Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications materials
  3. articles
  4. article
Higher critical currents yet faster vortex creep in EuBa2Cu3Oy films containing coherent artificial pinning centers
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 03 January 2026

Higher critical currents yet faster vortex creep in EuBa2Cu3Oy films containing coherent artificial pinning centers

  • Jiangteng Liu  ORCID: orcid.org/0009-0003-9286-82521,
  • Masashi Miura2,
  • Daisaku Yokoe3,
  • Takeharu Kato3,
  • Akira Ibi4,
  • Teruo Izumi4 &
  • …
  • Serena Eley  ORCID: orcid.org/0000-0002-2928-53161 

Communications Materials , Article number:  (2026) Cite this article

  • 1386 Accesses

  • 1 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Magnetic properties and materials
  • Superconducting properties and materials

Abstract

The electromagnetic properties of type-II superconductors depend on vortices—magnetic flux lines whose motion introduces dissipation that can be mitigated by pinning from material defects. The material disorder landscape is tuned by the choice of materials growth technique and incorporation of impurities that serve as vortex pinning centers. For example, metal organic deposition (MOD) and pulsed laser deposition (PLD) produce high-quality superconducting films with uncorrelated versus correlated disorder, respectively. Here, we study vortex dynamics in PLD-grown EuBa2Cu3Oy films containing varying concentrations of BaHfO3 inclusions and compare our results with those of MOD-grown (Y,Gd)Ba2Cu3Oy films. Despite both systems exhibiting behavior consistent with strong pinning theory, which predicts the critical current density Jc based on vortex trapping by randomly distributed spherical inclusions, we find striking differences in the vortex dynamics owing to the correlated versus uncorrelated disorder. Specifically, we find that the EuBa2Cu3Oy films grown without inclusions exhibit surprisingly slow vortex creep, comparable to the slowest creep rates achieved in (Y,Gd)Ba2Cu3Oy films containing high concentrations of BaHfO3. Whereas adding inclusions to (Y,Gd)Ba2Cu3Oy is effective in slowing creep, BaHfO3 increases creep in EuBa2Cu3Oy even while concomitantly improving Jc. Lastly, we find evidence of variable range hopping and that Jc is maximized at the BaHfO3 concentration that hosts creep of large vortex bundles or a Bose glass state.

Similar content being viewed by others

Mass of Abrikosov vortex in high-temperature superconductor YBa\(_2\)Cu\(_3\)O\(_{7-\delta }\)

Article Open access 05 November 2021

Thermodynamic approach for enhancing superconducting critical current performance

Article Open access 21 October 2022

Optimizing vortex pinning in YBa2Cu3O7-x superconducting films up to high magnetic fields

Article Open access 08 July 2022

Data availability

The data supporting the findings of this study are available on Mendeley Data (https://doi.org/10.17632/z7t5jtyvmw.2) as a zip file. This includes Origin files (.opju) that contain raw and processed data spreadsheets for all the samples and figures used in this paper, which can be opened using Origin Viewer, a free application that permits viewing and copying of data contained in Origin project files. README files are also included to guide the reader about the contents of each folder and provide captions and explanations for the corresponding data files.

Code availability

The custom Python codes used to process the raw data are available on Mendeley Data (https://doi.org/10.17632/z7t5jtyvmw.2) as a zip file. README files are included to guide the reader about the contents of each folder and provide captions and explanations for the corresponding data files. JupyterLab version 4.0.10 and Python version 3.11.5 are used.

References

  1. Molodyk, A. & Larbalestier, D. C. The prospects of high-temperature superconductors. Science 380, 1220–1222 (2023).

    Google Scholar 

  2. MacManus-Driscoll, J. L. & Wimbush, S. C. Processing and application of high-temperature superconducting coated conductors. Nat. Rev. Mater. 6, 587–604 (2021).

