Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Persistent stratospheric cold-season aerosols from the 1783 Laki eruption produced winter warming over Northern Eurasia
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 14 January 2026

Persistent stratospheric cold-season aerosols from the 1783 Laki eruption produced winter warming over Northern Eurasia

  • Linshan Yang  ORCID: orcid.org/0000-0002-0706-036X1,2,
  • Chaochao Gao  ORCID: orcid.org/0000-0002-0414-34771,
  • Fei Liu  ORCID: orcid.org/0000-0001-9223-00112,
  • Alan Robock  ORCID: orcid.org/0000-0002-6319-56563,
  • Weiyi Sun  ORCID: orcid.org/0000-0001-9043-706X4 &
  • …
  • Deliang Chen  ORCID: orcid.org/0000-0003-0288-56185 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 1316 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Attribution
  • Natural hazards

Abstract

Northern Eurasia tropospheric winter warming has been observed and modeled after major tropical volcanic eruptions. Here we show that a high-latitude eruption with a persistent stratospheric volcanic cloud from summer to early winter can also trigger winter warming. Our model simulations, incorporating updated volcanic forcing for the 1783 Laki eruption, closely align with two recent temperature reconstructions—whereas simulations of other eruptions lacking substantial cold-season aerosol loadings fail to produce such warming. The aerosol-induced mid-latitude stratospheric warming strengthens the meridional temperature gradient, enhances the polar vortex, and shifts both horizontal and vertical energy redistribution in favor of Northern Eurasia winter warming. Neutral or cold winters, nevertheless, remain possible in individual realizations due to internal variability. These findings help resolve model-observation discrepancies and highlight the crucial role of stratosphere-troposphere coupling in shaping large-scale circulation patterns in the aftermath of volcanic eruptions.

Similar content being viewed by others

Predictable atmospheric circulation driver of Eurasian winter temperatures

Article Open access 28 January 2026

Future increases in Eurasian mid-latitude winter temperature variability shaped by a weakened Atlantic Meridional Overturning Circulation

Article Open access 05 April 2025

Storylines reveal contrasting thermodynamic effects of climate change on 2020/21 East Asian cold extremes

Article Open access 06 May 2025

Data availability

The modified 1783 Laki volcanic forcing data and CESM model results used for climate response analysis in the study are publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.18045143. The CESM-LME output saved as single variable timeseries datasets are available at: https://www.cesm.ucar.edu/community-projects/lme/data-sets. Model output of the 1783–1784 CE Laki eruption simulated in WACCM is available at: https://doi.org/10.7910/DVN/G1H3AC. Ensemble Kalman Fitting Paleo-Reanalysis Version 2.0 (EKF400_v2.0) is available at: https://doi.org/10.26050/WDCC/EKF400_v2.0. The Winter Temperature Eurasian Data Assimilation (WinTEDA) is available at: https://doi.org/10.5281/zenodo.6806313.

Code availability

The analytical scripts used in this study can be accessed at the Zenodo repository: https://doi.org/10.5281/zenodo.18045143. The analyses and visualizations were performed using MATLAB (R2024b) and NCL (version 6.6.2).

References

  1. Fischer, E. M. et al. European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett. 34, L05707 (2007).

    Google Scholar 

  2. Perlwitz, J. & Graf, H. The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J. Clim. 8, 2281–2295 (1995).

    Google Scholar 

  3. Robock, A. & Mao, J. The volcanic signal in surface temperature observations. J. Clim. 8, 1086–1103 (1995).

    Google Scholar 

  4. Robock, A. & Mao, J. Winter warming from large volcanic eruptions. Geophys. Res. Lett. 19, 2405–2408 (1992).

    Google Scholar 

  5. Robock, A. Pinatubo eruption—the climatic aftermath. Science 295, 1242–1244 (2002).

    Google Scholar 

  6. Dogar, M. M. et al. A review of El Niño Southern Oscillation linkage to strong volcanic eruptions and post-volcanic winter warming. Earth Syst. Environ. 7, 15–42 (2023).

    Google Scholar 

  7. Paik, S. et al. Impact of volcanic eruptions on extratropical atmospheric circulations: review, revisit and future directions. Environ. Res. Lett. 18, 63003 (2023).

    Google Scholar 

  8. Graf, H., Zanchettin, D., Timmreck, C. & Bittner, M. Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Clim. Dyn. 43, 3245–3266 (2014).

    Google Scholar 

  9. Michel, S. et al. Reconstructing climatic modes of variability from proxy records using ClimIndRec version 1.0. Geosci. Model Dev. 13, 841–858 (2020).

    Google Scholar 

  10. Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).

    Google Scholar 

  11. Zambri, B., LeGrande, A. N., Robock, A. & Slawinska, J. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J. Geophys. Res. Atmos. 122, 7971–7989 (2017).

    Google Scholar 

  12. Zambri, B. & Robock, A. Winter warming and summer monsoon reduction after volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. Geophys. Res. Lett. 43, 10920–10928 (2016).

    Google Scholar 

  13. Charlton Perez, A. J. et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 118, 2494–2505 (2013).

    Google Scholar 

  14. Driscoll, S., Bozzo, A., Gray, L. J., Robock, A. & Stenchikov, G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. Atmos. 117, D17105 (2012).

    Google Scholar 

  15. Xing, C. et al. Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models. J. Clim. 33, 2407–2426 (2020).

    Google Scholar 

  16. Stenchikov, G. et al. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. Atmos. 111, D07107 (2006).

    Google Scholar 

  17. Coupe, J. & Robock, A. The influence of stratospheric soot and sulfate aerosols on the Northern Hemisphere Wintertime Atmospheric Circulation. J. Geophys. Res. Atmos. 126, e2020JD034513 (2021).

    Google Scholar 

  18. Tejedor, E., Polvani, L. M., Steiger, N. J., Vuille, M. & Smerdon, J. E. No evidence of winter warming in Eurasia following large, low-latitude volcanic eruptions during the last millennium. J. Clim. 37, 5653–5673 (2024).

    Google Scholar 

  19. Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J. Geophys. Res. 113, D23111 (2008).

    Google Scholar 

  20. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Google Scholar 

  21. Kravitz, B. & Robock, A. Climate effects of high-latitude volcanic eruptions: role of the time of year. J. Geophys. Res. 116, D01105 (2011).

    Google Scholar 

  22. Pausata, F. S. R., Chafik, L., Caballero, R. & Battisti, D. S. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA 112, 13784–13788 (2015).

    Google Scholar 

  23. Pausata, F. S. R., Grini, A., Caballero, R., Hannachi, A. & Seland, Ø High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size. Tellus A Dyn. Meteorol. Oceanogr. 67, 26716–26728 (2015).

    Google Scholar 

  24. Toohey, M. et al. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nat. Geosci. 12, 100–107 (2019).

    Google Scholar 

  25. Sun, W. et al. How northern high-latitude volcanic eruptions in different seasons affect ENSO. J. Clim. 32, 3245–3262 (2019).

    Google Scholar 

  26. Schmidt, A., Thordarson, T., Oman, L. D., Robock, A. & Self, S. Climatic impact of the long-lasting 1783 Laki eruption: inapplicability of mass-independent sulfur isotopic composition measurements. J. Geophys. Res. Atmos. 117, D23116 (2012).

    Google Scholar 

  27. Brázdil, R. et al. European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age. Theor. Appl. Climatol. 100, 163–189 (2010).

    Google Scholar 

  28. Brázdil, R., Řezníčková, L., Valášek, H., Dolák, L. & Kotyza, O. Climatic and other responses to the Lakagígar 1783 and Tambora 1815 volcanic eruptions in the Czech Lands. Geografie 122, 147–168 (2017).

    Google Scholar 

  29. Brugnatelli, V. & Tibaldi, A. Effects in North Africa of the 934-940 CE Eldgja and 1783-1784 CE Laki eruptions (Iceland) revealed by previously unrecognized written sources. Bull. Volcanol. 82, 73 (2020).

    Google Scholar 

  30. Thordarson, T. & Self, S. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J. Geophys. Res. 108, 4011 (2003).

    Google Scholar 

  31. Gao, C., Yang, L. & Liu, F. Hydroclimatic anomalies in China during the post-Laki years and the role of concurring El Niño. Adv. Clim. Change Res. 12, 187–198 (2021).

    Google Scholar 

  32. Damodaran, V. et al. The 1780s: Global Climate Anomalies, Floods, Droughts, and Famines 517–550 (Palgrave Macmillan UK, 2017).

  33. Písek, J. & Brázdil, R. Responses of large volcanic eruptions in the instrumental and documentary climatic data over Central Europe. Int. J. Climatol. 26, 439–459 (2006).

    Google Scholar 

  34. Mills, M. J. et al. Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). J. Geophys. Res. Atmos. 122, 13-061 (2017).

  35. Zambri, B., Robock, A., Mills, M. J. & Schmidt, A. Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts. J. Geophys. Res. Atmos. 124, 6770–6790 (2019).

    Google Scholar 

  36. Valler, V., Franke, J., Brugnara, Y. & Bronnimann, S. An updated global atmospheric paleo-reanalysis covering the last 400 years. Geosci. Data J. 9, 89–107 (2022).

    Google Scholar 

  37. Franke, J., Valler, V., Brugnara, Y. & Brönnimann, S. E. Ensemble Kalman Fitting paleo-reanalysis version 2 (EKF400_v2). World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/EKF400_v2.0 (2020).

  38. Steiger, N. & Tejedor, E. Winter Temperature Eurasian Data Assimilation Reconstruction (WinTEDA). Zenodo, https://doi.org/10.5281/zenodo.6806314 (2022).

  39. Zambri, B., Robock, A., Mills, M. J. & Schmidt, A. Modeling the 1783–1784 Laki eruption in Iceland: 1. Aerosol evolution and global stratospheric circulation impacts. J. Geophys. Res. Atmos. 124, 6750–6769 (2019).

    Google Scholar 

  40. Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 97, 735–754 (2016).

    Google Scholar 

  41. Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci. Model Dev. 5, 185–191 (2012).

    Google Scholar 

  42. Fasullo, J. T., Otto Bliesner, B. L. & Stevenson, S. The influence of volcanic aerosol meridional structure on monsoon responses over the last millennium. Geophys. Res. Lett. 46, 12350–12359 (2019).

    Google Scholar 

  43. Dalla Santa, K. & Polvani, L. M. Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability. Atmos. Chem. Phys. 22, 8843–8862 (2022).

    Google Scholar 

  44. D’Arrigo, R., Seager, R., Smerdon, J. E., LeGrande, A. N. & Cook, E. R. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophys. Res. Lett. 38, L05706 (2011).

    Google Scholar 

  45. Salminen, A., Asikainen, T., Maliniemi, V. & Mursula, K. Effect of energetic electron precipitation on the northern polar vortex: explaining the QBO modulation via control of meridional circulation. J. Geophys. Res. Atmos. 124, 5807–5821 (2019).

    Google Scholar 

  46. Bittner, M., Timmreck, C., Schmidt, H., Toohey, M. & Krüger, K. The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions. J. Geophys. Res. Atmos. 121, 5281–5297 (2016).

    Google Scholar 

  47. Toohey, M., Krüger, K., Bittner, M., Timmreck, C. & Schmidt, H. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmos. Chem. Phys. 14, 13063–13079 (2014).

    Google Scholar 

  48. Stevenson, S., Fasullo, J. T., Otto-Bliesner, B. L., Tomas, R. A. & Gao, C. Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc. Natl. Acad. Sci. USA 114, 1822–1826 (2017).

    Google Scholar 

  49. Hutchison, W. et al. High-resolution ice-core analyses identify the Eldgjá Eruption and a cluster of icelandic and trans-continental tephras between 936 and 943 CE. J. Geophys. Res. Atmos. 129, e2023JD040142 (2024).

    Google Scholar 

  50. Fuglestvedt, H. F., Gabriel, I., Sigl, M., Thordarson, T. & Krüger, K. Revisiting the 10th-CEntury Eldgjá Eruption: modeling the climatic and environmental impacts. Geophys. Res. Lett. 52, e2024GL110507 (2025).

    Google Scholar 

  51. Banerjee, A. et al. Robust winter warming over Eurasia under stratospheric sulfate geoengineering—the role of stratospheric dynamics. Atmos. Chem. Phys. 21, 6985–6997 (2021).

    Google Scholar 

  52. Stevenson, D. S. et al. Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling. Atmos. Chem. Phys. 3, 487–507 (2003).

    Google Scholar 

  53. Fuglestvedt, H. F. et al. Volcanic forcing of high-latitude Northern Hemisphere eruptions. npj Clim. Atmos. Sci. 7, 10 (2024).

    Google Scholar 

  54. Zhuo, Z., Fuglestvedt, H. F., Toohey, M. & Krüger, K. Initial atmospheric conditions control transport of volcanic volatiles, forcing and impacts. Atmos. Chem. Phys. 24, 6233–6249 (2024).

    Google Scholar 

  55. Zoëga, T., Storelvmo, T. & Krüger, K. Modeled surface climate response to effusive icelandic volcanic eruptions: sensitivity to season and size. Atmos. Chem. Phys. 25, 2989–3010 (2025).

    Google Scholar 

  56. Gettelman, A., Kay, J. E. & Shell, K. M. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Clim. 25, 1453–1469 (2012).

    Google Scholar 

  57. Zuo, M., Man, W., Zhou, T. & Guo, Z. Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium. J. Clim. 31, 6729–6744 (2018).

    Google Scholar 

  58. Stevenson, S., Otto-Bliesner, B., Fasullo, J. & Brady, E. El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Clim. 29, 2907–2921 (2016).

    Google Scholar 

  59. Grandey, B. S. et al. Effective radiative forcing in the aerosol–climate model cam5.3-marc-arg. Atmos. Chem. Phys. 18, 15783–15810 (2018).

    Google Scholar 

  60. Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Amer. Meteorol. Soc. 94, 1339–1360 (2013).

    Google Scholar 

  61. Zanchettin, D. et al. Clarifying the relative role of forcing uncertainties and initial-condition unknowns in spreading the climate response to volcanic eruptions. Geophys. Res. Lett. 46, 1602–1611 (2019).

    Google Scholar 

  62. Henley, B. J. et al. A Tripole Index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).

    Google Scholar 

  63. Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun. 8, 778 (2017).

    Google Scholar 

  64. Robock, A. Comment on “No consistent ENSO response to volcanic forcing over the last millennium. Science 369, eabc0502 (2020).

    Google Scholar 

  65. Franke, J., Bronnimann, S., Bhend, J. & Brugnara, Y. A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations. Sci. Data 4, 170076 (2017).

    Google Scholar 

  66. Azoulay, A., Schmidt, H. & Timmreck, C. The arctic polar vortex response to volcanic forcing of different strengths. J. Geophys. Res. Atmos. 126, e2020JD034450 (2021).

    Google Scholar 

  67. Toohey, M., Stevens, B., Schmidt, H. & Timmreck, C. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations. Geosci. Model Dev. 9, 4049–4070 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank the two reviewers for their constructive comments and suggestions, which enhance the scientific rigor and objectivity of the conclusions. C.G. is supported by the National Key Technologies R&D Program of China, grant 2024YFF0808504, and the National Natural Science Foundation of China grant 42275046. F.L. is supported by the Key National Technologies R&D Program of China, grant 2024YFF0809200. A.R. is supported by a U.S. National Science Foundation grant AGS-2017113.

Author information

Authors and Affiliations

  1. State Key Laboratory of Soil Pollution Control and Safety, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China

    Linshan Yang & Chaochao Gao

  2. Key Laboratory of Tropical Atmosphere-Ocean System, Ministry of Education, and Southern Marine Science and Engineering Guangdong Laboratory, School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai, China

    Linshan Yang & Fei Liu

  3. Department of Environmental Sciences, Rutgers University, New Brunswick, NJ, USA

    Alan Robock

  4. School of Geography Science, Nanjing Normal University, Nanjing, China

    Weiyi Sun

  5. Department of Earth System Science, Tsinghua University, Beijing, China

    Deliang Chen

Authors
  1. Linshan Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Chaochao Gao
    View author publications

    Search author on:PubMed Google Scholar

  3. Fei Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Alan Robock
    View author publications

    Search author on:PubMed Google Scholar

  5. Weiyi Sun
    View author publications

    Search author on:PubMed Google Scholar

  6. Deliang Chen
    View author publications

    Search author on:PubMed Google Scholar

Contributions

C.G. and F.L. conceived of the study. L.Y. conducted model simulation and data analysis. L.Y., C.G., and F.L. jointly wrote the manuscript with input from other co-authors. A.R. and D.C. provided interpretative guidance. All authors read and commented upon the manuscript.

Corresponding authors

Correspondence to Chaochao Gao or Fei Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Keiichiro Hara and Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Reporting Summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Gao, C., Liu, F. et al. Persistent stratospheric cold-season aerosols from the 1783 Laki eruption produced winter warming over Northern Eurasia. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03197-5

Download citation

  • Received: 17 April 2025

  • Accepted: 06 January 2026

  • Published: 14 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03197-5

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing