Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications materials
  3. articles
  4. article
Axis-dependent conduction polarity and transverse thermoelectric conversion in the mixed-dimensional semimetal MoSi2
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 29 December 2025

Axis-dependent conduction polarity and transverse thermoelectric conversion in the mixed-dimensional semimetal MoSi2

  • Hikari Manako  ORCID: orcid.org/0009-0005-1984-91801 na1,
  • Shoya Ohsumi  ORCID: orcid.org/0009-0004-3129-42481 na1,
  • Shogo Yoshida  ORCID: orcid.org/0009-0007-4154-47671,
  • Ryuji Okazaki  ORCID: orcid.org/0000-0001-5234-41101 &
  • …
  • Yoshiki J. Sato  ORCID: orcid.org/0000-0002-1750-03732 

Communications Materials , Article number:  (2025) Cite this article

  • 1176 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Thermoelectric devices and materials

Abstract

Transverse thermoelectric devices have the potential to overcome the low efficiency and complex manufacturing processes associated with conventional longitudinal thermoelectric generators. Here, we investigate the thermoelectric transport of molybdenum disilicide MoSi2 and find that MoSi2 is an ideal transverse thermoelectric material without a magnetic field. Experimental and first-principles studies confirm that MoSi2 exhibits axis-dependent conduction polarity (ADCP) in both the Seebeck and Hall coefficients. Electronic band structure calculations and the following Peltier conductivity calculations show that the mixed-dimensional Fermi surfaces play a crucial role in the emergence of ADCP. A comparison of the band structures of MoSi2 and the substituted counterpart, WSi2, suggests that differences in the d-orbital bandwidth contribute to the transport properties. Furthermore, direct measurement of transverse thermopower demonstrates a significant transverse thermoelectric effect when a temperature gradient is tilted to the crystal axis, yielding a transverse thermopower comparable to that of anomalous Nernst materials. These findings establish MoSi2 as a promising candidate for transverse thermoelectric applications.

Similar content being viewed by others

Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces

Article Open access 09 May 2024

Unusually high thermal conductivity in suspended monolayer MoSi2N4

Article Open access 06 June 2024

Enhanced long-range quadrupole effects in 2D MSi2N4: impacts on electric and thermal transport

Article Open access 03 June 2025

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Goldsmid, H. Application of the transverse thermoelectric effects. J. Electron. Mater. 40, 1254–1259 (2011).

    Google Scholar 

  2. Zhou, C., Birner, S., Tang, Y., Heinselman, K. & Grayson, M. Driving perpendicular heat flow: (p × n)-type transverse thermoelectrics for microscale and cryogenic peltier cooling. Phys. Rev. Lett. 110, 227701 (2013).

    Google Scholar 

  3. Uchida, K.-I. & Heremans, J. P. Thermoelectrics: from longitudinal to transverse. Joule 6, 2240–2245 (2022).

    Google Scholar 

  4. Adachi, H. et al. Fundamentals and advances in transverse thermoelectrics. Appl. Phys. Express 18, 090101 (2025).

  5. Tanaka, H. et al. Roll-to-roll printing of anomalous Nernst thermopile for direct sensing of perpendicular heat flux. Adv. Mater. 35, 2303416 (2023).

    Google Scholar 

  6. Imaeda, H., Toida, R., Takeuchi, T., Awano, H. & Tanabe, K. Significant improvement in sensitivity of an anomalous Nernst heat flux sensor by composite structure. Appl. Phys. Lett. 125, 044101 (2024).

    Google Scholar 

  7. Xiao, D., Yao, Y., Fang, Z. & Niu, Q. Berry-phase effect in anomalous thermoelectric transport. Phys. Rev. Lett. 97, 026603 (2006).

    Google Scholar 

  8. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    Google Scholar 

  9. Pu, Y., Chiba, D., Matsukura, F., Ohno, H. & Shi, J. Mott relation for anomalous Hall and Nernst effects in Ga1−xMnxAs ferromagnetic semiconductors. Phys. Rev. Lett. 101, 117208 (2008).

    Google Scholar 

  10. Guin, S. N. et al. Zero-field Nernst effect in a ferromagnetic Kagome-lattice Weyl-semimetal Co3Sn2S2. Adv. Mater. 31, 1806622 (2019).

    Google Scholar 

  11. Asaba, T. et al. Colossal anomalous Nernst effect in a correlated noncentrosymmetric kagome ferromagnet. Sci. Adv. 7, eabf1467 (2021).

    Google Scholar 

  12. Sakai, A. et al. Giant anomalous Nernst effect and quantum-critical scaling in a ferromagnetic semimetal. Nat. Phys. 14, 1119–1124 (2018).

    Google Scholar 

  13. Guin, S. N. et al. Anomalous Nernst effect beyond the magnetization scaling relation in the ferromagnetic Heusler compound Co2MnGa. NPG Asia Mater. 11, 16 (2019).

    Google Scholar 

  14. Sakai, A. et al. Iron-based binary ferromagnets for transverse thermoelectric conversion. Nature 581, 53–57 (2020).

    Google Scholar 

  15. He, B. et al. Large magnon-induced anomalous Nernst conductivity in single-crystal MnBi. Joule 5, 3057–3067 (2021).

    Google Scholar 

  16. Zhang, H., Xu, C. Q. & Ke, X. Topological Nernst effect, anomalous Nernst effect, and anomalous thermal Hall effect in the Dirac semimetal Fe3Sn2. Phys. Rev. B 103, L201101 (2021).

    Google Scholar 

  17. Chen, T. et al. Large anomalous Nernst effect and nodal plane in an iron-based kagome ferromagnet. Sci. Adv. 8, eabk1480 (2022).

    Google Scholar 

  18. Kanno, T., Yotsuhashi, S., Sakai, A., Takahashi, K. & Adachi, H. Enhancement of transverse thermoelectric power factor in tilted Bi/Cu multilayer. Appl. Phys. Lett. 94, 061917 (2009).

    Google Scholar 

  19. Tang, Y., Cui, B., Zhou, C. & Grayson, M. p × n-type transverse thermoelectrics: a novel type of thermal management material. J. Electron. Mater. 44, 2095–2104 (2015).

    Google Scholar 

  20. Löhnert, R., Bochmann, A., Ibrahim, A. & Töpfer, J. Assessment of artificial anisotropic materials for transverse thermoelectric generators. Phys. Status Solidi (a) 221, 2400321 (2024).

    Google Scholar 

  21. Rowe, V. & Schroeder, P. Thermopower of Mg, Cd and Zn between 1.2∘ and 300∘K. J. Phys. Chem. Solids 31, 1–8 (1970).

    Google Scholar 

  22. Burkov, A. T., Vedernikov, M. V., Elenskii, V. & Kovtun, G. Anisotropy of thermo-EMF and electroconductivity of high purity rhenium. Fiz. Tverdogo Tela 28, 785–788 (1986).

    Google Scholar 

  23. Scudder, M. R. et al. Highly efficient transverse thermoelectric devices with Re4Si7 crystals. Energy Environ. Sci. 14, 4009–4017 (2021).

    Google Scholar 

  24. Scudder, M. R., Koster, K. G., Heremans, J. P. & Goldberger, J. E. Adiabatic and isothermal configurations for Re4Si7 transverse thermoelectric power generators. Appl. Phys. Rev. 9. https://doi.org/10.1063/5.0073354 (2022).

  25. Ochs, A. M. et al. Computationally guided discovery of axis-dependent conduction polarity in NaSnAs crystals. Chem. Mater. 33, 946–951 (2021).

    Google Scholar 

  26. Omprakash, M., Usui, H., Yanagi, K., Mizuguchi, Y. & Goto, Y. Conserved axis-dependent conduction polarity in NaSnAs polycrystalline bulk sample for transverse thermoelectric application. Mater. Today Commun. 31, 103558 (2022).

    Google Scholar 

  27. Nelson, R. A. et al. Axis dependent conduction polarity in the air-stable semiconductor, PdSe2. Mater. Horiz. 10, 3740–3748 (2023).

    Google Scholar 

  28. Ochs, A. M. et al. Synergizing a large ordinary Nernst effect and axis-dependent conduction polarity in flat band KMgBi crystals. Adv. Mater. 36, 2308151 (2024).

    Google Scholar 

  29. Goto, Y. et al. Band anisotropy generates axis-dependent conduction polarity of Mg3Sb2 and Mg3Bi2. Chem. Mater. 36, 2018–2026 (2024).

    Google Scholar 

  30. Rai, B. et al. Direction-dependent conduction polarity in altermagnetic CrSb. Adv. Sci. 2025, 2502226 (2025).

    Google Scholar 

  31. Urayama, H. et al. Valence state of copper atoms and transport property of an organic superconductor, (BEDT-TTF)2Cu(NCS)2, measured by ESCA, ESR, and thermoelectric power. Chem. Lett. 17, 1057–1060 (1988).

    Google Scholar 

  32. Mori, T. & Inokuchi, H. Thermoelectric power of organic superconductors—calculation on the basis of the tight-binding theory. J. Phys. Soc. Jpn. 57, 3674–3677 (1988).

    Google Scholar 

  33. He, B. et al. The Fermi surface geometrical origin of axis-dependent conduction polarity in layered materials. Nat. Mater. 18, 568–572 (2019).

    Google Scholar 

  34. Nakamura, N., Goto, Y. & Mizuguchi, Y. Axis-dependent carrier polarity in polycrystalline NaSn2As2. Appl. Phys. Lett. 118. https://doi.org/10.1063/5.0047469 (2021).

  35. Tanaka, M., Hasegawa, M. & Takei, H. Growth and anisotropic physical properties of PdCoO2 single crystals. J. Phys. Soc. Jpn. 65, 3973–3977 (1996).

    Google Scholar 

  36. Ong, K. P., Singh, D. J. & Wu, P. Unusual transport and strongly anisotropic thermopower in PtCoO2 and PdCoO2. Phys. Rev. Lett. 104, 176601 (2010).

    Google Scholar 

  37. Otsuki, R. et al. Carrier filtering effect for enhanced thermopower in a body-centered tetragonal ruthenate. Phys. Rev. Mater. 7, 125401 (2023).

    Google Scholar 

  38. Manako, H., Ohsumi, S., Sato, Y. J., Okazaki, R. & Aoki, D. Large transverse thermoelectric effect induced by the mixed-dimensionality of Fermi surfaces. Nat. Commun. 15, 3907 (2024).

    Google Scholar 

  39. Ohsumi, S., Sato, Y. J. & Okazaki, R. Transverse thermoelectric conversion in the mixed-dimensional semimetal WSi2. PRX Energy 3, 043007 (2024).

    Google Scholar 

  40. Vasudévan, A. K. & Petrovic, J. J. A comparative overview of molybdenum disilicide composites. Mater. Sci. Eng. A 155, 1–17 (1992).

    Google Scholar 

  41. Jeng, Y. L. & Lavernia, E. J. Processing of molybdenum disilicide. J. Mater. Sci. 29, 2557–2571 (1994).

    Google Scholar 

  42. Mondal, R. et al. Extremely large magnetoresistance, anisotropic Hall effect, and Fermi surface topology in single-crystalline WSi2. Phys. Rev. B 102, 115158 (2020).

    Google Scholar 

  43. Koster, K. G. et al. Axis-dependent conduction polarity in WSi2 single crystals. Chem. Mater. 35, 4228–4234 (2023).

    Google Scholar 

  44. Pavlosiuk, O., Swatek, P. W., Wang, J., Wiśniewski, P. & Kaczorowski, D. Giant magnetoresistance, Fermi-surface topology, Shoenberg effect, and vanishing quantum oscillations in the type-II Dirac semimetal candidates MoSi2 and WSi2. Phys. Rev. B 105, 075141 (2022).

    Google Scholar 

  45. Bhattacharyya, B. K., Bylander, D. M. & Kleinman, L. Fully relativistic self-consistent energy bands of WSi2. Phys. Rev. B 31, 5462–5464 (1985).

    Google Scholar 

  46. Itoh, S. Fermi surfaces of tungsten silicide alloys. J. Phys. Condens. Matter 2, 3747 (1990).

    Google Scholar 

  47. Andersen, O. et al. Fermi surface, bonding, and pseudogap in MoSi2. Phys. B Condens. Matter 204, 65–82 (1995).

    Google Scholar 

  48. Matin, M., Mondal, R., Barman, N., Thamizhavel, A. & Dhar, S. K. Extremely large magnetoresistance induced by Zeeman effect-driven electron-hole compensation and topological protection in MoSi2. Phys. Rev. B 97, 205130 (2018).

    Google Scholar 

  49. Frankwicz, P. & Perepezko, J. Phase stability of MoSi2 in the C11b and C40 structures at high temperatures. Mater. Sci. Eng. A 246, 199–206 (1998).

    Google Scholar 

  50. Laborde, O., Thomas, O., Senateur, J. P. & Madar, R. Resistivity and magnetoresistance of high-purity monocrystalline MoSi2. J. Phys. F: Met. Phys. 16, 1745 (1986).

    Google Scholar 

  51. Mott, N. F. & Jones, H.The Theory of the Properties of Metals and Alloys (Oxford University Press-Dover Publications, 1958).

  52. Sato, Y. J. et al. Fermi surface topology and electronic transport properties of chiral crystal NbGe2 with strong electron-phonon interaction. Phys. Rev. B 108, 235115 (2023).

    Google Scholar 

  53. Nava, F. et al. Analysis of the electrical resistivity of Ti, Mo, Ta, and W monocrystalline disilicides. J. Appl. Phys. 65, 1584–1590 (1989).

    Google Scholar 

  54. Takahashi, H. et al. Colossal Seebeck effect enhanced by quasi-ballistic phonons dragging massive electrons in FeSb2. Nat. Commun. 7, 12732 (2016).

    Google Scholar 

  55. Ferrieu, F. et al. Optical properties of WSi2 and MoSi2 single crystals as measured by spectroscopic ellipsometry and reflectometry. Solid State Commun. 62, 455–459 (1987).

    Google Scholar 

  56. Terasaki, I., Sasago, Y. & Uchinokura, K. Large thermoelectric power in NaCo2O4 single crystals. Phys. Rev. B 56, R12685–R12687 (1997).

    Google Scholar 

  57. Okazaki, R., Nishina, Y., Yasui, Y., Shibasaki, S. & Terasaki, I. Optical study of the electronic structure and correlation effects in K0.49RhO2. Phys. Rev. B 84, 075110 (2011).

    Google Scholar 

  58. Ito, N., Ishii, M. & Okazaki, R. Enhanced Seebeck coefficient by a filling-induced Lifshitz transition in KxRhO2. Phys. Rev. B 99, 041112 (2019).

    Google Scholar 

  59. Yamanaka, T., Okazaki, R. & Yaguchi, H. Enhanced Seebeck coefficient through magnetic fluctuations in Sr2Ru1−xMxO4 (M= Co, Mn). Phys. Rev. B 105, 184507 (2022).

    Google Scholar 

  60. Nishinakayama, R. et al. Negatively enhanced thermopower near a Van Hove singularity in electron-doped Sr2RuO4. Phys. Rev. Res. 6, 023222 (2024).

    Google Scholar 

  61. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Google Scholar 

  62. Giannozzi, P. et al. Advanced capabilities for materials modelling with Quantum ESPRESSO. J. Phys. Condens. Matter 29, 465901 (2017).

    Google Scholar 

  63. Kawamura, M., Gohda, Y. & Tsuneyuki, S. Improved tetrahedron method for the Brillouin-zone integration applicable to response functions. Phys. Rev. B 89, 094515 (2014).

    Google Scholar 

  64. Madsen, G. K., Carrete, J. & Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 231, 140–145 (2018).

    Google Scholar 

  65. Madsen, G. K. & Singh, D. J. BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006).

    Google Scholar 

  66. Pickett, W. E., Krakauer, H. & Allen, P. B. Smooth Fourier interpolation of periodic functions. Phys. Rev. B 38, 2721–2726 (1988).

    Google Scholar 

  67. Momma, K. & Izumi, F. VESTA3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Google Scholar 

  68. Kawamura, M. FermiSurfer: Fermi-surface viewer providing multiple representation schemes. Comp. Phys. Commun. 239, 197–203 (2019).

    Google Scholar 

  69. Pan, Y. et al. Giant anomalous Nernst signal in the antiferromagnet YbMnBi2. Nat. Mater. 21, 203–209 (2022).

    Google Scholar 

  70. Wuttke, C. et al. Berry curvature unravelled by the anomalous Nernst effect in Mn3Ge. Phys. Rev. B 100, 085111 (2019).

    Google Scholar 

  71. Xu, L. et al. Finite-temperature violation of the anomalous transverse Wiedemann-Franz law. Sci. Adv. 6, eaaz3522 (2020).

    Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI via Grants No. 22K20360, No. 22H01166, and No. 24K06945, and the Research Foundation for the Electrotechnology of Chubu (REFEC) via Grant No. R-04102.

Author information

Author notes
  1. These authors contributed equally: Hikari Manako, Shoya Ohsumi.

Authors and Affiliations

  1. Department of Physics and Astronomy, Tokyo University of Science, Noda, Japan

    Hikari Manako, Shoya Ohsumi, Shogo Yoshida & Ryuji Okazaki

  2. Graduate School of Science and Engineering, Saitama University, Saitama, Japan

    Yoshiki J. Sato

Authors
  1. Hikari Manako
    View author publications

    Search author on:PubMed Google Scholar

  2. Shoya Ohsumi
    View author publications

    Search author on:PubMed Google Scholar

  3. Shogo Yoshida
    View author publications

    Search author on:PubMed Google Scholar

  4. Ryuji Okazaki
    View author publications

    Search author on:PubMed Google Scholar

  5. Yoshiki J. Sato
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Y.J.S. conceived and planned the project. H.M. and S.O. synthesized the single-crystal samples, carried out the measurements, and analyzed the data. H.M., S.O., and R.O. performed the first-principles calculations. S.Y., R.O., and Y.J.S. supervised the project. H. M. wrote the draft. S.O. finalized the manuscript with input from all the authors.

Corresponding author

Correspondence to Shoya Ohsumi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Materials thanks Hanhwi Jang, Neophytos Neophytou for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manako, H., Ohsumi, S., Yoshida, S. et al. Axis-dependent conduction polarity and transverse thermoelectric conversion in the mixed-dimensional semimetal MoSi2. Commun Mater (2025). https://doi.org/10.1038/s43246-025-01050-4

Download citation

  • Received: 07 August 2025

  • Accepted: 16 December 2025

  • Published: 29 December 2025

  • DOI: https://doi.org/10.1038/s43246-025-01050-4

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Associated content

Collection

Thermoelectric materials for energy recovery

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Conferences
  • Editorial Values Statement
  • Editorial policies
  • Journal Metrics

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Materials (Commun Mater)

ISSN 2662-4443 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing