Abstract
Abundant graphitized organic matter within 3.7-billion-year-old sediments in the Isua Supracrustal Belt comprises the oldest remnants of life. This organic matter could have provided a favorable substrate for anaerobically respiring microbes, though their existence in the early Archean remains uncertain. Here we assess whether anaerobic respiration, linked to reduction of iron and sulfur, operated within these ancient sediments. We analyzed carbon and sulfur isotope data from pelagic and turbiditic sedimentary rocks, sampled from a rock core, and used petrography and iron concentrations to provide geological context. Carbon isotopic compositions indicate respiration of organic compounds, with lighter values associated with iron-rich samples, consistent with respiration coupled to iron reduction. Sulfide grains in pelagic layers have isotopic compositions consistent with reduction of atmospherically produced elemental sulfur, possibly with minor contributions from sulfate reduction during sedimentary hiatuses. These results suggest that early Archean ecosystems were sustained by multiple, interacting microbial metabolisms.
Similar content being viewed by others
Data availability
Sulfur and carbon isotope data, as well as iron, titanium, and aluminum concentrations measured directly on the rock core, are provided in the supplementary data and are also available from the following repository: https://doi.org/10.17894/ucph.62287630-6632-4b1f-9641-ad529d5e8bca.
References
Rosing, M. T. 13C-depleted carbon microparticles in >3700-Ma sea-floor sedimentary rocks from West Greenland. Science 283, 674–676 (1999).
Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28 (2014).
Hassenkam, T., Andersson, M. P., Dalby, K. N., Mackenzie, D. M. A. & Rosing, M. T. Elements of Eoarchean life trapped in mineral inclusions. Nature 548, 78–81 (2017).
Harding, M. A. R. et al. Preserved carbon isotope compositions in 3.7 billion year old detrital organic matter from the Isua Supracrustal Belt. Commun. Earth Environ. 6, 244 (2025).
Boyd, A. J., Rosing, M. T., Harding, M. A. R., Canfield, D. E. & Hassenkam, T. 3.7 billion year old detrital sediments in Greenland are consistent with active plate tectonics in the Eoarchean. Commun. Earth Environ. 5, 201 (2024).
Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland – indications of >3700 Ma oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004).
Froelich, P. N. et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim. Cosmochim. Acta 43, 1075–1090 (1979).
Orsi, W. D. Ecology and evolution of seafloor and subseafloor microbial communities. Nat. Rev. Microbiol 16, 671–683 (2018).
Bowles, M. W., Mogollón, J. M., Kasten, S., Zabel, M. & Hinrichs, K.-U. Global rates of marine sulfate reduction and implications for sub–sea-floor metabolic activities. Science 344, 889–891 (2014).
Ueno, Y., Ono, S., Rumble, D. & Maruyama, S. Quadruple sulfur isotope analysis of ca. 3.5 Ga dresser formation: new evidence for microbial sulfate reduction in the early Archean. Geochim. Cosmochim. Acta 72, 5675–5691 (2008).
Shen, Y. & Buick, R. The antiquity of microbial sulfate reduction. Earth-Sci. Rev. 64, 243–272 (2004).
Canfield, D. E., Habicht, K. S. & Thamdrup, B. The archean sulfur cycle and the early history of atmospheric oxygen. Science 288, 658–661 (2000).
Habicht, K. S., Gade, M., Thamdrup, B., Berg, P. & Canfield, D. E. Calibration of sulfate levels in the Archean ocean. Science 298, 2372–2374 (2002).
Crowe, S. A. et al. Sulfate was a trace constituent of Archean seawater. Science 346, 735–739 (2014).
Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).
Czaja, A. D. et al. Biological Fe oxidation controlled deposition of banded iron formation in the ca. 3770Ma Isua Supracrustal Belt (West Greenland). Earth Planet. Sci. Lett. 363, 192–203 (2013).
Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geol 33, 865 (2005).
Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J. & Roden, E. E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151–169 (2008).
Czaja, A. D. et al. Iron and carbon isotope evidence for ecosystem and environmental diversity in the ∼2.7 to 2.5Ga Hamersley Province, Western Australia. Earth Planet. Sci. Lett. 292, 170–180 (2010).
Craddock, P. R. & Dauphas, N. Iron and carbon isotope evidence for microbial iron respiration throughout the Archean. Earth Planet. Sci. Lett. 303, 121–132 (2011).
Yoshiya, K., Sawaki, Y., Hirata, T., Maruyama, S. & Komiya, T. In-situ iron isotope analysis of pyrites in ~ 3.7 Ga sedimentary protoliths from the Isua Supracrustal Belt, southern West Greenland. Chem. Geol. 401, 126–139 (2015).
Marin-Carbonne, J. et al. In Situ Fe and S isotope analyses in pyrite from the 3.2 Ga Mendon Formation (Barberton Greenstone Belt, South Africa): evidence for early microbial iron reduction. Geobiology 18, 306–325 (2020).
Suzumeji, R. et al. Primary Fe isotope signatures record oxidative precipitation in 3.2 Ga ferruginous siliciclastic sedimentary rocks deposited in a shallow ocean environment. Precambrian Res. 413, 107574 (2024).
Lepot, K. Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Sci. Rev. 209, 103296 (2020).
Grassineau, N. V., Abell, P., Appel, P. W. U., Lowry, D. & Nisbet, E. G. Early life signatures in sulfur and carbon isotopes from Isua, Barberton, Wabigoon (Steep Rock), and Belingwe Greenstone Belts (3.8 to 2.7 Ga). In Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere - Constraints from Ore Deposits https://doi.org/10.1130/2006.1198(02) (Geological Society of America, 2006).
Thomazo, C. et al. Biological activity and the Earth’s surface evolution: insights from carbon, sulfur, nitrogen and iron stable isotopes in the rock record. Comptes Rendus Palevol. 8, 665–678 (2009).
Garcia, A. K., Cavanaugh, C. M. & Kacar, B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. ISME J. 15, 2183–2194 (2021).
Londry, K. L., Dawson, K. G., Grover, H. D., Summons, R. E. & Bradley, A. S. Stable carbon isotope fractionation between substrates and products of Methanosarcina barkeri. Org. Geochem. 39, 608–621 (2008).
McArthur, J. M., Tyson, R. V., Thomson, J. & Mattey, D. Early diagenesis of marine organic matter: alteration of the carbon isotopic composition. Mar. Geol. 105, 51–61 (1992).
Freudenthal, T., Wagner, T., Wenzhöfer, F., Zabel, M. & Wefer, G. Early diagenesis of organic matter from sediments of the eastern subtropical Atlantic: evidence from stable nitrogen and carbon isotopes. Geochim. Cosmochim. Acta 65, 1795–1808 (2001).
Lehmann, M. F., Bernasconi, S. M., Barbieri, A. & McKenzie, J. A. Preservation of organic matter and alteration of its carbon and nitrogen isotope composition during simulated and in situ early sedimentary diagenesis. Geochim. Cosmochim. Acta 66, 3573–3584 (2002).
Stüeken, E. E. & Buick, R. Environmental control on microbial diversification and methane production in the Mesoarchean. Precambrian Res. 304, 64–72 (2018).
van Zuilen, M. A. et al. Graphite and carbonates in the 3.8 Ga old Isua Supracrustal Belt, southern West Greenland. Precambrian Res. 126, 331–348 (2003).
Johnson, C. M., Beard, B. L. & Roden, E. E. The iron isotope fingerprints of redox and biogeochemical cycling in modern and ancient Earth. Annu. Rev. Earth Planet. Sci. 36, 457–493 (2008).
Heimann, A. et al. Fe, C, and O isotope compositions of banded iron formation carbonates demonstrate a major role for dissimilatory iron reduction in ~2.5Ga marine environments. Earth Planet. Sci. Lett. 294, 8–18 (2010).
van Zuilen, M. A., Lepland, A. & Arrhenius, G. Reassessing the evidence for the earliest traces of life. Nature 418, 627–630 (2002).
McCollom, T. M. Laboratory simulations of abiotic hydrocarbon formation in Earth’s deep subsurface. Rev. Mineral. Geochem. 75, 467–494 (2013).
Stüeken, E. E., Boocock, T., Szilas, K., Mikhail, S. & Gardiner, N. J. Reconstructing nitrogen sources to Earth’s earliest biosphere at 3.7 Ga. Front. Earth Sci. 9, 14 (2021).
Swanner, E. D., Webb, S. M. & Kappler, A. Fate of cobalt and nickel in mackinawite during diagenetic pyrite formation. Am. Mineral. 104, 917–928 (2019).
Craig, J. R. & Scott, S. D. Chapter 5. SULFIDE PHASE EQUILIBRIA. In Sulfide Mineralogy (ed. Ribbe, P. H.) 124–233 (De Gruyter, 1976).
Steadman, J. A. et al. Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodules at the Golden Mile deposit, Kalgoorlie, Western Australia. Economic Geol. 110, 1157–1191 (2015).
Qiu, W. J., Zhou, M. & Williams-Jones, A. E. Numerical simulation of the self-organizational origin of concentrically zoned aggregates of siderite and pyrite in sediment-hosted massive sulfide deposits. JGR Solid Earth 129, e2023JB028101 (2024).
Bektursunova, R. & L’Heureux, I. A reaction-transport model of periodic precipitation of pyrite in anoxic marine sediments. Chem. Geol. 287, 158–170 (2011).
Farquhar, J., Bao, H. & Thiemens, M. Atmospheric Influence of Earth’s Earliest Sulfur Cycle. Science 289, 756–758 (2000).
Farquhar, J., Wu, N., Canfield, D. E. & Oduro, H. Connections between sulfur cycle evolution, sulfur isotopes, sediments, and base metal sulfide deposits. Economic Geol. 105, 509–533 (2010).
Ono, S. et al. New insights into Archean sulfur cycle from mass-independent sulfur isotope records from the Hamersley Basin, Australia. Earth Planet. Sci. Lett. 213, 15–30 (2003).
Stetter, K. O. & Gaag, G. Reduction of molecular sulphur by methanogenic bacteria. Nature 305, 309–311 (1983).
Surkov, A. V., Böttcher, M. E. & Kuever, J. Sulphur isotope fractionation during the reduction of elemental sulphur and thiosulphate by Dethiosulfovibrio spp. Isotopes Environ. Health Stud. 48, 65–75 (2012).
Canfield, D. E. & Raiswell, R. The evolution of the sulfur cycle. Am. J. Sci. 299, 697–723 (1999).
Galić, A. et al. Pyrite in a sulfate-poor Paleoarchean basin was derived predominantly from elemental sulfur: evidence from 3.2 Ga sediments in the Barberton Greenstone Belt, Kaapvaal Craton. Chem. Geol. 449, 135–146 (2017).
Johnston, D. T. Multiple sulfur isotope fractionations in biological systems: a case study with sulfate reducers and sulfur disproportionators. Am. J. Sci. 305, 645–660 (2005).
Frei, R. & Polat, A. Source heterogeneity for the major components of ∼3.7 Ga Banded Iron Formations (Isua Greenstone Belt, Western Greenland): tracing the nature of interacting water masses in BIF formation. Earth Planet. Sci. Lett. 253, 266–281 (2007).
Papineau, D. & Mojzsis, S. J. Mass-independent fractionation of sulfur isotopes in sulfides from the pre-3770 Ma Isua Supracrustal Belt, West Greenland. Geobiology 4, 227–238 (2006).
Whitehouse, M. J. Multiple sulfur isotope determination by SIMS: evaluation of reference sulfides for Δ33S with observations and a case study on the determination of Δ36S. Geostand. Geoanal. Res. 37, 19–33 (2013).
Macdonald, J. E. et al. Evaluating the multiple sulfur isotope signature of Eoarchean rocks from the Isua Supracrustal Belt (Southwest-Greenland) by MC-ICP-MS: volcanic nutrient sources for early life. Geobiology 22, e12595 (2024).
Shen, Y., Farquhar, J., Masterson, A., Kaufman, A. J. & Buick, R. Evaluating the role of microbial sulfate reduction in the early Archean using quadruple isotope systematics. Earth Planet. Sci. Lett. 279, 383–391 (2009).
Roerdink, D. L., Mason, P. R. D., Farquhar, J. & Reimer, T. Multiple sulfur isotopes in Paleoarchean barites identify an important role for microbial sulfate reduction in the early marine environment. Earth Planet. Sci. Lett. 331–332, 177–186 (2012).
Roerdink, D. L., Mason, P. R. D., Whitehouse, M. J. & Brouwer, F. M. Reworking of atmospheric sulfur in a Paleoarchean hydrothermal system at Londozi, Barberton Greenstone Belt, Swaziland. Precambrian Res. 280, 195–204 (2016).
Farquhar, J. et al. Pathways for Neoarchean pyrite formation constrained by mass-independent sulfur isotopes. Proc. Natl. Acad. Sci. USA 110, 17638–17643 (2013).
Williford, K. H., Van Kranendonk, M. J., Ushikubo, T., Kozdon, R. & Valley, J. W. Constraining atmospheric oxygen and seawater sulfate concentrations during Paleoproterozoic glaciation: in situ sulfur three-isotope microanalysis of pyrite from the Turee Creek Group, Western Australia. Geochim. Cosmochim. Acta 75, 5686–5705 (2011).
Mojzsis, S. J., Coath, C. D., Greenwood, J. P., McKeegan, K. D. & Harrison, T. M. Mass-independent isotope effects in Archean (2.5 to 3.8 Ga) sedimentary sulfides determined by ion microprobe analysis. Geochim. Cosmochim. Acta 67, 1635–1658 (2003).
Bullock, E. S., McKeegan, K. D., Gounelle, M., Grady, M. M. & Russell, S. S. Sulfur isotopic composition of Fe-Ni sulfide grains in CI and CM carbonaceous chondrites. Meteorit. Planet. Sci. 45, 885–898 (2010).
Ding, T. et al. Calibrated sulfur isotope abundance ratios of three IAEA sulfur isotope reference materials and V-CDT with a reassessment of the atomic weight of sulfur. Geochim. Cosmochim. Acta 65, 2433–2437 (2001).
Acknowledgements
We are grateful for assistance provided by Nozomi Matsuda during the acquisition of sulfur isotopic data. This project was made possible through financial support provided by the Novo Nordisk Foundation through NERD grant NNF21OC0068372. Research and export permits for rock core materials were granted by the Greenlandic self-government.
Author information
Authors and Affiliations
Contributions
A.J.B. led the writing of the paper, while T.H. provided regular feedback. A.J.B., T.H., M.A.R.H., and M.T.R. contributed to data interpretation. M.T.R. collected the sample material. M.A.R.H., E.A.B., and A.J.B. conducted sample preparation, characterization, and compositional analysis. E.A.B. and A.J.B. carried out data reduction. E.A.B., M.T.R., and T.H. provided analytical equipment and materials. All authors contributed to the editing and review of the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks Takeshi Kakegawa and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alireza Bahadori. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Boyd, A.J., Harding, M.A.R., Bell, E.A. et al. Evidence for diverse anaerobic metabolisms in 3.7-billion-year-old marine detrital sediments. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03188-6
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03188-6


