Table 1 Predictive power for farm financial high and low well-being.

From: The financial well-being of fruit farmers in Chile and Tunisia depends more on social and geographical factors than on climate change

Accuracy

wellbeing

Sgb

mb

Mb int

glm

rf

nn

gbm

Chile

High

0.65

0.675

 

0.642

0.733

0.575

0.683

Chile

Low

0.833

0.833

 

0.833

0.842

0.833

0.817

Chile & Tunisia

High

0.71

0.693

0.685

0.618

0.734

0.556

0.705

Chile & Tunisia

Low

0.809

0.809

 

0.822

0.817

0.822

0.793

Tunisia

High

0.595

0.579

 

0.545

0.645

0.529

0.57

Tunisia

Low

0.76

0.744

 

0.736

0.769

0.529

0.727

AUC

wellbeing

Sgb

mb

Mb int

glm

rf

nn

gbm

Chile

High

0.655

0.717

 

0.687

0.757

0.603

0.727

Chile

Low

0.830

0.802

 

0.676

0.837

0.642

0.773

Chile & Tunisia

High

0.733

0.723

0.731

0.627

0.796

0.619

0.758

Chile & Tunisia

Low

0.763

0.733

 

0.637

0.746

0.721

0.735

Tunisia

High

0.663

0.661

 

0.537

0.710

0.616

0.658

Tunisia

Low

0.596

0.562

 

0.579

0.614

0.492

0.579

  1. The accuracy and Area Under the Curve (AUC) of all fitted models was evaluated on the test data from Chile and Tunisia. For corresponding receiver operator curves (see Supplementary Fig. 2). For abbreviation explanation, see Methods - Choice of predictive models for data analysis.