Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Evidence for diverse anaerobic metabolisms in 3.7-billion-year-old marine detrital sediments
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 13 January 2026

Evidence for diverse anaerobic metabolisms in 3.7-billion-year-old marine detrital sediments

  • Austin Jarl Boyd  ORCID: orcid.org/0000-0002-8194-87461,
  • Magnus August Ravn Harding  ORCID: orcid.org/0000-0002-7122-09461,
  • Elizabeth Ann Bell  ORCID: orcid.org/0000-0003-3952-79292,
  • Minik Thorleif Rosing  ORCID: orcid.org/0000-0001-7559-661X1 &
  • …
  • Tue Hassenkam  ORCID: orcid.org/0000-0002-2184-33601 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1166 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon cycle
  • Element cycles
  • Geochemistry
  • Precambrian geology

Abstract

Abundant graphitized organic matter within 3.7-billion-year-old sediments in the Isua Supracrustal Belt comprises the oldest remnants of life. This organic matter could have provided a favorable substrate for anaerobically respiring microbes, though their existence in the early Archean remains uncertain. Here we assess whether anaerobic respiration, linked to reduction of iron and sulfur, operated within these ancient sediments. We analyzed carbon and sulfur isotope data from pelagic and turbiditic sedimentary rocks, sampled from a rock core, and used petrography and iron concentrations to provide geological context. Carbon isotopic compositions indicate respiration of organic compounds, with lighter values associated with iron-rich samples, consistent with respiration coupled to iron reduction. Sulfide grains in pelagic layers have isotopic compositions consistent with reduction of atmospherically produced elemental sulfur, possibly with minor contributions from sulfate reduction during sedimentary hiatuses. These results suggest that early Archean ecosystems were sustained by multiple, interacting microbial metabolisms.

Similar content being viewed by others

Iron and sulfate reduction structure microbial communities in (sub-)Antarctic sediments

Article Open access 21 June 2021

Microbial iron oxide respiration coupled to sulfide oxidation

Article Open access 27 August 2025

Oxygen respiration and polysaccharide degradation by a sulfate-reducing acidobacterium

Article Open access 10 October 2023

Data availability

Sulfur and carbon isotope data, as well as iron, titanium, and aluminum concentrations measured directly on the rock core, are provided in the supplementary data and are also available from the following repository: https://doi.org/10.17894/ucph.62287630-6632-4b1f-9641-ad529d5e8bca.

References

  1. Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676 (1999).

    Google Scholar 

  2. Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28 (2014).

    Google Scholar 

  3. Hassenkam, T., Andersson, M. P., Dalby, K. N., Mackenzie, D. M. A. & Rosing, M. T. Elements of Eoarchean life trapped in mineral inclusions. Nature 548, 78–81 (2017).

    Google Scholar 

  4. Harding, M. A. R. et al. Preserved carbon isotope compositions in 3.7 billion year old detrital organic matter from the Isua Supracrustal Belt. Commun. Earth Environ. 6, 244 (2025).

    Google Scholar 

  5. Boyd, A. J., Rosing, M. T., Harding, M. A. R., Canfield, D. E. & Hassenkam, T. 3.7 billion year old detrital sediments in Greenland are consistent with active plate tectonics in the Eoarchean. Commun. Earth Environ. 5, 201 (2024).

    Google Scholar 

  6. Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004).

    Google Scholar 

  7. Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).

    Google Scholar 

  8. Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol 16, 671–683 (2018).

    Google Scholar 

  9. Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M. & Hinrichs, K.-U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science 344, 889–891 (2014).

    Google Scholar 

  10. Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).

    Google Scholar 

  11. Shen, Y. & Buick, R. The antiquity of microbial sulfate reduction. Earth-Sci. Rev. 64, 243–272 (2004).

    Google Scholar 

  12. Canfield, D. E., Habicht, K. S. & Thamdrup, B. The archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).

    Google Scholar 

  13. Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).

    Google Scholar 

  14. Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).

    Google Scholar 

  15. Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).

    Google Scholar 

  16. Czaja, A. D. et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).

    Google Scholar 

  17. Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geol 33, 865 (2005).

    Google Scholar 

  18. Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J. & Roden, E. E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151–169 (2008).

    Google Scholar 

  19. Czaja, A. D. et al. Iron and carbon isotope evidence for ecosystem and environmental diversity in the ∼2.7 to 2.5Ga Hamersley Province, Western Australia. Earth Planet. Sci. Lett. 292, 170–180 (2010).

    Google Scholar 

  20. Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).

    Google Scholar 

  21. Yoshiya, K., Sawaki, Y., Hirata, T., Maruyama, S. & Komiya, T. In-situ iron isotope analysis of pyrites in ~ 3.7 Ga sedimentary protoliths from the Isua Supracrustal Belt, southern West Greenland. Chem. Geol. 401, 126–139 (2015).

    Google Scholar 

  22. Marin-Carbonne, J. et al. In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): evidence for early microbial iron reduction. Geobiology 18, 306–325 (2020).

    Google Scholar 

  23. Suzumeji, R. et al. Primary Fe isotope signatures record oxidative precipitation in 3.2 Ga ferruginous siliciclastic sedimentary rocks deposited in a shallow ocean environment. Precambrian Res. 413, 107574 (2024).

    Google Scholar 

  24. Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Sci. Rev. 209, 103296 (2020).

    Google Scholar 

  25. Grassineau, N. V., Abell, P., Appel, P. W. U., Lowry, D. & Nisbet, E. G. Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga). In Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits https://doi.org/10.1130/2006.1198(02) (Geological Society of America, 2006).

  26. Thomazo, C. et al. Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. Comptes Rendus Palevol. 8, 665–678 (2009).

    Google Scholar 

  27. Garcia, A. K., Cavanaugh, C. M. & Kacar, B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. ISME J. 15, 2183–2194 (2021).

    Google Scholar 

  28. Londry, K. L., Dawson, K. G., Grover, H. D., Summons, R. E. & Bradley, A. S. Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri. Org. Geochem. 39, 608–621 (2008).

    Google Scholar 

  29. McArthur, J. M., Tyson, R. V., Thomson, J. & Mattey, D. Early diagenesis of marine organic matter: alteration of the carbon isotopic composition. Mar. Geol. 105, 51–61 (1992).

    Google Scholar 

  30. Freudenthal, T., Wagner, T., Wenzhöfer, F., Zabel, M. & Wefer, G. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim. Cosmochim. Acta 65, 1795–1808 (2001).

    Google Scholar 

  31. Lehmann, M. F., Bernasconi, S. M., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573–3584 (2002).

    Google Scholar 

  32. Stüeken, E. E. & Buick, R. Environmental control on microbial diversification and methane production in the Mesoarchean. Precambrian Res. 304, 64–72 (2018).

    Google Scholar 

  33. van Zuilen, M. A. et al. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res. 126, 331–348 (2003).

    Google Scholar 

  34. Johnson, C. M., Beard, B. L. & Roden, E. E. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Planet. Sci. 36, 457–493 (2008).

    Google Scholar 

  35. Heimann, A. et al. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments. Earth Planet. Sci. Lett. 294, 8–18 (2010).

    Google Scholar 

  36. van Zuilen, M. A., Lepland, A. & Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630 (2002).

    Google Scholar 

  37. McCollom, T. M. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev. Mineral. Geochem. 75, 467–494 (2013).

    Google Scholar 

  38. Stüeken, E. E., Boocock, T., Szilas, K., Mikhail, S. & Gardiner, N. J. Reconstructing nitrogen sources to Earth’s earliest biosphere at 3.7 Ga. Front. Earth Sci. 9, 14 (2021).

    Google Scholar 

  39. Swanner, E. D., Webb, S. M. & Kappler, A. Fate of cobalt and nickel in mackinawite during diagenetic pyrite formation. Am. Mineral. 104, 917–928 (2019).

    Google Scholar 

  40. Craig, J. R. & Scott, S. D. Chapter 5. SULFIDE PHASE EQUILIBRIA. In Sulfide Mineralogy (ed. Ribbe, P. H.) 124–233 (De Gruyter, 1976).

  41. Steadman, J. A. et al. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, Western Australia. Economic Geol. 110, 1157–1191 (2015).

    Google Scholar 

  42. Qiu, W. J., Zhou, M. & Williams-Jones, A. E. Numerical simulation of the self-organizational origin of concentrically zoned aggregates of siderite and pyrite in sediment-hosted massive sulfide deposits. JGR Solid Earth 129, e2023JB028101 (2024).

    Google Scholar 

  43. Bektursunova, R. & L’Heureux, I. A reaction-transport model of periodic precipitation of pyrite in anoxic marine sediments. Chem. Geol. 287, 158–170 (2011).

    Google Scholar 

  44. Farquhar, J., Bao, H. & Thiemens, M. Atmospheric Influence of Earth’s Earliest Sulfur Cycle. Science 289, 756–758 (2000).

    Google Scholar 

  45. Farquhar, J., Wu, N., Canfield, D. E. & Oduro, H. Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Economic Geol. 105, 509–533 (2010).

    Google Scholar 

  46. Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).

    Google Scholar 

  47. Stetter, K. O. & Gaag, G. Reduction of molecular sulphur by methanogenic bacteria. Nature 305, 309–311 (1983).

    Google Scholar 

  48. Surkov, A. V., Böttcher, M. E. & Kuever, J. Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp. Isotopes Environ. Health Stud. 48, 65–75 (2012).

    Google Scholar 

  49. Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999).

    Google Scholar 

  50. Galić, A. et al. Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton. Chem. Geol. 449, 135–146 (2017).

    Google Scholar 

  51. Johnston, D. T. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 305, 645–660 (2005).

    Google Scholar 

  52. Frei, R. & Polat, A. Source heterogeneity for the major components of ∼3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett. 253, 266–281 (2007).

    Google Scholar 

  53. Papineau, D. & Mojzsis, S. J. Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4, 227–238 (2006).

    Google Scholar 

  54. Whitehouse, M. J. Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand. Geoanal. Res. 37, 19–33 (2013).

    Google Scholar 

  55. Macdonald, J. E. et al. Evaluating the multiple sulfur isotope signature of Eoarchean rocks from the Isua Supracrustal Belt (Southwest-Greenland) by MC-ICP-MS: volcanic nutrient sources for early life. Geobiology 22, e12595 (2024).

    Google Scholar 

  56. Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J. & Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383–391 (2009).

    Google Scholar 

  57. Roerdink, D. L., Mason, P. R. D., Farquhar, J. & Reimer, T. Multiple sulfur isotopes in Paleoarchean barites identify an important role for microbial sulfate reduction in the early marine environment. Earth Planet. Sci. Lett. 331–332, 177–186 (2012).

    Google Scholar 

  58. Roerdink, D. L., Mason, P. R. D., Whitehouse, M. J. & Brouwer, F. M. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambrian Res. 280, 195–204 (2016).

    Google Scholar 

  59. Farquhar, J. et al. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc. Natl. Acad. Sci. USA 110, 17638–17643 (2013).

    Google Scholar 

  60. Williford, K. H., Van Kranendonk, M. J., Ushikubo, T., Kozdon, R. & Valley, J. W. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim. Cosmochim. Acta 75, 5686–5705 (2011).

    Google Scholar 

  61. Mojzsis, S. J., Coath, C. D., Greenwood, J. P., McKeegan, K. D. & Harrison, T. M. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim. Cosmochim. Acta 67, 1635–1658 (2003).

    Google Scholar 

  62. Bullock, E. S., McKeegan, K. D., Gounelle, M., Grady, M. M. & Russell, S. S. Sulfur isotopic composition of Fe-Ni sulfide grains in CI and CM carbonaceous chondrites. Meteorit. Planet. Sci. 45, 885–898 (2010).

    Google Scholar 

  63. Ding, T. et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65, 2433–2437 (2001).

    Google Scholar 

Download references

Acknowledgements

We are grateful for assistance provided by Nozomi Matsuda during the acquisition of sulfur isotopic data. This project was made possible through financial support provided by the Novo Nordisk Foundation through NERD grant NNF21OC0068372. Research and export permits for rock core materials were granted by the Greenlandic self-government.

Author information

Authors and Affiliations

  1. Globe Institute, University of Copenhagen, København, Denmark

    Austin Jarl Boyd, Magnus August Ravn Harding, Minik Thorleif Rosing & Tue Hassenkam

  2. Dept. of Earth, Planetary, and Space Sciences, University of California at Los Angeles, Los Angeles, CA, USA

    Elizabeth Ann Bell

Authors
  1. Austin Jarl Boyd
    View author publications

    Search author on:PubMed Google Scholar

  2. Magnus August Ravn Harding
    View author publications

    Search author on:PubMed Google Scholar

  3. Elizabeth Ann Bell
    View author publications

    Search author on:PubMed Google Scholar

  4. Minik Thorleif Rosing
    View author publications

    Search author on:PubMed Google Scholar

  5. Tue Hassenkam
    View author publications

    Search author on:PubMed Google Scholar

Contributions

A.J.B. led the writing of the paper, while T.H. provided regular feedback. A.J.B., T.H., M.A.R.H., and M.T.R. contributed to data interpretation. M.T.R. collected the sample material. M.A.R.H., E.A.B., and A.J.B. conducted sample preparation, characterization, and compositional analysis. E.A.B. and A.J.B. carried out data reduction. E.A.B., M.T.R., and T.H. provided analytical equipment and materials. All authors contributed to the editing and review of the paper.

Corresponding author

Correspondence to Austin Jarl Boyd.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Takeshi Kakegawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Description of Additional Supplementary File

Supplementary Data 1

Supplementary Data 2

Supplementary Data 3

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boyd, A.J., Harding, M.A.R., Bell, E.A. et al. Evidence for diverse anaerobic metabolisms in 3.7-billion-year-old marine detrital sediments. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03188-6

Download citation

  • Received: 04 June 2025

  • Accepted: 05 January 2026

  • Published: 13 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03188-6

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing