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Cardoso, F. et al. LBA21 KEYNOTE-756: phase III study of neoadjuvant pembrolizumab (pembro) or placebo (pbo) + chemotherapy (chemo), followed by adjuvant pembro or pbo + endocrine therapy (ET) for early-stage high-risk ER+/HER2 breast cancer. Ann. Oncol. 34, S1260–S1261 (2023).

    Article  Google Scholar 

  134. Cardoso, F. et al. Neoadjuvant pembrolizumab or placebo + chemotherapy, followed by adjuvant pembrolizumab or placebo plus endocrine therapy for early-stage high-risk ER+/HER2 breast cancer: results from the phase 3 KEYNOTE-756 study. Eur. J. Cancer 200, 113608 (2024).

  135. van der Heijden, M. S. et al. Nivolumab plus gemcitabine–cisplatin in advanced urothelial carcinoma. N. Engl. J. Med. 389, 1778–1789 (2023).

    Article  PubMed  Google Scholar 

  136. Powles, T. et al. Enfortumab vedotin and pembrolizumab in untreated advanced urothelial cancer. N. Engl. J. Med. 390, 875–888 (2024).

    Article  CAS  PubMed  Google Scholar 

  137. Apolo, A. et al. AMBASSADOR Alliance A031501: phase III randomized adjuvant study of pembrolizumab in muscle-invasive and locally advanced urothelial carcinoma (MIUC) vs observation. J. Clin. Oncol. 42, LBA531 (2024).

    Article  Google Scholar 

  138. Bellmunt, J. et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 22, 525–537 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Necchi, A. et al. Updated results of PURE-01 with preliminary activity of neoadjuvant pembrolizumab in patients with muscle-invasive bladder carcinoma with variant histologies. Eur. Urol. 77, 439–446 (2020).

    Article  CAS  PubMed  Google Scholar 

  140. Powles, T. et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 25, 1706–1714 (2019).

    Article  CAS  PubMed  Google Scholar 

  141. Necchi, A. et al. Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J. Clin. Oncol. 36, 3353–3360 (2018).

    Article  CAS  PubMed  Google Scholar 

  142. Carthon, B. C. et al. Preoperative CTLA-4 blockade: tolerability and immune monitoring in the setting of a presurgical clinical trial. Clin. Cancer Res. 16, 2861–2871 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. van Dijk, N. et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: the NABUCCO trial. Nat. Med. 26, 1839–1844 (2020).

    Article  PubMed  Google Scholar 

  144. Szabados, B. et al. Final results of neoadjuvant atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur. Urol. 82, 212–222 (2022).

    Article  CAS  PubMed  Google Scholar 

  145. Galsky, M. D. et al. Gemcitabine and cisplatin plus nivolumab as organ-sparing treatment for muscle-invasive bladder cancer: a phase 2 trial. Nat. Med. 29, 2825–2834 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Stockem, C. F. et al. Induction therapy with ipilimumab and nivolumab followed by consolidative chemoradiation as organ-sparing treatment in urothelial bladder cancer: study protocol of the INDIBLADE trial. Front. Oncol. 13, 1246603 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Powles, T. et al. Perioperative durvalumab with neoadjuvant chemotherapy in operable bladder cancer. N. Engl. J. Med. 391, 1773–1786 (2024).

    Article  CAS  PubMed  Google Scholar 

  148. Houédé, N. et al. Safety and efficacy of neoadjuvant durvalumab plus gemcitabine/cisplatin or carboplatin in patients with operable high-risk upper tract urothelial carcinoma: the iNDUCT-GETUG V08 trial. J. Clin. Oncol. 43, 1578–1586 (2025).

  149. Choueiri, T. K. et al. Adjuvant pembrolizumab after nephrectomy in renal-cell carcinoma. N. Engl. J. Med. 385, 683–694 (2021).

