Abstract
Transverse thermoelectric devices have the potential to overcome the low efficiency and complex manufacturing processes associated with conventional longitudinal thermoelectric generators. Here, we investigate the thermoelectric transport of molybdenum disilicide MoSi2 and find that MoSi2 is an ideal transverse thermoelectric material without a magnetic field. Experimental and first-principles studies confirm that MoSi2 exhibits axis-dependent conduction polarity (ADCP) in both the Seebeck and Hall coefficients. Electronic band structure calculations and the following Peltier conductivity calculations show that the mixed-dimensional Fermi surfaces play a crucial role in the emergence of ADCP. A comparison of the band structures of MoSi2 and the substituted counterpart, WSi2, suggests that differences in the d-orbital bandwidth contribute to the transport properties. Furthermore, direct measurement of transverse thermopower demonstrates a significant transverse thermoelectric effect when a temperature gradient is tilted to the crystal axis, yielding a transverse thermopower comparable to that of anomalous Nernst materials. These findings establish MoSi2 as a promising candidate for transverse thermoelectric applications.
Similar content being viewed by others
Data availability
The data that support the findings of this study are available from the corresponding authors upon reasonable request.
References
Goldsmid, H. Application of the transverse thermoelectric effects. J. Electron. Mater. 40, 1254–1259 (2011).
Zhou, C., Birner, S., Tang, Y., Heinselman, K. & Grayson, M. Driving perpendicular heat flow: (p × n)-type transverse thermoelectrics for microscale and cryogenic peltier cooling. Phys. Rev. Lett. 110, 227701 (2013).
Uchida, K.-I. & Heremans, J. P. Thermoelectrics: from longitudinal to transverse. Joule 6, 2240–2245 (2022).
Adachi, H. et al. Fundamentals and advances in transverse thermoelectrics. Appl. Phys. Express 18, 090101 (2025).
Tanaka, H. et al. Roll-to-roll printing of anomalous Nernst thermopile for direct sensing of perpendicular heat flux. Adv. Mater. 35, 2303416 (2023).
Imaeda, H., Toida, R., Takeuchi, T., Awano, H. & Tanabe, K. Significant improvement in sensitivity of an anomalous Nernst heat flux sensor by composite structure. Appl. Phys. Lett. 125, 044101 (2024).
Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006).
Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).
Pu, Y., Chiba, D., Matsukura, F., Ohno, H. & Shi, J. Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 101, 117208 (2008).
Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic Kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).
Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, eabf1467 (2021).
Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).
Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019).
Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).
He, B. et al. Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi. Joule 5, 3057–3067 (2021).
Zhang, H., Xu, C. Q. & Ke, X. Topological Nernst effect, anomalous Nernst effect, and anomalous thermal Hall effect in the Dirac semimetal Fe3Sn2. Phys. Rev. B 103, L201101 (2021).
Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, eabk1480 (2022).
Kanno, T., Yotsuhashi, S., Sakai, A., Takahashi, K. & Adachi, H. Enhancement of transverse thermoelectric power factor in tilted Bi/Cu multilayer. Appl. Phys. Lett. 94, 061917 (2009).
Tang, Y., Cui, B., Zhou, C. & Grayson, M. p × n-type transverse thermoelectrics: a novel type of thermal management material. J. Electron. Mater. 44, 2095–2104 (2015).
Löhnert, R., Bochmann, A., Ibrahim, A. & Töpfer, J. Assessment of artificial anisotropic materials for transverse thermoelectric generators. Phys. Status Solidi (a) 221, 2400321 (2024).
Rowe, V. & Schroeder, P. Thermopower of Mg, Cd and Zn between 1.2∘ and 300∘K. J. Phys. Chem. Solids 31, 1–8 (1970).
Burkov, A. T., Vedernikov, M. V., Elenskii, V. & Kovtun, G. Anisotropy of thermo-EMF and electroconductivity of high purity rhenium. Fiz. Tverdogo Tela 28, 785–788 (1986).
Scudder, M. R. et al. Highly efficient transverse thermoelectric devices with Re4Si7 crystals. Energy Environ. Sci. 14, 4009–4017 (2021).
Scudder, M. R., Koster, K. G., Heremans, J. P. & Goldberger, J. E. Adiabatic and isothermal configurations for Re4Si7 transverse thermoelectric power generators. Appl. Phys. Rev. 9. https://doi.org/10.1063/5.0073354 (2022).
Ochs, A. M. et al. Computationally guided discovery of axis-dependent conduction polarity in NaSnAs crystals. Chem. Mater. 33, 946–951 (2021).
Omprakash, M., Usui, H., Yanagi, K., Mizuguchi, Y. & Goto, Y. Conserved axis-dependent conduction polarity in NaSnAs polycrystalline bulk sample for transverse thermoelectric application. Mater. Today Commun. 31, 103558 (2022).
Nelson, R. A. et al. Axis dependent conduction polarity in the air-stable semiconductor, PdSe2. Mater. Horiz. 10, 3740–3748 (2023).
Ochs, A. M. et al. Synergizing a large ordinary Nernst effect and axis-dependent conduction polarity in flat band KMgBi crystals. Adv. Mater. 36, 2308151 (2024).
Goto, Y. et al. Band anisotropy generates axis-dependent conduction polarity of Mg3Sb2 and Mg3Bi2. Chem. Mater. 36, 2018–2026 (2024).
Rai, B. et al. Direction-dependent conduction polarity in altermagnetic CrSb. Adv. Sci. 2025, 2502226 (2025).
Urayama, H. et al. Valence state of copper atoms and transport property of an organic superconductor, (BEDT-TTF)2Cu(NCS)2, measured by ESCA, ESR, and thermoelectric power. Chem. Lett. 17, 1057–1060 (1988).
Mori, T. & Inokuchi, H. Thermoelectric power of organic superconductors—calculation on the basis of the tight-binding theory. J. Phys. Soc. Jpn. 57, 3674–3677 (1988).
He, B. et al. The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials. Nat. Mater. 18, 568–572 (2019).
Nakamura, N., Goto, Y. & Mizuguchi, Y. Axis-dependent carrier polarity in polycrystalline NaSn2As2. Appl. Phys. Lett. 118. https://doi.org/10.1063/5.0047469 (2021).
Tanaka, M., Hasegawa, M. & Takei, H. Growth and anisotropic physical properties of PdCoO2 single crystals. J. Phys. Soc. Jpn. 65, 3973–3977 (1996).
Ong, K. P., Singh, D. J. & Wu, P. Unusual transport and strongly anisotropic thermopower in PtCoO2 and PdCoO2. Phys. Rev. Lett. 104, 176601 (2010).
Otsuki, R. et al. Carrier filtering effect for enhanced thermopower in a body-centered tetragonal ruthenate. Phys. Rev. Mater. 7, 125401 (2023).
Manako, H., Ohsumi, S., Sato, Y. J., Okazaki, R. & Aoki, D. Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces. Nat. Commun. 15, 3907 (2024).
Ohsumi, S., Sato, Y. J. & Okazaki, R. Transverse thermoelectric conversion in the mixed-dimensional semimetal WSi2. PRX Energy 3, 043007 (2024).
Vasudévan, A. K. & Petrovic, J. J. A comparative overview of molybdenum disilicide composites. Mater. Sci. Eng. A 155, 1–17 (1992).
Jeng, Y. L. & Lavernia, E. J. Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557–2571 (1994).
Mondal, R. et al. Extremely large magnetoresistance, anisotropic Hall effect, and Fermi surface topology in single-crystalline WSi2. Phys. Rev. B 102, 115158 (2020).
Koster, K. G. et al. Axis-dependent conduction polarity in WSi2 single crystals. Chem. Mater. 35, 4228–4234 (2023).
Pavlosiuk, O., Swatek, P. W., Wang, J., Wiśniewski, P. & Kaczorowski, D. Giant magnetoresistance, Fermi-surface topology, Shoenberg effect, and vanishing quantum oscillations in the type-II Dirac semimetal candidates MoSi2 and WSi2. Phys. Rev. B 105, 075141 (2022).
Bhattacharyya, B. K., Bylander, D. M. & Kleinman, L. Fully relativistic self-consistent energy bands of WSi2. Phys. Rev. B 31, 5462–5464 (1985).
Itoh, S. Fermi surfaces of tungsten silicide alloys. J. Phys. Condens. Matter 2, 3747 (1990).
Andersen, O. et al. Fermi surface, bonding, and pseudogap in MoSi2. Phys. B Condens. Matter 204, 65–82 (1995).
Matin, M., Mondal, R., Barman, N., Thamizhavel, A. & Dhar, S. K. Extremely large magnetoresistance induced by Zeeman effect-driven electron-hole compensation and topological protection in MoSi2. Phys. Rev. B 97, 205130 (2018).
Frankwicz, P. & Perepezko, J. Phase stability of MoSi2 in the C11b and C40 structures at high temperatures. Mater. Sci. Eng. A 246, 199–206 (1998).
Laborde, O., Thomas, O., Senateur, J. P. & Madar, R. Resistivity and magnetoresistance of high-purity monocrystalline MoSi2. J. Phys. F: Met. Phys. 16, 1745 (1986).
Mott, N. F. & Jones, H.The Theory of the Properties of Metals and Alloys (Oxford University Press-Dover Publications, 1958).
Sato, Y. J. et al. Fermi surface topology and electronic transport properties of chiral crystal NbGe2 with strong electron-phonon interaction. Phys. Rev. B 108, 235115 (2023).
Nava, F. et al. Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides. J. Appl. Phys. 65, 1584–1590 (1989).
Takahashi, H. et al. Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2. Nat. Commun. 7, 12732 (2016).
Ferrieu, F. et al. Optical properties of WSi2 and MoSi2 single crystals as measured by spectroscopic ellipsometry and reflectometry. Solid State Commun. 62, 455–459 (1987).
Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997).
Okazaki, R., Nishina, Y., Yasui, Y., Shibasaki, S. & Terasaki, I. Optical study of the electronic structure and correlation effects in K0.49RhO2. Phys. Rev. B 84, 075110 (2011).
Ito, N., Ishii, M. & Okazaki, R. Enhanced Seebeck coefficient by a filling-induced Lifshitz transition in KxRhO2. Phys. Rev. B 99, 041112 (2019).
Yamanaka, T., Okazaki, R. & Yaguchi, H. Enhanced Seebeck coefficient through magnetic fluctuations in Sr2Ru1−xMxO4 (M= Co, Mn). Phys. Rev. B 105, 184507 (2022).
Nishinakayama, R. et al. Negatively enhanced thermopower near a Van Hove singularity in electron-doped Sr2RuO4. Phys. Rev. Res. 6, 023222 (2024).
Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).
Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).
Kawamura, M., Gohda, Y. & Tsuneyuki, S. Improved tetrahedron method for the Brillouin-zone integration applicable to response functions. Phys. Rev. B 89, 094515 (2014).
Madsen, G. K., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).
Madsen, G. K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006).
Pickett, W. E., Krakauer, H. & Allen, P. B. Smooth Fourier interpolation of periodic functions. Phys. Rev. B 38, 2721–2726 (1988).
Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).
Kawamura, M. FermiSurfer: Fermi-surface viewer providing multiple representation schemes. Comp. Phys. Commun. 239, 197–203 (2019).
Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater. 21, 203–209 (2022).
Wuttke, C. et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge. Phys. Rev. B 100, 085111 (2019).
Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann-Franz law. Sci. Adv. 6, eaaz3522 (2020).
Acknowledgements
This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI via Grants No. 22K20360, No. 22H01166, and No. 24K06945, and the Research Foundation for the Electrotechnology of Chubu (REFEC) via Grant No. R-04102.
Author information
Authors and Affiliations
Contributions
Y.J.S. conceived and planned the project. H.M. and S.O. synthesized the single-crystal samples, carried out the measurements, and analyzed the data. H.M., S.O., and R.O. performed the first-principles calculations. S.Y., R.O., and Y.J.S. supervised the project. H. M. wrote the draft. S.O. finalized the manuscript with input from all the authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Materials thanks Hanhwi Jang, Neophytos Neophytou for their contribution to the peer review of this work. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Manako, H., Ohsumi, S., Yoshida, S. et al. Axis-dependent conduction polarity and transverse thermoelectric conversion in the mixed-dimensional semimetal MoSi2. Commun Mater (2025). https://doi.org/10.1038/s43246-025-01050-4
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43246-025-01050-4


