Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Materials
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications materials
  3. articles
  4. article
Low stress grain boundary mediated plasticity and early fracture at basal twist grain boundaries in a titanium alloy
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 10 February 2026

Low stress grain boundary mediated plasticity and early fracture at basal twist grain boundaries in a titanium alloy

  • Thomas Yvinec1,
  • Djafar Iabbaden2,
  • Florence Hamon1,
  • Valéry Valle1,
  • Julien Guénolé  ORCID: orcid.org/0000-0002-3288-89512 &
  • …
  • Samuel Hémery  ORCID: orcid.org/0000-0001-7740-41321 

Communications Materials , Article number:  (2026) Cite this article

  • 139 Accesses

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Mechanical engineering
  • Mechanical properties
  • Metals and alloys

Abstract

Titanium alloys are high-performance materials critical for demanding applications in aerospace, defense, and energy sectors. Basal twist grain boundaries were recently identified as key microstructure configurations leading to failures under different conditions. In the present study, we examined deformation and fracture in these specific locations to shed light on the mechanical behavior in relation to grain boundary characteristics. In situ characterization using high resolution digital image correlation was employed, and revealed both unexpectedly low stress deformation and early cleavage-like fracture. The collected dataset enabled the identification of influential grain boundary parameters, including their twist and tilt components. Molecular dynamics simulations of bicrystals subjected to shear loadings properly replicated experimental observations, and unveiled underlying mechanisms. The clarified influence of grain boundary characteristics on the mechanical response offers a new understanding of the detrimental role of basal twist grain boundaries on the performance of titanium alloys.

Similar content being viewed by others

A correlation between grain boundary character and deformation twin nucleation mechanism in coarse-grained high-Mn austenitic steel

Article Open access 19 April 2021

Underlying factors determining grain morphologies in high-strength titanium alloys processed by additive manufacturing

Article Open access 06 June 2023

Stress-induced amorphization triggers deformation in the lithospheric mantle

Article 03 March 2021

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author, Samuel Hemery (samuel.hemery@ensma.fr), on reasonable request.

References

  1. Gerd Lütjering, James C. Williams. Titanium. (Springer, 2007).

  2. Peters, M., Kumpfert, J., Ward, C. H. & Leyens, C. Titanium Alloys for Aerospace Applications. in Titanium and Titanium Alloys 333–350 (John Wiley & Sons, 2005).

  3. Williams, J. C. & Starke, E. A. Progress in structural materials for aerospace systems1. Acta Mater. 51, 5775–5799 (2003).

    Google Scholar 

  4. Peters, M., Hemptenmacher, J., Kumpfert, J. & Leyens, C. Structure and Properties of Titanium and Titanium Alloys. in Titanium and Titanium Alloys 1–36 (John Wiley & Sons, 2005).

  5. Williams, J. C. & Boyer, R. R. Opportunities and issues in the application of titanium alloys for aerospace components. Metals 10, 705 (2020).

    Google Scholar 

  6. McDowell, D. L. & Dunne, F. P. E. Microstructure-sensitive computational modeling of fatigue crack formation. Int. J. Fatigue 32, 1521–1542 (2010).

    Google Scholar 

  7. Ozturk, D., Pilchak, A. L. & Ghosh, S. Experimentally validated dwell and cyclic fatigue crack nucleation model for α–titanium alloys. Scr. Mater. 127, 15–18 (2017).

    Google Scholar 

  8. Xu, Y. et al. Predicting dwell fatigue life in titanium alloys using modelling and experiment. Nat. Commun. 11, 5868 (2020).

    Google Scholar 

  9. Christ, H.-J., Fritzen, C.-P. & Köster, P. Micromechanical modeling of short fatigue cracks. Curr. Opin. Solid State Mater. Sci. 18, 205–211 (2014).

    Google Scholar 

  10. Lütjering, G. Influence of processing on microstructure and mechanical properties of (α+β) titanium alloys. Mater. Sci. Eng. A 243, 32–45 (1998).

    Google Scholar 

  11. Briffod, F., Shiraiwa, T., Enoki, M. & Emura, S. Effect of macrozones on fatigue crack initiation and propagation mechanisms in a forged Ti-6Al-4V alloy under fully-reversed condition. Materialia 22, 101401 (2022).

    Google Scholar 

  12. Bridier, F., Villechaise, P. & Mendez, J. Slip and fatigue crack formation processes in an α/β titanium alloy in relation to crystallographic texture on different scales. Acta Mater. 56, 3951–3962 (2008).

    Google Scholar 

  13. Pilchak, A. L. & Williams, J. C. Observations of facet formation in near-α titanium and comments on the role of hydrogen. Met. Mater. Trans. A 42, 1000–1027 (2011).

    Google Scholar 

  14. Pilchak, A. L., Williams, R. E. A. & Williams, J. C. Crystallography of fatigue crack initiation and growth in fully lamellar Ti-6Al-4V. Met. Mater. Trans. A 41, 106 (2009).

    Google Scholar 

  15. Bantounas, I., Dye, D. & Lindley, T. C. The effect of grain orientation on fracture morphology during high-cycle fatigue of Ti–6Al–4V. Acta Mater. 57, 3584–3595 (2009).

    Google Scholar 

  16. Tympel, P. O., Lindley, T. C., Saunders, E. A., Dixon, M. & Dye, D. Influence of complex LCF and dwell load regimes on fatigue of Ti–6Al–4V. Acta Mater. 103, 77–88 (2016).

    Google Scholar 

  17. Sinha, V. et al. Correlating scatter in fatigue life with fracture mechanisms in forged Ti-6242Si alloy. Met. Mater. Trans. A 49, 1061–1078 (2018).

    Google Scholar 

  18. Lavogiez, C., Hémery, S. & Villechaise, P. On the mechanism of fatigue and dwell-fatigue crack initiation in Ti-6Al-4V. Scr. Mater. 183, 117–121 (2020).

    Google Scholar 

  19. Hémery, S. et al. Strain localization and fatigue crack formation at (0001) twist boundaries in titanium alloys. Acta Mater. 219, 117227 (2021).

    Google Scholar 

  20. Lavogiez, C., Dureau, C., Nadot, Y., Villechaise, P. & Hémery, S. Crack initiation mechanisms in Ti-6Al-4V subjected to cold dwell-fatigue, low-cycle fatigue and high-cycle fatigue loadings. Acta Mater. 244, 118560 (2023).

    Google Scholar 

  21. Hémery, S., Bertheau, D. & Hamon, F. Microtexture effects on fatigue and dwell-fatigue lifetimes of Ti-6Al-4V. Int. J. Fatigue 179, 108068 (2024).

    Google Scholar 

  22. IOM3. Chapter 4: C-M-P – Deformation behaviour. Research 13, 1189 (2024).

  23. Wu, Z. et al. Crack initiation mechanism in a high-strength Ti-5Al-7.5V alloy subjected to high cycle fatigue loading. Eng. Fail. Anal. 148, 107201 (2023).

    Google Scholar 

  24. Liu, C. et al. Microstructural effects on fatigue crack initiation mechanisms in a near-alpha titanium alloy. Acta Mater. 253, 118957 (2023).

    Google Scholar 

  25. Jia, R. et al. Crack nucleation and dislocation activities in titanium alloys with the strong transverse texture: Insights for enhancing dwell fatigue resistance. Int. J. Plast. 175, 103938 (2024).

    Google Scholar 

  26. Bean, C. et al. Microstructural statistics for low-cycle fatigue crack initiation in α+β titanium alloys: a microstructure based RVE assessment. Int. J. Fatigue 176, 107854 (2023).

    Google Scholar 

  27. Hémery, S., Naït-Ali, A., Smerdova, O. & Tromas, C. Deformation mechanisms in the α phase of the Ti-6Al-2Sn-4Zr-2Mo titanium alloy: in situ experiments and simulations. Int. J. Plast. 175, 103947 (2024).

    Google Scholar 

  28. Pagan, D. C. et al. Modeling slip system strength evolution in Ti-7Al informed by in-situ grain stress measurements. Acta Mater. 128, 406–417 (2017).

    Google Scholar 

  29. Williams, J. C., Baggerly, R. G. & Paton, N. E. Deformation behavior of HCP Ti-Al alloy single crystals. Met. Mater. Trans. A 33, 837–850 (2002).

    Google Scholar 

  30. Jones, I. P. & Hutchinson, W. B. Stress-state dependence of slip in Titanium-6Al-4V and other H.C.P. metals. Acta Metall. 29, 951–968 (1981).

    Google Scholar 

  31. Dawson, P. R., Boyce, D. E., Park, J.-S., Wielewski, E. & Miller, M. P. Determining the strengths of HCP slip systems using harmonic analyses of lattice strain distributions. Acta Mater. 144, 92–106 (2018).

    Google Scholar 

  32. Zhang, Z., Jun, T.-S., Britton, T. B. & Dunne, F. P. E. Determination of Ti-6242 α and β slip properties using micro-pillar test and computational crystal plasticity. J. Mech. Phys. Solids 95, 393–410 (2016).

    Google Scholar 

  33. Hasija, V., Ghosh, S., Mills, M. J. & Joseph, D. S. Deformation and creep modeling in polycrystalline Ti–6Al alloys. Acta Mater. 51, 4533–4549 (2003).

    Google Scholar 

  34. Liu, Y. et al. Discovery via integration of experimentation and modeling: three examples for titanium alloys. JOM 67, 164–178 (2015).

    Google Scholar 

  35. Echlin, M. P., Stinville, J. C., Miller, V. M., Lenthe, W. C. & Pollock, T. M. Incipient slip and long range plastic strain localization in microtextured Ti-6Al-4V titanium. Acta Mater. 114, 164–175 (2016).

    Google Scholar 

  36. Hémery, S., Dang, T., Signor, L. & Villechaise, P. Influence of microtexture on early plastic slip activity in Ti-6Al-4V polycrystals. Met. Mater. Trans. A 49, 2048–2056 (2018).

    Google Scholar 

  37. Hémery, S., Villechaise, P. & Banerjee, D. Microplasticity at room temperature in α/β titanium alloys. Met. Mater. Trans. A 51, 4931–4969 (2020).

    Google Scholar 

  38. Chen, Z. & Daly, S. H. Active slip system identification in polycrystalline metals by digital image correlation (DIC). Exp. Mech. 57, 115–127 (2017).

    Google Scholar 

  39. Xu, X. et al. Identification of active slip mode in a hexagonal material by correlative scanning electron microscopy. Acta Mater. 175, 376–393 (2019).

    Google Scholar 

  40. Sperry, R. et al. Slip band characteristics in the presence of grain boundaries in nickel-based superalloy. Acta Mater. 193, 229–238 (2020).

    Google Scholar 

  41. Lee, T. C., Robertson, I. M. & Birnbaum, H. K. TEM in situ deformation study of the interaction of lattice dislocations with grain boundaries in metals. Philos. Mag. A 62, 131–153 (1990).

    Google Scholar 

  42. Joseph, S., Lindley, T. C. & Dye, D. Dislocation interactions and crack nucleation in a fatigued near-alpha titanium alloy. Int. J. Plast. 110, 38–56 (2018).

    Google Scholar 

  43. Murr, L. E. Strain-induced dislocation emission from grain boundaries in stainless steel. Mater. Sci. Eng. 51, 71–79 (1981).

    Google Scholar 

  44. Koehler, J. S. & deWit, G. Influence of Elastic anisotropy on the dislocation contribution to the elastic constants. Phys. Rev. 116, 1121–1125 (1959).

    Google Scholar 

  45. Dokkum, J. S. V., Bos, C., Offerman, S. E. & Sietsma, J. Influence of dislocations on the apparent elastic constants in single metallic crystallites: an analytical approach. Materialia 20, 101178 (2021).

    Google Scholar 

  46. Stapleton, A. M. et al. Evolution of lattice strain in Ti–6Al–4V during tensile loading at room temperature. Acta Mater. 56, 6186–6196 (2008).

    Google Scholar 

  47. Luster, J. & Morris, M. A. Compatibility of deformation in two-phase Ti-Al alloys: dependence on microstructure and orientation relationships. Met. Mater. Trans. A 26, 1745–1756 (1995).

    Google Scholar 

  48. Hémery, S., Nizou, P. & Villechaise, P. In situ SEM investigation of slip transfer in Ti-6Al-4V: effect of applied stress. Mater. Sci. Eng. A 709, 277–284 (2018).

    Google Scholar 

  49. Han, S. & Crimp, M. A. ECCI analysis of shear accommodations at grain boundaries in commercially pure alpha titanium. Int. J. Plast. 131, 102731 (2020).

    Google Scholar 

  50. Wang, L. et al. Direct measurement of critical resolved shear stress of prismatic and basal slip in polycrystalline Ti using high energy X-ray diffraction microscopy. Acta Mater. 132, 598–610 (2017).

    Google Scholar 

  51. Wu, Z. et al. Preferential fatigue cracking at basal twist grain boundary (BTGB) in bimodal Ti-5Al-4V alloy: Dislocation activities and crack initiation. J. Mater. Sci. Technol. 217, 281–295 (2025).

    Google Scholar 

  52. Przybyla, C. P. & McDowell, D. L. Microstructure-sensitive extreme-value probabilities of high-cycle fatigue for surface vs. subsurface crack formation in duplex Ti–6Al–4V. Acta Mater. 60, 293–305 (2012).

    Google Scholar 

  53. Bachmann, F., Hielscher, R. & Schaeben, H. Texture analysis with MTEX – free and open source software toolbox. Solid State Phenom. 160, 63–68 (2010).

    Google Scholar 

  54. Stinville, J. C. et al. Sub-grain scale digital image correlation by electron microscopy for polycrystalline materials during elastic and plastic deformation. Exp. Mech. 56, 197–216 (2016).

    Google Scholar 

  55. Kammers, A. D. & Daly, S. Digital image correlation under scanning electron microscopy: methodology and validation. Exp. Mech. 53, 1743–1761 (2013).

    Google Scholar 

  56. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  57. Preibisch, S., Saalfeld, S. & Tomancak, P. Globally optimal stitching of tiled 3D microscopic image acquisitions. Bioinformatics 25, 1463–1465 (2009).

    Google Scholar 

  58. Bourdin, F. et al. Measurements of plastic localization by heaviside-digital image correlation. Acta Mater. 157, 307–325 (2018).

    Google Scholar 

  59. Valle, V., Hedan, S., Cosenza, P., Fauchille, A. L. & Berdjane, M. Digital image correlation development for the study of materials including multiple crossing cracks. Exp. Mech. 55, 379–391 (2015).

    Google Scholar 

  60. Hirel, P. Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015).

    Google Scholar 

  61. Warrington, D. H. the coincidence site lattice (csl) and grain boundary (dsc) dislocations for the hexagonal lattice. J. Phys. Colloq. 36, C4–C95 (1975).

    Google Scholar 

  62. Bitzek, E., Koskinen, P., Gähler, F., Moseler, M. & Gumbsch, P. Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Google Scholar 

  63. Guénolé, J. et al. Assessment and optimization of the fast inertial relaxation engine (fire) for energy minimization in atomistic simulations and its implementation in LAMMPS. Comput. Mater. Sci. 175, 109584 (2020).

    Google Scholar 

  64. Thompson, A. P. et al. LAMMPS - a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 271, 108171 (2022).

    Google Scholar 

  65. Kim, Y.-K., Kim, H.-K., Jung, W.-S. & Lee, B.-J. Atomistic modeling of the Ti–Al binary system. Comput. Mater. Sci. 119, 1–8 (2016).

    Google Scholar 

  66. Tschopp, M. A., Coleman, S. P. & McDowell, D. L. Symmetric and asymmetric tilt grain boundary structure and energy in Cu and Al (and transferability to other fcc metals). Integr. Mater. Manuf. Innov. 4, 176–189 (2015).

  67. Wang, J. & Beyerlein, I. J. Atomic structures of symmetric tilt grain boundaries in hexagonal close packed (hcp) crystals. Model. Simul. Mater. Sci. Eng. 20, 024002 (2012).

    Google Scholar 

  68. Wang, H., Guénolé, J., Korte-Kerzel, S., Al-Samman, T. & Xie, Z. Defects in magnesium and its alloys by atomistic simulation: Assessment of semi-empirical potentials. Comput. Mater. Sci. 240, 113025 (2024).

    Google Scholar 

  69. Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2009).

    Google Scholar 

Download references

Acknowledgements

The ANR (Agence Nationale de la Recherche) is gratefully acknowledged for funding this study: ANR-20-CE08-0006 (PLASLOTI) and ANR-21-CE08-0001 (ATOUUM). High Performance Computing resources were provided by the EXPLOR center of the Université de Lorraine and by GENCI at TGCC (Grants 2023-A0150914654 and 2024-A0170914654).

Author information

Authors and Affiliations

  1. Institut Pprime, ISAE-ENSMA, CNRS UPR 3346, Université de Poitiers, Chasseneuil-du-Poitou, France

    Thomas Yvinec, Florence Hamon, Valéry Valle & Samuel Hémery

  2. CNRS, Université de Lorraine, Arts et Métiers ParisTech, Metz, France

    Djafar Iabbaden & Julien Guénolé

Authors
  1. Thomas Yvinec
    View author publications

    Search author on:PubMed Google Scholar

  2. Djafar Iabbaden
    View author publications

    Search author on:PubMed Google Scholar

  3. Florence Hamon
    View author publications

    Search author on:PubMed Google Scholar

  4. Valéry Valle
    View author publications

    Search author on:PubMed Google Scholar

  5. Julien Guénolé
    View author publications

    Search author on:PubMed Google Scholar

  6. Samuel Hémery
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Conceptualization: J.G. and S.H., Methodology: T.Y., D.I., F.H., J.G., V.V., and S.H., Investigation: T.Y., D.I., J.G., and S.H., Visualization: T.Y., D.I., J.G., S.H., Supervision: V.V., J.G., and S.H., Writing—original draft: T.Y. and S.H., Writing—review and editing: T.Y., D.I., F.H., V.V., J.G., and S.H.

Corresponding authors

Correspondence to Julien Guénolé or Samuel Hémery.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Materials thanks Zixu Guo and the other, anonymous, reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary material

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvinec, T., Iabbaden, D., Hamon, F. et al. Low stress grain boundary mediated plasticity and early fracture at basal twist grain boundaries in a titanium alloy. Commun Mater (2026). https://doi.org/10.1038/s43246-026-01102-3

Download citation

  • Received: 09 September 2025

  • Accepted: 29 January 2026

  • Published: 10 February 2026

  • DOI: https://doi.org/10.1038/s43246-026-01102-3

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Subjects
  • Follow us on X
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Contact
  • Conferences
  • Editorial Values Statement
  • Editorial policies
  • Journal Metrics

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Materials (Commun Mater)

ISSN 2662-4443 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing