Fig. 3: δ18Op variations and its decomposition on millennial and orbital timescales in N. China and S. China.

a The δ18Op difference between HS1 and LGM across the pan-Asian monsoon region. b The δ18Op difference between HS1 and LGM and its decomposition in N. China. c The δ18Op difference between HS1 and LGM and its decomposition in S. China. d The δ18Op difference between Pmin and Pmax across the pan-Asian monsoon region. e The δ18Op difference between Pmin and Pmax and its decomposition in N. China. f The δ18Op difference between Pmin and Pmax and its decomposition in S. China. In this figure, δ18Op represents the precipitation-weighted annual δ18Op. In (a, d), solid circles represent observed cave speleothem δ18O records (Supplementary Table 2). Note that our study focuses on the western part of S. China (22°N to 35°N, 108°E to 114°E) on millennial and orbital timescales, where model results are consistent with observations on orbital timescales. The dark gray lines outline the Tibetan Plateau boundary. In (b, c, e, f), \({\Delta }_{{{\rm{\delta }}}^{18}{{\rm{O}}}_{{\rm{p}}}}={\Delta }_{{{\rm{dP}}}_{{\rm{Sea}}}}+{\Delta }_{{{\rm{dP}}}_{{\rm{Ori}}}}+{\Delta }_{{\rm{d}}{\rm{\delta }}}\), and \({\Delta }_{{\rm{d}}{\rm{\delta }}}={\Delta }_{{{\rm{d}}{\rm{\delta }}}_{{\rm{Source}}}}+{\Delta }_{{{\rm{d}}{\rm{\delta }}}_{{\rm{Enroute}}}}+{\Delta }_{{{\rm{d}}{\rm{\delta }}}_{{\rm{Condensation}}}}\). PO the Pacific Ocean, IO the Indian Ocean, AO the Atlantic Ocean, EAS East Asia Continent, EC the Eurasian Continent, Other, the remaining other tagging regions. The Sum in each panel represents the total \({\Delta }_{{{\rm{\delta }}}^{18}{{\rm{O}}}_{{\rm{p}}}}\), \({\Delta }_{{{\rm{dP}}}_{{\rm{Sea}}}}\), \({\Delta }_{{{\rm{dP}}}_{{\rm{Ori}}}}\), \({\Delta }_{{{\rm{d}}{\rm{\delta }}}_{{\rm{Source}}}}\), \({\Delta }_{{{\rm{d}}{\rm{\delta }}}_{{\rm{Enroute}}}}\), or \({\Delta }_{{{\rm{d}}{\rm{\delta }}}_{{\rm{Condensation}}}}\) of six tagging domains.