    Google Scholar 

  3. Hahn, S. et al. 45.5-tesla direct-current magnetic field generated with a high-temperature superconducting magnet. Nature 570, 496–499 (2019).

    Google Scholar 

  4. Foltyn, S. R. et al. Materials science challenges for high-temperature superconducting wire. Nat. Mater. 6, 631–642 (2007).

    Google Scholar 

  5. Feigel’man, M. V. & Vinokur, V. M. Thermal fluctuations of vortex lines, pinning, and creep in high-Tc superconductors. Phys. Rev. B 41, 8986–8990 (1990).

    Google Scholar 

  6. Kwok, W.-K. et al. Vortices in high-performance high-temperature superconductors. Rep. Prog. Phys, 79, 116501 (2016).

    Google Scholar 

  7. Puig, T., Gutierrez, J. & Obradors, X. Impact of high growth rates on the microstructure and vortex pinning of high-temperature superconducting coated conductors. Nat. Rev. Phys. 6, 132–148 (2024).

    Google Scholar 

  8. Eley, S., Miura, M., Maiorov, B. & Civale, L. Universal lower limit on vortex creep in superconductors. Nat. Mater. 16, 409–413 (2017).

    Google Scholar 

  9. Kang, S. et al. High-performance high-Tc superconducting wires. Science 311, 1911–1914 (2006).

    Google Scholar 

  10. Ruiz, H. et al. Critical current density in advanced superconductors. Prog. Mater. Sci. 155, 101492 (2026).

    Google Scholar 

  11. Blatter, G., Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125 (1994).

    Google Scholar 

  12. Bardeen, J. & Stephen, M. J. Theory of the motion of vortices in superconductors. Phys. Rev. 140, A1197–A1207 (1965).

    Google Scholar 

  13. Eley, S., Glatz, A. & Willa, R. Challenges and transformative opportunities in superconductor vortex physics. J. Appl. Phys. 130, 50901 (2021).

    Google Scholar 

  14. MacManus-Driscoll, J. L. et al. Strongly enhanced current densities in superconducting coated conductors of YBa2Cu3O7−x+BaZrO3. Nat. Mater. 3, 439–443 (2004).

    Google Scholar 

  15. Haugan, T., Barnes, P. N., Wheeler, R., Meisenkothen, F. & Sumption, M. Addition of nanoparticle dispersions to enhance flux pinning of the YBa2Cu3O7−x superconductor. Nature 430, 867–870 (2004).

    Google Scholar 

  16. Matsumoto, K. & Mele, P. Artificial pinning center technology to enhance vortex pinning in YBCO coated conductors. Supercond. Sci. Technol. 23, 014001 (2009).

    Google Scholar 

  17. Teranishi, R. et al. Superconducting properties of ErBCO films with BaMO3 nanorods (M=Zr and Sn) by pulsed laser deposition. Phys. C 468, 1522–1526 (2008).

    Google Scholar 

  18. Jones, S. C. et al. Designing high-performance superconductors with nanoparticle inclusions: comparisons to strong pinning theory. APL Mater. 9, 091105 (2021).

    Google Scholar 

  19. Gutiérrez, J. et al. Strong isotropic flux pinning in solution-derived YBa2Cu3O7−x nanocomposite superconductor films. Nat. Mater. 6, 367–373 (2007).

    Google Scholar 

  20. Xu, A. et al. Strongly enhanced vortex pinning from 4 to 77 K in magnetic fields up to 31 T in 15 mol.% Zr-added (Gd, Y)-Ba-Cu-O superconducting tapes. APL Mater. 2, 46111 (2014).

    Google Scholar 

  21. Miura, M. et al. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition. NPG Asia Mater. 9, 1–10 (2017).

    Google Scholar 

  22. Tobita, H. et al. Fabrication of BaHfO3 doped Gd1Ba2Cu3O7−δ coated conductors with the high Ic of 85 A/cm-w under 3 T at liquid nitrogen temperature (77 K). Supercond. Sci. Technol. 25, 062002 (2012).

    Google Scholar 

  23. Miura, M. et al. Thermodynamic approach for enhancing superconducting critical current performance. NPG Asia Mater. 14, 85 (2022).

    Google Scholar 

  24. Gurevich, A. Pinning size effects in critical currents of superconducting films. Supercond. Sci. Technol. 20, S128 (2007).

    Google Scholar 

  25. Wimbush, S. C. Fundamentals: Flux Pinning Chap. 1, 1–104 (John Wiley & Sons, Ltd, 2015).

  26. Matsushita, T. Flux Pinning in Superconductors (Springer-Verlag Berlin Heidelberg, 2007).

  27. Ibi, A. et al. Development of multi-filamentated long EuBCO coated conductors with BHO doping by plane-plume PLD method. J. Phys. Conf. Ser. 1293, 012034 (2019).

    Google Scholar 

  28. Fujita, S. et al. Flux-pinning properties of BaHfO3-doped EuBCO-coated conductors fabricated by hot-wall PLD. IEEE Trans. Appl. Supercond. 29, 1–5 (2019).

    Google Scholar 

  29. Ibi, A. et al. Improvement of in-field performance for EuBCO with heavily doped BHO coated conductors by PLD method with high temperature deposition and low temperature annealing. IOP Conf. Ser. Mater. Sci. Eng. 756, 12024 (2020).

    Google Scholar 

  30. Yokoe, D., Yoshida, R., Kato, T., Ibi, A. & Izumi, T. Nanostructural characterization of EuBa2Cu3Oy layers containing 3.5 mol%BaHfO3 nanorods grown by pulsed laser deposition growing in both vapor–solid and vapor–liquid–solid modes. Supercond. Sci. Technol. 33, 024002 (2020).

    Google Scholar 

  31. Wu, Y. et al. Ultra-fast dynamic deposition of EuBa2Cu3O7−δ-BaHfO3 nanocomposite films: self-assembly structure modulation and flux pinning behaviors. Mater. Des. 224, 111406 (2022).

    Google Scholar 

  32. Lojka, M. et al. Comparison of superconducting properties of YBCO and EuBCO single-domain bulks. AIP Conf. Proc. 2894, 020008 (2023).

    Google Scholar 

  33. Zhao, M. et al. Influence of thickness on the microstructure and performance of BaHfO3-doped EuBa2Cu3O7−δ layers grown by ultra-fast pld techniques. Appl. Surf. Sci. 694, 162791 (2025).

    Google Scholar 

  34. Suzuki, T. et al. Role of defects in increasing the critical current density of reel-to-reel PLD (Eu,Er)Ba2Cu3Oy+BaHfO3-coated conductors. Jpn. J. Appl. Phys. 63, 060901 (2024).

    Google Scholar 

  35. Zhao, P. et al. Effect of local strain fields on the irradiation resistance of doped EuBa2Cu3O7−δ high-temperature superconducting tapes. ssrn.5182058 (2025).

  36. Takahashi, K. et al. Investigation of thick PLD-GdBCO and ZrO2 doped GdBCO coated conductors with high critical current on PLD-CeO2 capped IBAD-GZO substrate tapes. Supercond. Sci. Technol. 19, 924 (2006).

    Google Scholar 

  37. Yoshida, T. et al. Fabrication of Eu1Ba2Cu3O7−δ+BaHfO3 coated conductors with 141 A/cm-w under 3 T at 77 K using the IBAD/PLD process. Phys. C 504, 42–46 (2014).

    Google Scholar 

  38. Yoshida, T. et al. Fabrication of 93.7 m long PLD-EuBCO+BaHfO3 coated conductors with 103 A/cm W at 77 K under 3 T. Phys. C 518, 54–57 (2015).

