Fig. 4: Specific heat of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\). | Communications Materials

Fig. 4: Specific heat of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\).

From: Emergence of Kondo-assisted Néel order in a Kondo necklace model

Fig. 4

a Temperature dependence of the specific heat Cp of \([{{\rm{Ni}}}(p-{{\rm{Py}}}-{{\rm{V}}}-p-{{\rm{F}}}){({{{\rm{H}}}}_{2}{{\rm{O}}})}_{5}]\cdot 2{{{\rm{NO}}}}_{3}\) at various magnetic fields for H//b, perpendicular to the chain direction. The lines are guides for the eye. b Low-temperature region of Cp. For clarity, the values for 1.0, 1.3, 1.5, 1.7, 1.8, 2.0, and 3.0 T have been shifted up by 43, 37, 32, 25, 19, 13, and 6 J/ mol K, respectively. The broken lines represent the Schottky-type specific heat of the spin-1 monomer for H//y, obtained using an on-site anisotropy of D/kB = − 1.2 K and gy = 2.25. The experimental results approach the behavior of the spin-1 monomer with increasing fields, suggesting the critical field causing the decoupling of S is ~2 T. The higher temperature deviations are considered to arise from the spin-1/2 chain and lattice contributions.

Back to article page