    Article  CAS  PubMed  Google Scholar 

  150. Allaf, M. E. et al. Perioperative nivolumab versus observation in patients with renal cell carcinoma undergoing nephrectomy (PROSPER ECOG-ACRIN EA8143): an open-label, randomised, phase 3 study. Lancet Oncol. 25, 1038–1052 (2024).

    Article  CAS  PubMed  Google Scholar 

  151. Ornstein, M. et al. A phase Ib trial of neoadjuvant/adjuvant durvalumab ± tremelimumab in locally advanced renal cell carcinoma (RCC). J. Clin. Oncol. 38, 5021 (2020).

    Article  Google Scholar 

  152. Li, J., Luo, Z. & Jiang, S. Advancements in neoadjuvant immune checkpoint inhibitor therapy for locally advanced head and neck squamous carcinoma: a narrative review. Int. Immunopharmacol. 134, 112200 (2024).

    Article  CAS  PubMed  Google Scholar 

  153. Wise-Draper, T. M. et al. Phase II clinical trial of neoadjuvant and adjuvant pembrolizumab in resectable local-regionally advanced head and neck squamous cell carcinoma. Clin. Cancer Res. 28, 1345–1352 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Ferris, R. L. et al. Neoadjuvant nivolumab alone or in combination with relatlimab or ipilimumab in resectable head and neck squamous cell carcinoma (HNSCC). J. Clin. Oncol. 41, 6018 (2023).

    Article  Google Scholar 

  155. Rosenberg, A. J. et al. Neoadjuvant nivolumab plus chemotherapy followed by response-stratified chemoradiation therapy in HPV-negative head and neck cancer: the DEPEND phase 2 nonrandomized clinical trial. JAMA Oncol. 6, e250081 (2025).

    Google Scholar 

  156. Shitara, K. et al. Neoadjuvant and adjuvant pembrolizumab plus chemotherapy in locally advanced gastric or gastro-oesophageal cancer (KEYNOTE-585): an interim analysis of the multicentre, double-blind, randomised phase 3 study. Lancet Oncol. 25, 212–224 (2024).

    Article  CAS  PubMed  Google Scholar 

  157. Janjigian, Y. et al. LBA73 Pathological complete response (pCR) to durvalumab plus 5-fluorouracil, leucovorin, oxaliplatin and docetaxel (FLOT) in resectable gastric and gastroesophageal junction cancer (GC/GEJC): interim results of the global, phase III MATTERHORN study. Ann. Oncol. 34, S1315–S1316 (2023).

    Article  Google Scholar 

  158. Al-Batran, S. et al. Surgical and pathological outcome, and pathological regression, in patients receiving perioperative atezolizumab in combination with FLOT chemotherapy versus FLOT alone for resectable esophagogastric adenocarcinoma: interim results from DANTE, a randomized, multicenter, phase IIb trial of the FLOT-AIO German Gastric Cancer Group and Swiss SAKK. J. Clin. Oncol. 40, 4003 (2024).

    Article  Google Scholar 

  159. Lorenzen, S. et al. Perioperative atezolizumab plus fluorouracil, leucovorin, oxaliplatin, and docetaxel for resectable esophagogastric cancer: interim results from the randomized, multicenter, phase II/III DANTE/IKF-s633 trial. J. Clin. Oncol. 42, 410–420 (2024).

    Article  CAS  PubMed  Google Scholar 

  160. Verschoor, Y. L. et al. Neoadjuvant atezolizumab plus chemotherapy in gastric and gastroesophageal junction adenocarcinoma: the phase 2 PANDA trial. Nat. Med. 30, 519–530 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. André, T. et al. Neoadjuvant nivolumab plus ipilimumab and adjuvant nivolumab in localized deficient mismatch repair/microsatellite instability-high gastric or esophagogastric junction adenocarcinoma: the GERCOR NEONIPIGA phase II study. J. Clin. Oncol. 41, 255–265 (2023).

    Article  PubMed  Google Scholar 

  162. Raimondi, A. et al. Tremelimumab and durvalumab as neoadjuvant or non-operative management strategy of patients with microsatellite instability-high resectable gastric or gastroesophageal junction adenocarcinoma: the INFINITY study by GONO. Ann. Oncol. 36, 285–296 (2024).

  163. Wilde, D. C., Glaun, M. E., Wong, M. K. & Gross, N. D. Neoadjuvant approaches to non-melanoma skin cancer. Cancers 15, 5494 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Jones, G. et al. Abstract 7518: Neoadjuvant–adjuvant pembrolizumab in resectable advanced basal cell carcinoma of the head and neck: an open-label, single-arm, phase 1b trial. Cancer Res. 84, 7518 (2024).

    Article  Google Scholar 

  165. Que, S. K. T., Zwald, F. O. & Schmults, C. D. Cutaneous squamous cell carcinoma: management of advanced and high-stage tumors. J. Am. Acad. Dermatol. 78, 249–261 (2018).

    Article  PubMed  Google Scholar 

  166. Gross, N. D. et al. Neoadjuvant cemiplimab for stage II to IV cutaneous squamous-cell carcinoma. N. Engl. J. Med. 387, 1557–1568 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Gross, N. D. et al. Neoadjuvant cemiplimab and surgery for stage II–IV cutaneous squamous-cell carcinoma: follow-up and survival outcomes of a single-arm, multicentre, phase 2 study. Lancet Oncol. 24, 1196–1205 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Ascierto, P. et al. NEO-CESQ study: neoadjuvant plus adjuvant treatment with cemiplimab in surgically resectable, high risk stage III/IV (M0) cutaneous squamous cell carcinoma. J. Clin. Oncol. 41, 9576 (2023).

    Article  Google Scholar 

  169. Zuur, C. L. et al. Towards organ preservation and cure via 2 infusions of immunotherapy only, in patients normally undergoing extensive and mutilating curative surgery for cutaneous squamous cell carcinoma: an investigator-initiated randomized phase II trial—the MATISSE trial. J. Clin. Oncol. 41, 9507 (2023).

    Article  Google Scholar 

  170. Topalian, S. L. et al. Neoadjuvant nivolumab for patients with resectable Merkel cell carcinoma in the CheckMate 358 trial. J. Clin. Oncol. 38, 2476–2487 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Cloughesy, T. F. et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat. Med. 25, 477–486 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Long, G. V. et al. Neoadjuvant triplet immune checkpoint blockade in newly diagnosed glioblastoma. Nat. Med. https://doi.org/10.1038/s41591-025-03512-1 (2025).

  173. Dummer, R. et al. Neoadjuvant anti-PD-1 alone or in combination with anti-TIGIT or an oncolytic virus in resectable stage IIIB–D melanoma: a phase 1/2 trial. Nat. Med. 31, 144–151 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Wolf, Y., Anderson, A. C. & Kuchroo, V. K. TIM3 comes of age as an inhibitory receptor. Nat. Rev. Immunol. 20, 173–185 (2020).

    Article  CAS  PubMed  Google Scholar 

  175. Creelan, B. C. & Antonia, S. J. The NKG2A immune checkpoint — a new direction in cancer immunotherapy. Nat. Rev. Clin. Oncol. 16, 277–278 (2019).

    Article  CAS  PubMed  Google Scholar 

  176. Barlesi, F. et al. Phase 3 study of durvalumab combined with oleclumab or monalizumab in patients with unresectable stage III NSCLC (PACIFIC-9). J. Clin. Oncol. 41, TPS8610 (2023).

    Article  Google Scholar 

  177. Cascone, T. et al. PL02.07 Neocoast-2: efficacy and safety of neoadjuvant durvalumab (D) + novel anticancer agents + CT and adjuvant D ± novel agents in resectable NSCLC. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2024.09.013 (2024).

  178. Weber, J. S. et al. Individualised neoantigen therapy mRNA-4157 (V940) plus pembrolizumab versus pembrolizumab monotherapy in resected melanoma (KEYNOTE-942): a randomised, phase 2b study. Lancet 403, 632–644 (2024).

    Article  CAS  PubMed  Google Scholar 

  179. Davar, D. et al. Neoadjuvant vidutolimod and nivolumab in high-risk resectable melanoma: a prospective phase II trial. Cancer Cell 42, 1898–1918 (2024).

    Article  CAS  PubMed  Google Scholar 

  180. Thomas, R. J. & Bartee, E. The use of oncolytic virotherapy in the neoadjuvant setting. J. Immunother. Cancer 10, e004462 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Andtbacka, R. H. I. et al. Final analyses of OPTiM: a randomized phase III trial of talimogene laherparepvec versus granulocyte–macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J. Immunother. Cancer 7, 145 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Soliman, H. et al. Oncolytic T-VEC virotherapy plus neoadjuvant chemotherapy in nonmetastatic triple-negative breast cancer: a phase 2 trial. Nat. Med. 29, 450–457 (2023).

    Article  CAS  PubMed  Google Scholar 

  183. Nguyen, V. P. et al. A pilot study of neoadjuvant nivolumab, ipilimumab, and intralesional oncolytic virotherapy for HER2-negative breast cancer. Cancer Res. Commun. 3, 1628–1637 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Bastien, E. et al. 319TiP NeoBREASTIM: a phase II study of atezolizumab plus RP1 oncolytic immunotherapy in the neoadjuvant setting of triple-negative breast cancer (TNBC). Ann. Oncol. 35, S347–S348 (2024).

    Article  Google Scholar 

  185. Cortés, J. et al. Trastuzumab deruxtecan versus trastuzumab emtansine for breast cancer. N. Engl. J. Med. 386, 1143–1154 (2022).

    Article  PubMed  Google Scholar 

  186. Shitara, K. et al. Trastuzumab deruxtecan in previously treated HER2-positive gastric cancer. N. Engl. J. Med. 382, 2419–2430 (2020).

    Article  CAS  PubMed  Google Scholar 

  187. Smit, E. F. et al. Trastuzumab deruxtecan in patients with metastatic non-small-cell lung cancer (DESTINY-Lung01): primary results of the HER2-overexpressing cohorts from a single-arm, phase 2 trial. Lancet Oncol. 25, 439–454 (2024).

    Article  CAS  PubMed  Google Scholar 

  188. Bardia, A. et al. Sacituzumab govitecan in metastatic triple-negative breast cancer. N. Engl. J. Med. 384, 1529–1541 (2021).

    Article  CAS  PubMed  Google Scholar 

  189. Jhaveri, K. et al. LBA2 Datopotamab deruxtecan (Dato-DXd) vs chemotherapy (CT) in pretreated, inoperable/metastatic HR+/HER2 breast cancer (BC): additional safety analysis from TROPION-Breast01. ESMO Open 9, 103479 (2024).

  190. Ahn, M. J. et al. LBA12 Datopotamab deruxtecan (Dato-DXd) vs docetaxel in previously treated advanced/metastatic (adv/met) non-small cell lung cancer (NSCLC): results of the randomized phase III study TROPION-Lung01. Ann. Oncol. 34, S1305–S1306 (2023).

    Article  Google Scholar 

  191. Shatsky, R. A. et al. Datopotamab–deruxtecan plus durvalumab in early-stage breast cancer: the sequential multiple assignment randomized I-SPY2.2 phase 2 trial. Nat. Med. 30, 3737–3747 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Bex, A. et al. Efficacy, safety, and biomarker analysis of neoadjuvant avelumab/axitinib in patients (pts) with localized renal cell carcinoma (RCC) who are at high risk of relapse after nephrectomy (NeoAvAx). J. Clin. Oncol. 40, 289 (2022).

    Article  Google Scholar 

  193. Long, G. V. et al. 793P NeoPeLe: a phase II trial of neoadjuvant (NAT) pembrolizumab (Pembro) combined with lenvatinib (Lenva) in resectable stage III melanoma. Ann. Oncol. 33, S906–S907 (2022).

    Article  Google Scholar 

  194. Hendriks, L. E. et al. Oncogene-addicted metastatic non-small-cell lung cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann. Oncol. 34, 339–357 (2023).

    Article  CAS  PubMed  Google Scholar 

  195. Strohbehn, G. W. & Gyawali, B. ‘Contribution of component’ and the perioperative immune-checkpoint inhibitor precedent. Nat. Rev. Clin. Oncol. 21, 249–250 (2024).

    Article  PubMed  Google Scholar 

  196. Kok, M. et al. Academic uphill battle to personalize treatment for patients with stage II/III triple-negative breast cancer. J. Clin. Oncol. 42, 3523–3529 (2024).

    Article  PubMed  Google Scholar 

  197. Jones, D. R. et al. OA01.03 Association of pathologic regression with EFS in the KEYNOTE-671 study of perioperative pembrolizumab for early-stage NSCLC. J. Thorac. Oncol. https://doi.org/10.1016/j.jtho.2024.09.022 (2024).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Chalabi.

Ethics declarations

Competing interests

G.A. declares honoraria from Novartis, consulting fees paid to the institute by Novartis, research funding to the institute from Novartis, Stichting tegen Kanker, Kom op tegen Kanker, research funding from ESMO and FWO; and travel, accommodations and expenses from Gilead Sciences and Pierre Fabre. T.C. reports speaker fees and/or honoraria (including travel and/or meeting expenses) from ASCO Post, AstraZeneca, Bio Ascend, Bristol Myers Squibb, Clinical Care Options, IDEOlogy Health, the Medical Educator Consortium, Medscape, OncLive, PEAK Medicals, PeerView, Physicians’ Education Resource and Targeted Oncology; advisory role and/or consulting fees (including travel and/or meeting expenses) from AstraZeneca, Bristol Myers Squibb, Daiichi Sankyo, Genentech, Merck, oNKo-innate, Pfizer, RAPT Therapeutics and Regeneron; and institutional research funding from AstraZeneca and Bristol Myers Squibb. M.S.v.d.H. declares research support from Bristol Meyers Squibb, AstraZeneca, Roche, 4SC and Merch Sharp & Dohme; and consultancy fees from Bristol Meyers Squibb, Merch Sharp & Dohme, Roche, AstraZeneca, Seagen, Pfizer, Janssen and Daiichi Sankyo. All grants were paid to the institute. C.U.B. has received research grants from Novartis, BMS and NanoString, is a paid advisory board member for BMS, MSD, Roche, Novartis, GlaxoSmithKline, AstraZeneca, Pfizer, Lilly, Genmab and Pierre Fabre and holds ownership interest in Uniti Card, Neon Therapeutics and Forty Seven, all outside this submitted work. M.K. reports research grants from AZ–Daiichi, BMS and Roche, speaker fees from AZ–Daiichi and Gilead, compensation for advisory work from Alderaan Biotechnology, AZ–Daiichi, BioNTech, BMS, Domain Therapeutics, Gilead, MSD, Novartis and Roche and nonfinancial support from Natera. All grants were paid to the institute. M.C. is advisor to Bristol Myers Squibb, Merck Sharp & Dohme, Agenus and Roche–Genentech and has received research grants unrelated to this study from Agenus, Merck Sharp & Dohme and Roche–Genentech. All grants were paid to the institute.

Peer review

Peer review information

Nature Cancer thanks Matthew Block, Ignacio Melero, Michael Postow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awada, G., Cascone, T., van der Heijden, M.S. et al. The rapidly evolving paradigm of neoadjuvant immunotherapy across cancer types. Nat Cancer 6, 967–987 (2025). https://doi.org/10.1038/s43018-025-00990-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s43018-025-00990-7

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer