Fig. 5: Discrimination of Na2Sx/β-cyclodextrin complexes.
From: Single-sulfur atom discrimination of polysulfides with a protein nanopore for improved batteries

a Part of current versus time traces of an α-HL pore at −100 mV, in the presence of 1 mM β-cyclodextrin (blue), Na2S3/β-cyclodextrin (green), Na2S4/β-cyclodextrin (orange), Na2S5/β-cyclodextrin (red). All experiments are independent (6 in total), performed in 1 M NaCl, 25 mM NaHCO3 pH 10, at −100 mV, in an Argon filled glovebox. b Histograms of blockade ratio for β-cyclodextrin (blue, 61.8 ± 0.3%), Na2S3/β-cyclodextrin (green, 66.7 ± 0.2%), Na2S4/β-cyclodextrin (orange, 68.8 ± 0.1%), Na2S5/β-cyclodextrin (red, 74.0 ± 0.3%). c Accessible volume estimation from Molecular Dynamics simulations. α-HL constriction is highlighted in yellow, while β-cyclodextrin atoms are represented as balls-and-sticks. The plot reports the radius of the effective pore section available for ion passage. The effective pore section in the presence of β-cyclodextrin and Na2Sx/β-cyclodextrin are represented using the same color code of the other panels. d Experimental current blockades. Error bars are the confidence intervals of the average estimator (see “Methods” section). e Nanopore hindrance estimator calculated from atomistic model. Panel (c) was made using the VMD software.