    Google Scholar 

  39. Tallon, J. L., Bernhard, C., Shaked, H., Hitterman, R. L. & Jorgensen, J. D. Generic superconducting phase behavior in high-Tc cuprates: Tc variation with hole concentration in YBa2Cu3O7-δ. Phys. Rev. B 51, 12911–12914 (1995).

    Google Scholar 

  40. Dam, B. et al. Origin of high critical currents in YBa2Cu3O7−δ superconducting thin films. Nature 399, 439–442 (1999).

    Google Scholar 

  41. Huijbregtse, J. M. et al. Natural strong pinning sites in laser-ablated YBa2Cu3O7−δ thin films. Phys. Rev. B 62, 1338–1349 (2000).

    Google Scholar 

  42. Miura, M. et al. Dislocation density and critical current density of Sm1+xBa2−xCu3Oy films prepared by various fabrication processes. Jpn. J. Appl. Phys. 45, L701 (2006).

    Google Scholar 

  43. Miura, M. et al. The effects of density and size of BaMO3 (M=Zr, Nb, Sn) nanoparticles on the vortex glassy and liquid phase in (Y, Gd)Ba2Cu3Oy coated conductors. Supercond. Sci. Technol. 26, 035008 (2013).

    Google Scholar 

  44. Larkin, A. I. & Ovchinnikov, Y. N. Pinning in type-II superconductors. J. Low Temp. Phys. 34, 409 (1979).

    Google Scholar 

  45. Blatter, G., Geshkenbein, V. B. & Koopmann, J. A. G. Weak to strong pinning crossover. Phys. Rev. Lett. 92, 067009 (2004).

    Google Scholar 

  46. Ovchinnikov, Y. N. & Ivlev, B. I. Pinning in layered inhomogeneous superconductors. Phys. Rev. B 43, 8024–8029 (1991).

    Google Scholar 

  47. Willa, R., Koshelev, A. E., Sadovskyy, I. A. & Glatz, A. Strong-pinning regimes by spherical inclusions in anisotropic type-II superconductors. Supercond. Sci. Technol. 31, 014001 (2017).

    Google Scholar 

  48. Willa, R., Koshelev, A. E., Sadovskyy, I. A. & Glatz, A. Peak effect due to competing vortex ground states in superconductors with large inclusions. Phys. Rev. B 98, 054517 (2018).

    Google Scholar 

  49. Buchacek, M., Willa, R., Geshkenbein, V. B. & Blatter, G. Persistence of pinning and creep beyond critical drive within the strong pinning paradigm. Phys. Rev. B 98, 094510 (2018).

    Google Scholar 

  50. van der Beek, C. J. et al. Strong pinning in high-temperature superconducting films. Phys. Rev. B 66, 024523 (2002).

    Google Scholar 

  51. Gyorgy, E. M., van Dover, R. B., Jackson, K. A., Schneemeyer, L. F. & Waszczak, J. V. Anisotropic critical currents in Ba2YCu3O7 analyzed using an extended Bean model. Appl. Phys. Lett. 55, 283–285 (1989).

    Google Scholar 

  52. Talantsev, E. F. & Tallon, J. L. Fundamental nature of the self-field critical current in superconductors. arXiv:2409.16758 (2024).

  53. Polat, O. et al. Thickness dependence of magnetic relaxation and E-J characteristics in superconducting (Gd-Y)-Ba-Cu-O films with strong vortex pinning. Phys. Rev. B 84, 024519 (2011).

    Google Scholar 

  54. Tsuchiya, Y. et al. Flux pinning landscape up to 25 T in SmBa2Cu3Oy films with BaHfO3 nanorods fabricated by low-temperature growth technique. Supercond. Sci. Technol. 30, 104004 (2017).

    Google Scholar 

  55. Bartolomé, E. et al. Intrinsic anisotropy versus effective pinning anisotropy in YBa2Cu3O7 thin films and nanocomposites. Phys. Rev. B 100, 054502 (2019).

    Google Scholar 

  56. Maiorov, B. et al. Synergetic combination of different types of defect to optimize pinning landscape using BaZrO3-doped YBa2Cu3O7. Nat. Mater 8, 398–404 (2009).

    Google Scholar 

  57. Ijaduola, A. O. et al. Critical currents, magnetic relaxation and pinning in NdBa2Cu3O7−δ films with BaZrO3-generated columnar defects. Supercond. Sci. Technol. 25, 045013 (2012).

    Google Scholar 

  58. Díaz, A., Mechin, L., Berghuis, P. & Evetts, J. E. Evidence for vortex pinning by dislocations in YBa2Cu3O7−δ low-angle grain boundaries. Phys. Rev. Lett. 80, 3855–3858 (1998).

    Google Scholar 

  59. Gurevich, A. & Cooley, L. D. Anisotropic flux pinning in a network of planar defects. Phys. Rev. B 50, 13563–13576 (1994).

    Google Scholar 

  60. Abou El Hassan, A. et al. Magnetic penetration depth and coherence length in a single-crystal YBa2Cu3O7−δ. Phys. Status Solidi B 258, 2100292 (2021).

    Google Scholar 

  61. Yeshurun, Y., Malozemoff, A. P. & Shaulov, A. Magnetic relaxation in high-temperature superconductors. Rev. Mod. Phys. 68, 911–949 (1996).

    Google Scholar 

  62. Feigel’man, M. V., Geshkenbein, V. B., Larkin, A. I. & Vinokur, V. M. Theory of collective flux creep. Phys. Rev. Lett. 63, 2303 (1989).

    Google Scholar 

  63. Blatter, G. & Geshkenbein, V. B. Vortex Matter 725–936 (Springer, 2003).

  64. Palau, A. et al. Disentangling vortex pinning landscape in chemical solution deposited superconducting YBa2 Cu3 O7−x films and nanocomposites. Supercond. Sci. Technol. 31, 034004 (2018).

    Google Scholar 

  65. Eley, S. et al. Decoupling and tuning competing effects of different types of defects on flux creep in irradiated YBa2Cu3O7−δ coated conductors. Supercond. Sci. Technol. 30, 15010 (2016).

    Google Scholar 

  66. Miura, M. et al. Mixed pinning landscape in nanoparticle-introduced YGdBa2Cu3Oy films grown by metal organic deposition. Phys. Rev. B 83, 184519 (2011).

    Google Scholar 

  67. Mele, P. et al. Ultra-high flux pinning properties of BaMO3-doped YBa2Cu3O7−x thin films (M = Zr, Sn). Supercond. Sci. Technol. 21, 032002 (2008).

    Google Scholar 

  68. Eley, S. et al. Glassy Dynamics in a heavy ion irradiated NbSe2 crystal. Sci. Rep. 8, 13162 (2018).

    Google Scholar 

  69. Eley, S., Willa, R., Chan, M. K., Bauer, E. D. & Civale, L. Vortex phases and glassy dynamics in the highly anisotropic superconductor HgBa2CuO4+δ. Sci. Rep. 10, 10239 (2020).

    Google Scholar 

  70. Malozemoff, A. P. & Fisher, M. P. A. Universality in the current decay and flux creep of Y-Ba-Cu-O high-temperature superconductors. Phys. Rev. B 42, 6784–6786 (1990).

    Google Scholar 

  71. Nelson, D. R. & Vinokur, V. M. Boson localization and pinning by correlated disorder in high-temperature superconductors. Phys. Rev. Lett. 68, 2398–2401 (1992).

    Google Scholar 

  72. Nelson, D. R. & Vinokur, V. M. Boson localization and correlated pinning of superconducting vortex arrays. Phys. Rev. B 48, 13060–13097 (1993).

    Google Scholar 

  73. van Der Beek, C. J. & Kes, P. H. Handbook of Superconducting Materials, chap. Flux Pinning, 110–126 (CRC Press, Boca Raton, 2021).

  74. Civale, L. Vortex pinning and creep in high-temperature superconductors with columnar defects. Supercond. Sci. Technol. 10, A11 (1997).

    Google Scholar 

  75. Hwa, T., Le Doussal, P., Nelson, D. R. & Vinokur, V. M. Flux pinning and forced vortex entanglement by splayed columnar defects. Phys. Rev. Lett. 71, 3545–3548 (1993).

    Google Scholar 

  76. Wengel, C. & Täuber, U. C. Weakly pinned Bose glass vs Mott insulator phase in superconductors. Phys. Rev. Lett. 78, 4845–4848 (1997).

    Google Scholar 

  77. Wengel, C. & Täuber, U. C. Properties of the Bose glass phase in irradiated superconductors near the matching field. Phys. Rev. B 58, 6565–6579 (1998).

    Google Scholar 

  78. Gurevich, A. & Küpfer, H. Time scales of the flux creep in superconductors. Phys. Rev. B 48, 6477–6487 (1993).

    Google Scholar 

  79. Gurevich, A. & Brandt, E. H. Flux creep in superconducting films: an exact solution. Phys. Rev. Lett. 73, 178–181 (1994).

    Google Scholar 

  80. Cornejo, H. S. et al. Vortex dynamics study on an uniaxially textured YBCO/MgO superconducting film from magnetic measurements. Supercond. Sci. Technol. 38, 35028 (2025).

    Google Scholar 

  81. Haberkorn, N. et al. High-temperature change of the creep rate in YBa2Cu3O7−δ films with different pinning landscapes. Phys. Rev. B 85, 174504 (2012).

    Google Scholar 

  82. Civale, L., Krusin-Elbaum, L., Thompson, J. R. & Holtzberg, F. Collective creep of vortex bundles in YBa2Cu3O7 crystals. Phys. Rev. B 50, 7188–7191 (1994).

    Google Scholar 

  83. Zhou, W., Xing, X., Wu, W., Zhao, H. & Shi, Z. Second magnetization peak effect, vortex dynamics, and flux pinning in 112-type superconductor Ca0.8La0.2Fe1−xCoxAs2. Sci. Rep. 6, 22278 (2016).

    Google Scholar 

  84. Sun, Y. et al. Enhancement of critical current density and mechanism of vortex pinning in H-irradiated FeSe single crystal. APEX 8, 113102 (2015).

    Google Scholar 

  85. Sun, Y. et al. Critical current density, vortex dynamics, and phase diagram of single-crystal FeSe. Phys. Rev. B 92, 144509 (2015).

    Google Scholar 

  86. Haberkorn, N. et al. Strong pinning and elastic to plastic vortex crossover in Na-doped CaFe2As2 single crystals. Phys. Rev. B 84, 094522 (2011).

    Google Scholar 

  87. Miu, L. et al. High Vortex Depinning Temperatures in YBCO Films with BZO Nanorods. J. Supercond. Nov. Magn. 26, 1167–1173 (2013).

    Google Scholar 

  88. Sundar, S. et al. Plastic pinning replaces collective pinning as the second magnetization peak disappears in the pnictide superconductor Ba0.75K0.25Fe2As2. Phys. Rev. B 95, 134509 (2017).

  89. Joshi, K. et al. Measuring the lower critical field of superconductors using nitrogen-vacancy centers in diamond optical magnetometry. Phys. Rev. Appl. 11, 014035 (2019).

    Google Scholar 

  90. Sonier, J. E. et al. New muon-spin-rotation measurement of the temperature dependence of the magnetic penetration depth in YBa2Cu3O6.95. Phys. Rev. Lett. 72, 744–747 (1994).

    Google Scholar 

  91. Tallon, J. L. et al. In-plane anisotropy of the penetration depth due to superconductivity on the Cu - O chains in YBa2Cu3O7−δ, Y2Ba4Cu7O15−δ, and YBa2Cu4O8. Phys. Rev. Lett. 74, 1008–1011 (1995).

    Google Scholar 

  92. Hardy, W. N., Bonn, D. A., Morgan, D. C., Liang, R. & Zhang, K. Precision measurements of the temperature dependence of λ in YBa2Cu3O6.95 : Strong evidence for nodes in the gap function. Phys. Rev. Lett. 70, 3999–4002 (1993).

    Google Scholar 

  93. Prozorov, R. & Giannetta, R. W. Magnetic penetration depth in unconventional superconductors. Supercond. Sci. Technol. 19, R41–R67 (2006).

    Google Scholar 

  94. Thompson, J. R., Krusin-Elbaum, L., Civale, L., Blatter, G. & Feild, C. Superfast vortex creep in YBa2Cu3O7−δ crystals with columnar defects: Evidence for variable-range vortex hopping. Phys. Rev. Lett. 78, 3181–3184 (1997).

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the National Science Foundation under grants DMR-1905909 and DMR-2330562 at the University of Washington (S.E.), as well as partial support through the University of Washington Materials Research Science and Engineering Center under grant DMR-2308979 (J.L.). We thank Sean Suh for performing some preliminary magnetization measurements. Work at Seikei University (M.M.) was supported by the Japan Science and Technology Agency (JST) Fusion Oriented Research for disruptive Science and Technology (FOREST; grant No. JPMJFR202G, Japan). A part of this work at Seikei University was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI with No. 23K26147 and No.23H01453. The work at the National Institute of Advanced Industrial Science and Technology (AIST) was supported by NEDO. No competing interests are declared by all authors.

Author information

Authors and Affiliations

  1. Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA

    Jiangteng Liu & Serena Eley

  2. Graduate School of Science and Technology, Seikei University, Tokyo, Japan

    Masashi Miura

  3. Nanostructures Research Laboratory, Japan Fine Ceramics Center, Nagoya, Japan

    Daisaku Yokoe & Takeharu Kato

  4. National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan

    Akira Ibi & Teruo Izumi

Authors
  1. Jiangteng Liu
    View author publications

    Search author on:PubMed Google Scholar

  2. Masashi Miura
    View author publications

    Search author on:PubMed Google Scholar

  3. Daisaku Yokoe
    View author publications

    Search author on:PubMed Google Scholar

  4. Takeharu Kato
    View author publications

    Search author on:PubMed Google Scholar

  5. Akira Ibi
    View author publications

    Search author on:PubMed Google Scholar

  6. Teruo Izumi
    View author publications

    Search author on:PubMed Google Scholar

  7. Serena Eley
    View author publications

    Search author on:PubMed Google Scholar

Contributions

S.E. and M.M. conceived and designed the experiment. M.M., A.I. and T.I. grew the (Y,Gd)BCO and EuBCO films. D.Y. and T.K. performed microstructural studies. J.L. performed magnetization studies and data analysis. S.E. determined data analysis procedures, S.E. and J.L. thoroughly reviewed the data analysis. S.E. and J.L. wrote the manuscript.

Corresponding author

Correspondence to Serena Eley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Materials thanks Alex Gurevich and Xavier Obradors for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Materials

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Miura, M., Yokoe, D. et al. Higher critical currents yet faster vortex creep in EuBa2Cu3Oy films containing coherent artificial pinning centers. Commun Mater (2026). https://doi.org/10.1038/s43246-025-01054-0

Download citation

  • Received: 01 July 2025

  • Accepted: 16 December 2025

  • Published: 03 January 2026

  • DOI: https://doi.org/10.1038/s43246-025-01054-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Conferences
  • Editorial Values Statement
  • Editorial policies
  • Journal Metrics

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Materials (Commun Mater)

ISSN 2662-4443 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing