Table 1 Description of the model equations, and interpretation of the system state variables and parameters.

From: Long-term transients help explain regime shifts in consumer-renewable resource systems

Model equations

 Population dynamics:

\(\frac{{{\mathrm{d}}P}}{{{\mathrm{d}}t}} = rP\left( {1 - \frac{P}{{qR}}} \right)\)

 Renewable resource dynamics:

\(\frac{{{\mathrm{d}}R}}{{{\mathrm{d}}t}} = f_{\mathrm{i}}(R) - hP\)

 Resource growth (baseline model):

\(f_1\left( R \right) = cR\left( {1 - \frac{R}{{K_{\max }}}} \right)\)

 Resource growth (extended model):

\(f_2\left( R \right) = cs^ \ast R\left( {1 - \frac{R}{{K_{\max }}}} \right)\left( {\frac{R}{{K_{\min }}} - 1} \right)\)

Interpretation of symbols

 Symbol

Interpretation

Unit

Value

References

 r

Relative population growth rate

Year−1

0.0044

10

 q

Per capita dependency on the renewable resource

Individuals # resource units−1

1

10

 h

Per capita exploitation rate

Individual−1 year−1

Varied

This study

 c

Relative resource growth rate

Year−1

Varied

This study

 Kmax

Carrying capacity of the resource

# Resource units

70,000

10

 Kmin

Critical resource level

# Resource units

\(\frac{{K_{\max }}}{{10}}\)

e.g., ref. 35

 s*

Scaling factor setting \(\max \left( {f_2\left( R \right)} \right) \equiv \max \left( {f_1\left( R \right)} \right)\)

Unitless

For given \(K_{\max },\;K_{\min }\): ≈ 0.198

e.g., ref. 58; Supplementary Methods 2

 P

Population size

Individuals

State variable

-

 R

Resource availability

# Resource units

State variable

-