Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications materials
  3. articles
  4. article
Manifold of magnetic nodal lines in an elemental ferromagnet
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 24 January 2026

Manifold of magnetic nodal lines in an elemental ferromagnet

  • O. J. Clark  ORCID: orcid.org/0000-0002-3092-94651,2,
  • M. Garcia-Diez3,4,
  • J. Fink5,6,
  • O. Rader1,
  • R. Miranda7,
  • M. G. Vergniory  ORCID: orcid.org/0000-0001-7336-30623,8,9 &
  • …
  • J. Sánchez-Barriga  ORCID: orcid.org/0000-0001-9947-67001,7 

Communications Materials , Article number:  (2026) Cite this article

  • 618 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Electronic properties and materials
  • Magnetic properties and materials

Abstract

Magnetic nodal line semimetals, defined by twofold degenerate gapless crossings along extended momentum paths, offer significant potential for spintronics and future information technologies. Despite their potential, these systems are rare in nature, with only few examples known to date. Here, using spin- and angle-resolved photoemission spectroscopy and density functional theory-based calculations, we classify ferromagnetic hexagonal close-packed (hcp) cobalt as a prototypical system exhibiting these properties. We demonstrate that manifolds of magnetic gapless nodal rings enclosing the Γ and K points in the kz = 0 plane, and magnetic nodal lines spanning the entire A-L path in the \({k}_{z}=\frac{\pi }{c}\) plane, coexist and dominate the fermiology of this elemental system. These mirror-protected bulk crossing points are associated with surface states, both of which exhibit controllable spin textures. This work is the first identification of cobalt as a simple, yet highly tunable and rich topological platform for exploring and manipulating spin-polarised Weyl-like nodal lines at room temperature.

Similar content being viewed by others

Generation of a nodal line and Weyl points by magnetization reorientation in Co3Sn2S2

Article Open access 01 July 2025

Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors

Article 24 November 2021

Gapped nodal planes and large topological Nernst effect in the chiral lattice antiferromagnet CoNb3S6

Article Open access 26 March 2025

Data availability

Data are available from the authors upon reasonable request.

References

  1. Sánchez-Barriga, J., Clark, O. J. & Rader, O.Angle-resolved photoemission of topological materials, vol. 4, 334–369 (Elsevier, Netherlands, 2024), 2nd edn. https://www.sciencedirect.com/science/article/pii/B9780323908009002742.

  2. Kim, K. et al. Large anomalous hall current induced by topological nodal lines in a ferromagnetic van der waals semimetal. Nat. Mater. 17, 794–799 (2018).

    Google Scholar 

  3. Burkov, A. A. Anomalous hall effect in weyl metals. Phys. Rev. Lett. 113, 187202 (2014).

    Google Scholar 

  4. Chang, G. et al. Room-temperature magnetic topological weyl fermion and nodal line semimetal states in half-metallic heusler co2tix (x=si, ge, or sn). Sci. Rep. 6, 38839 (2016).

    Google Scholar 

  5. Kim, Y., Wieder, B. J., Kane, C. L. & Rappe, A. M. Dirac line nodes in inversion-symmetric crystals. Phys. Rev. Lett. 115, 036806 (2015).

    Google Scholar 

  6. Fang, C., Chen, Y., Kee, H.-Y. & Fu, L. Topological nodal line semimetals with and without spin-orbital coupling. Phys. Rev. B 92, 081201 (2015).

    Google Scholar 

  7. Bzdušek, T., Wu, Q., Rüegg, A., Sigrist, M. & Soluyanov, A. A. Nodal-chain metals. Nature 538, 75–78 (2016).

    Google Scholar 

  8. Bi, R., Yan, Z., Lu, L. & Wang, Z. Nodal-knot semimetals. Phys. Rev. B 96, 201305 (2017).

    Google Scholar 

  9. Fu, B. B. et al. Dirac nodal surfaces and nodal lines in zrsis. Sci. Adv. 5, eaau6459 (2019).

    Google Scholar 

  10. Chang, T.-R. et al. Realization of a type-ii nodal-line semimetal in mg3bi2. Adv. Sci. 6, 1800897 (2019).

    Google Scholar 

  11. Bian, G. et al. Topological nodal-line fermions in spin-orbit metal pbtase2. Nat. Commun. 7, 10556 (2016).

    Google Scholar 

  12. Yu, R., Weng, H., Fang, Z., Dai, X. & Hu, X. Topological node-line semimetal and dirac semimetal state in antiperovskite \({{{\rm{cu}}}}_{3}{{\rm{PdN}}}\). Phys. Rev. Lett. 115, 036807 (2015).

    Google Scholar 

  13. Xie, L. S. et al. A new form of ca3p2 with a ring of dirac nodes. APL Mater. 3, 083602 (2015).

    Google Scholar 

  14. Xu, Q., Yu, R., Fang, Z., Dai, X. & Weng, H. Topological nodal line semimetals in the cap3 family of materials. Phys. Rev. B 95, 045136 (2017).

    Google Scholar 

  15. Wu, H. et al. Nonsymmorphic symmetry-protected band crossings in a square-net metal ptpb4. npj Quantum Mater. 7, 31 (2022).

    Google Scholar 

  16. Yang, S.-Y. et al. Symmetry demanded topological nodal-line materials. Adv. Phys.: X 3, 1414631 (2018).

    Google Scholar 

  17. Ekahana, S. A. et al. Observation of nodal line in non-symmorphic topological semimetal inbi. N. J. Phys. 19, 065007 (2017).

    Google Scholar 

  18. Wu, Y. et al. Dirac node arcs in ptsn4. Nat. Phys. 12, 667–671 (2016).

    Google Scholar 

  19. Li, S. et al. Nonsymmorphic-symmetry-protected hourglass dirac loop, nodal line, and dirac point in bulk and monolayer X3site6 (x = ta, nb). Phys. Rev. B 97, 045131 (2018).

    Google Scholar 

  20. Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional dirac line node in zrsis. Nat. Commun. 7, 11696 (2016).

    Google Scholar 

  21. Neupane, M. et al. Observation of topological nodal fermion semimetal phase in zrsis. Phys. Rev. B 93, 201104 (2016).

    Google Scholar 

  22. Chen, C. et al. Dirac line nodes and effect of spin-orbit coupling in the nonsymmorphic critical semimetals mSiS(m = Hf, Zr). Phys. Rev. B 95, 125126 (2017).

    Google Scholar 

  23. Topp, A. et al. Surface floating 2d bands in layered nonsymmorphic semimetals: Zrsis and related compounds. Phys. Rev. X 7, 041073 (2017).

    Google Scholar 

  24. Hosen, M. M. et al. Tunability of the topological nodal-line semimetal phase in ZrSix-type materials (x = S, Se, Te). Phys. Rev. B 95, 161101 (2017).

    Google Scholar 

  25. Wang, X. et al. Quantum electronics: Evidence of both surface and bulk dirac bands and anisotropic nonsaturating magnetoresistance in zrsis (adv. electron. mater. 10/2016). Adv. Electron. Mater. 2, 10 (2016).

    Google Scholar 

  26. Yen, Y. et al. Dirac nodal line and rashba spin-split surface states in nonsymmorphic zrgete. N. J. Phys. 23, 103019 (2021).

    Google Scholar 

  27. Cheng, Z. et al. Visualizing dirac nodal-line band structure of topological semimetal zrgese by arpes. APL Mater. 7, 051105 (2019).

    Google Scholar 

  28. Wang, Y. et al. Spectroscopic evidence for the realization of a genuine topological nodal-line semimetal in lasbte. Phys. Rev. B 103, 125131 (2021).

    Google Scholar 

  29. Lou, R. et al. Emergence of topological bands on the surface of zrsnte crystal. Phys. Rev. B 93, 241104 (2016).

    Google Scholar 

  30. Hirschmann, M. M., Leonhardt, A., Kilic, B., Fabini, D. H. & Schnyder, A. P. Symmetry-enforced band crossings in tetragonal materials: Dirac and weyl degeneracies on points, lines, and planes. Phys. Rev. Mater. 5, 054202 (2021).

    Google Scholar 

  31. Xie, Y.-M. et al. Kramers nodal line metals. Nat. Commun. 12, 3064 (2021).

    Google Scholar 

  32. Zhang, Y. et al. Kramers nodal lines and weyl fermions in smalsi. Commun. Phys. 6, 134 (2023).

    Google Scholar 

  33. Seo, J. et al. Colossal angular magnetoresistance in ferrimagnetic nodal-line semiconductors. Nature 599, 576–581 (2021).

    Google Scholar 

  34. Li, Y. Magnetic quadratic nodal lines in half-metallic anode material tif3: A first-principles study. Phys. B: Condens. Matter 686, 416083 (2024).

    Google Scholar 

  35. Yang, X. P. et al. A topological hund nodal line antiferromagnet. Nat. Commun. 15, 7052 (2024).

    Google Scholar 

  36. Jeon, S., Oh, Y.-T. & Kim, Y. Ferromagnetic nodal-line metal in monolayer h-inc. Phys. Rev. B 100, 035406 (2019).

    Google Scholar 

  37. Jin, L. et al. Ferromagnetic two-dimensional metal-chlorides mcl (m = sc, y, and la): Candidates for weyl nodal line semimetals with small spin-orbit coupling gaps. Appl. Surf. Sci. 520, 146376 (2020).

    Google Scholar 

  38. Schröter, N. B. M. et al. Weyl fermions, fermi arcs, and minority-spin carriers in ferromagnetic cos2. Sci. Adv. 6, eabd5000 (2020).

    Google Scholar 

  39. Robredo, I. et al. Theoretical study of topological properties of ferromagnetic pyrite cos2. J. Phys. D: Appl. Phys. 55, 304004 (2022).

    Google Scholar 

  40. Belopolski, I. et al. Discovery of topological weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365, 1278–1281 (2019).

    Google Scholar 

  41. Sánchez-Barriga, J. et al. Strength of correlation effects in the electronic structure of iron. Phys. Rev. Lett. 103, 267203 (2009).

    Google Scholar 

  42. Sánchez-Barriga, J. et al. Quantitative determination of spin-dependent quasiparticle lifetimes and electronic correlations in hcp cobalt. Phys. Rev. B 82, 104414 (2010).

    Google Scholar 

  43. Sánchez-Barriga, J. et al. Effects of spin-dependent quasiparticle renormalization in fe, co, and ni photoemission spectra:an experimental and theoretical study. Phys. Rev. B 85, 205109 (2012).

    Google Scholar 

  44. Sánchez-Barriga, J., Ovsyannikov, R. & Fink, J. Strong spin dependence of correlation effects in ni due to stoner excitations. Phys. Rev. Lett. 121, 267201 (2018).

    Google Scholar 

  45. Campbell, B. J., Stokes, H. T., Perez-Mato, J. M. & Rodríguez-Carvajal, J. Introducing a unified magnetic space-group symbol. Acta Crystallogr. Sect. A 78, 99–106 (2022).

    Google Scholar 

  46. Zhang, L. & Wang, K. Pure zirconium: Type ii nodal line and nodal surface states. Front. Chem. 8, 585753 (2020).

    Google Scholar 

  47. Chan, Y.-H., Chiu, C.-K., Chou, M. Y. & Schnyder, A. P. Topological semi-metals with line nodes and drumhead surface states. Phys. Rev. B 93, 205132 (2016).

    Google Scholar 

  48. Fritzsche, H., Kohlhepp, J. & Gradmann, U. Epitaxial strain and magnetic anisotropy in ultrathin co films on w(110). Phys. Rev. B 51, 15933–15941 (1995).

    Google Scholar 

  49. Kleibert, A., Senz, V., Bansmann, J. & Oppeneer, P. M. Thickness dependence and magnetocrystalline anisotropy of the x-ray transverse magneto-optical kerr effect at the Co2p edges of ultrathin co films on w(110). Phys. Rev. B 72, 144404 (2005).

    Google Scholar 

  50. Mulazzi, M. et al. Fermi surface of co(0001) and initial-state linewidths determined by soft x-ray angle-resolved photoemission spectroscopy. Phys. Rev. B 80, 241106 (2009).

    Google Scholar 

  51. Damascelli, A. Probing the Electronic Structure of Complex Systems by ARPES. Phys. Scr. 2004, T109 61 (2004).

    Google Scholar 

  52. Hosen, M. M. et al. Experimental observation of drumhead surface states in sras3. Sci. Rep. 10, 2776 (2020).

    Google Scholar 

  53. Muechler, L. et al. Modular arithmetic with nodal lines: Drumhead surface states in zrsite. Phys. Rev. X 10, 011026 (2020).

    Google Scholar 

  54. Monastra, S. et al. Quenching of majority-channel quasiparticle excitations in cobalt. Phys. Rev. Lett. 88, 236402 (2002).

    Google Scholar 

  55. Zhang, J. et al. Topological band crossings in hexagonal materials. Phys. Rev. Mater. 2, 074201 (2018).

    Google Scholar 

  56. Feng, B. et al. Experimental realization of two-dimensional dirac nodal line fermions in monolayer cu2si. Nat. Commun. 8, 1007 (2017).

    Google Scholar 

  57. Yang, T., Jin, L., Liu, Y., Zhang, X. & Wang, X. Spin-polarized type-ii nodal loop and nodal surface states in hexagonal compounds xtio2 (x = li, na, k, rb). Phys. Rev. B 103, 235140 (2021).

    Google Scholar 

  58. Xu, H., Xi, H. & Gao, Y.-C. Hexagonal zr3x (x = al, ga, in) metals: High dynamic stability, nodal loop, and perfect nodal surface states. Front. Chem. 8, 608398 (2020).

    Google Scholar 

  59. Lin, P., Fang, F., Zhang, L., Li, Y. & Wang, K. Various nodal lines in p63/mmc-type tite topological metal and its (001) surface state. Front. Chem. 9, 755350 (2021).

    Google Scholar 

  60. Zhang, X., Jin, L., Dai, X. & Liu, G. Highly anisotropic type-ii nodal line state in pure titanium metal. Appl. Phys. Lett. 112, 122403 (2018).

    Google Scholar 

  61. Pradhan, S. et al. Topological nodal line features in nise semimetal: Insights from electronic transport and density functional theory studies. Phys. Rev. B 110, 195153 (2024).

    Google Scholar 

  62. Gosálbez-Martínez, D., Souza, I. & Vanderbilt, D. Chiral degeneracies and fermi-surface chern numbers in bcc fe. Phys. Rev. B 92, 085138 (2015).

    Google Scholar 

  63. Gosálbez-Martínez, D., Autès, G. & Yazyev, O. V. Topological fermi-arc surface resonances in bcc iron. Phys. Rev. B 102, 035419 (2020).

    Google Scholar 

  64. Grechnev, A. et al. Theory of bulk and surface quasiparticle spectra for fe, co, and ni. Phys. Rev. B 76, 035107 (2007).

    Google Scholar 

  65. Eastman, D. E., Himpsel, F. J. & Knapp, J. A. Experimental exchange-split energy-band dispersions for fe, co, and ni. Phys. Rev. Lett. 44, 95–98 (1980).

    Google Scholar 

  66. Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019).

    Google Scholar 

  67. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    Google Scholar 

  68. Hsieh, D. et al. Observation of unconventional quantum spin textures in topological insulators. Science 323, 919–922 (2009).

    Google Scholar 

  69. Clark, O. J. et al. Observation of a giant mass enhancement in the ultrafast electron dynamics of a topological semimetal. Commun. Phys. 4, 165 (2021).

    Google Scholar 

  70. Hossain, M. S. et al. A hybrid topological quantum state in an elemental solid. Nature 628, 527–533 (2024).

    Google Scholar 

  71. Yan, B. et al. Topological states on the gold surface. Nat. Commun. 6, 10167 (2015).

    Google Scholar 

  72. Agapito, L. A., Kioussis, N., Goddard, W. A. & Ong, N. P. Novel family of chiral-based topological insulators: Elemental tellurium under strain. Phys. Rev. Lett. 110, 176401 (2013).

    Google Scholar 

  73. Bradlyn, B. et al. Topological quantum chemistry. Nature 547, 298–305 (2017).

    Google Scholar 

  74. Vergniory, M. G. et al. A complete catalogue of high-quality topological materials. Nature 566, 480–485 (2019).

    Google Scholar 

  75. Vergniory, M. G. et al. All topological bands of all nonmagnetic stoichiometric materials. Science 376, eabg9094 (2022).

    Google Scholar 

  76. Sánchez-Barriga, J. et al. Photoemission of Bi2Se3 with Circularly Polarized Light: Probe of Spin Polarization or Means for Spin Manipulation? Phys. Rev. X 4, 011046 (2014).

    Google Scholar 

  77. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Google Scholar 

  78. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Google Scholar 

  79. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  80. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Google Scholar 

  81. Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An lsda+u study. Phys. Rev. B 57, 1505–1509 (1998).

    Google Scholar 

  82. Moon, R. M. Distribution of magnetic moment in hexagonal cobalt. Phys. Rev. 136, A195–A202 (1964).

    Google Scholar 

  83. Černý, M., Pokluda, J., Šob, M., Friák, M. & Šandera, P. Ab initio calculations of elastic and magnetic properties of fe, co, ni, and cr crystals under isotropic deformation. Phys. Rev. B 67, 035116 (2003).

    Google Scholar 

  84. Iraola, M. et al. IrRep: Symmetry eigenvalues and irreducible representations of ab initio band structures. Comput. Phys. Commun. 272, 108226 (2022).

    Google Scholar 

  85. Mostofi, A. A. et al. An updated version of wannier90: A tool for obtaining maximally-localised wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).

    Google Scholar 

  86. Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 224, 405–416 (2018).

    Google Scholar 

Download references

Acknowledgements

J.S.-B. Acknowledges financial support from the Impuls- und Vernetzungsfonds der Helmholtz-Gemeinschaft under grant No. HRSF-0067. M.G.V. and M.G.-D. Thank support to PID2022-142008NB-I00 project funded by MICIU/AEI/10.13039/501100011033 and FEDER, UE, Canada Excellence Research Chairs Program for Topological Quantum Matter, NSERC Quantum Alliance France-Canada and to Diputación Foral de Gipuzkoa Programa Mujeres y Ciencia. This work was supported by the Deutsche Forschungsge-meinschaft (DFG) through QUAST-FOR5249 and the Würzburg-Dresden Cluster of Excellence on Complexity and Topology in Quantum Matter, ct.qmat (EXC 2147, Project ID 390858490). IMDEA team acknowledges support from the Spanish AEI PID2024-157112OB-C53 (HYBRID-OS: HYPERFAN) and from the Comunidad de Madrid through projects TEC-2024/TEC-380 (Mag4TIC-CM).

Funding

Open Access funding enabled and organized by Projekt DEAL.

Author information

Authors and Affiliations

  1. Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany

    O. J. Clark, O. Rader & J. Sánchez-Barriga

  2. Diamond Light Source, Harwell Science and Innovation Campus, Didcot, UK

    O. J. Clark

  3. Donostia International Physics Center, Donostia-San Sebastian, Spain

    M. Garcia-Diez & M. G. Vergniory

  4. Physics Department, University of the Basque Country (UPV/EHU), Bilbao, Spain

    M. Garcia-Diez

  5. Leibniz Institute for Solid State and Materials Research Dresden, Dresden, Germany

    J. Fink

  6. Institut für Festkörperphysik, Technische Universität Dresden, Dresden, Germany

    J. Fink

  7. IMDEA Nanoscience, Madrid, Spain

    R. Miranda & J. Sánchez-Barriga

  8. Département de Physique et Institut Quantique, Université de Sherbrooke, Sherbrooke, QC, Canada

    M. G. Vergniory

  9. Regroupement Québécois sur les Matériaux de Pointe (RQMP), Montreal, QC, Canada

    M. G. Vergniory

Authors
  1. O. J. Clark
    View author publications

    Search author on:PubMed Google Scholar

  2. M. Garcia-Diez
    View author publications

    Search author on:PubMed Google Scholar

  3. J. Fink
    View author publications

    Search author on:PubMed Google Scholar

  4. O. Rader
    View author publications

    Search author on:PubMed Google Scholar

  5. R. Miranda
    View author publications

    Search author on:PubMed Google Scholar

  6. M. G. Vergniory
    View author publications

    Search author on:PubMed Google Scholar

  7. J. Sánchez-Barriga
    View author publications

    Search author on:PubMed Google Scholar

Contributions

O.J.C., J.F. and J.S.-B. grew the Co films and performed the photoemission experiments. M.G.-D. and M.G.V. performed the theoretical calculations. O.J.C. and J.S.-B. analysed the data. O.J.C. and J.S.-B. wrote the manuscript with significant contribution from M. G.-D, and further input from J.F., O.R., R.M. and M.G.V. O.J.C. and J.S.B. conceived the project and were responsible for overall project planning and direction.

Corresponding author

Correspondence to J. Sánchez-Barriga.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Materials thanks Qi Jiang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplemental Material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clark, O.J., Garcia-Diez, M., Fink, J. et al. Manifold of magnetic nodal lines in an elemental ferromagnet. Commun Mater (2026). https://doi.org/10.1038/s43246-026-01072-6

Download citation

  • Received: 07 October 2025

  • Accepted: 02 January 2026

  • Published: 24 January 2026

  • DOI: https://doi.org/10.1038/s43246-026-01072-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Subjects
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Conferences
  • Editorial Values Statement
  • Editorial policies
  • Journal Metrics

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Materials (Commun Mater)

ISSN 2662-4443 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing