Fig. 2: Magnetic behavior of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\). | Communications Materials

Fig. 2: Magnetic behavior of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\).

From: Emergence of Kondo-assisted Néel order in a Kondo necklace model

Fig. 2

a Temperature dependence of magnetic susceptibility (χ = M/H) of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\) at 0.1 T. The inset shows corrresponding χT values. b Magnetization curve of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\) at 1.4 K. The dashed lines represent the QMC results for the spin-(1/2,1) Kondo necklace model with J1/kB = 20.3 K and J2/kB = 9.9 K (J2/J1 = 0.49). For the magnetization curve, a radical purity of 95 % is considered for the calculation. c Calculated magnetization curves at T/J1 = 0.05 with the representative values of J2/J1. The magnetic moment and the magnetic field are normalized by the values at the saturation. For J2/J1 ≥ 1.0, a clear 1/3 plateau emerges, reflecting full polarization of the effective spin-1/2 within the s-S dimer mediated by J2. Conversely, for J2/J1 1.0, the magnetization exhibits a steep rise toward 2/3, consistent with full polarization of the Ni spins caused by the effective decoupling of J2.

Back to article page