Abstract
Northern Eurasia tropospheric winter warming has been observed and modeled after major tropical volcanic eruptions. Here we show that a high-latitude eruption with a persistent stratospheric volcanic cloud from summer to early winter can also trigger winter warming. Our model simulations, incorporating updated volcanic forcing for the 1783 Laki eruption, closely align with two recent temperature reconstructions—whereas simulations of other eruptions lacking substantial cold-season aerosol loadings fail to produce such warming. The aerosol-induced mid-latitude stratospheric warming strengthens the meridional temperature gradient, enhances the polar vortex, and shifts both horizontal and vertical energy redistribution in favor of Northern Eurasia winter warming. Neutral or cold winters, nevertheless, remain possible in individual realizations due to internal variability. These findings help resolve model-observation discrepancies and highlight the crucial role of stratosphere-troposphere coupling in shaping large-scale circulation patterns in the aftermath of volcanic eruptions.
Similar content being viewed by others
Data availability
The modified 1783 Laki volcanic forcing data and CESM model results used for climate response analysis in the study are publicly available at the Zenodo repository: https://doi.org/10.5281/zenodo.18045143. The CESM-LME output saved as single variable timeseries datasets are available at: https://www.cesm.ucar.edu/community-projects/lme/data-sets. Model output of the 1783–1784 CE Laki eruption simulated in WACCM is available at: https://doi.org/10.7910/DVN/G1H3AC. Ensemble Kalman Fitting Paleo-Reanalysis Version 2.0 (EKF400_v2.0) is available at: https://doi.org/10.26050/WDCC/EKF400_v2.0. The Winter Temperature Eurasian Data Assimilation (WinTEDA) is available at: https://doi.org/10.5281/zenodo.6806313.
Code availability
The analytical scripts used in this study can be accessed at the Zenodo repository: https://doi.org/10.5281/zenodo.18045143. The analyses and visualizations were performed using MATLAB (R2024b) and NCL (version 6.6.2).
References
Fischer, E. M. et al. European climate response to tropical volcanic eruptions over the last half millennium. Geophys. Res. Lett. 34, L05707 (2007).
Perlwitz, J. & Graf, H. The statistical connection between tropospheric and stratospheric circulation of the northern hemisphere in winter. J. Clim. 8, 2281–2295 (1995).
Robock, A. & Mao, J. The volcanic signal in surface temperature observations. J. Clim. 8, 1086–1103 (1995).
Robock, A. & Mao, J. Winter warming from large volcanic eruptions. Geophys. Res. Lett. 19, 2405–2408 (1992).
Robock, A. Pinatubo eruption—the climatic aftermath. Science 295, 1242–1244 (2002).
Dogar, M. M. et al. A review of El Niño Southern Oscillation linkage to strong volcanic eruptions and post-volcanic winter warming. Earth Syst. Environ. 7, 15–42 (2023).
Paik, S. et al. Impact of volcanic eruptions on extratropical atmospheric circulations: review, revisit and future directions. Environ. Res. Lett. 18, 63003 (2023).
Graf, H., Zanchettin, D., Timmreck, C. & Bittner, M. Observational constraints on the tropospheric and near-surface winter signature of the Northern Hemisphere stratospheric polar vortex. Clim. Dyn. 43, 3245–3266 (2014).
Michel, S. et al. Reconstructing climatic modes of variability from proxy records using ClimIndRec version 1.0. Geosci. Model Dev. 13, 841–858 (2020).
Robock, A. Volcanic eruptions and climate. Rev. Geophys. 38, 191–219 (2000).
Zambri, B., LeGrande, A. N., Robock, A. & Slawinska, J. Northern Hemisphere winter warming and summer monsoon reduction after volcanic eruptions over the last millennium. J. Geophys. Res. Atmos. 122, 7971–7989 (2017).
Zambri, B. & Robock, A. Winter warming and summer monsoon reduction after volcanic eruptions in Coupled Model Intercomparison Project 5 (CMIP5) simulations. Geophys. Res. Lett. 43, 10920–10928 (2016).
Charlton Perez, A. J. et al. On the lack of stratospheric dynamical variability in low-top versions of the CMIP5 models. J. Geophys. Res. Atmos. 118, 2494–2505 (2013).
Driscoll, S., Bozzo, A., Gray, L. J., Robock, A. & Stenchikov, G. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions. J. Geophys. Res. Atmos. 117, D17105 (2012).
Xing, C. et al. Boreal winter surface air temperature responses to large tropical volcanic eruptions in CMIP5 models. J. Clim. 33, 2407–2426 (2020).
Stenchikov, G. et al. Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models. J. Geophys. Res. Atmos. 111, D07107 (2006).
Coupe, J. & Robock, A. The influence of stratospheric soot and sulfate aerosols on the Northern Hemisphere Wintertime Atmospheric Circulation. J. Geophys. Res. Atmos. 126, e2020JD034513 (2021).
Tejedor, E., Polvani, L. M., Steiger, N. J., Vuille, M. & Smerdon, J. E. No evidence of winter warming in Eurasia following large, low-latitude volcanic eruptions during the last millennium. J. Clim. 37, 5653–5673 (2024).
Gao, C., Robock, A. & Ammann, C. Volcanic forcing of climate over the past 1500 years: an improved ice core-based index for climate models. J. Geophys. Res. 113, D23111 (2008).
Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).
Kravitz, B. & Robock, A. Climate effects of high-latitude volcanic eruptions: role of the time of year. J. Geophys. Res. 116, D01105 (2011).
Pausata, F. S. R., Chafik, L., Caballero, R. & Battisti, D. S. Impacts of high-latitude volcanic eruptions on ENSO and AMOC. Proc. Natl. Acad. Sci. USA 112, 13784–13788 (2015).
Pausata, F. S. R., Grini, A., Caballero, R., Hannachi, A. & Seland, Ø High-latitude volcanic eruptions in the Norwegian Earth System Model: the effect of different initial conditions and of the ensemble size. Tellus A Dyn. Meteorol. Oceanogr. 67, 26716–26728 (2015).
Toohey, M. et al. Disproportionately strong climate forcing from extratropical explosive volcanic eruptions. Nat. Geosci. 12, 100–107 (2019).
Sun, W. et al. How northern high-latitude volcanic eruptions in different seasons affect ENSO. J. Clim. 32, 3245–3262 (2019).
Schmidt, A., Thordarson, T., Oman, L. D., Robock, A. & Self, S. Climatic impact of the long-lasting 1783 Laki eruption: inapplicability of mass-independent sulfur isotopic composition measurements. J. Geophys. Res. Atmos. 117, D23116 (2012).
Brázdil, R. et al. European floods during the winter 1783/1784: scenarios of an extreme event during the ‘Little Ice Age. Theor. Appl. Climatol. 100, 163–189 (2010).
Brázdil, R., Řezníčková, L., Valášek, H., Dolák, L. & Kotyza, O. Climatic and other responses to the Lakagígar 1783 and Tambora 1815 volcanic eruptions in the Czech Lands. Geografie 122, 147–168 (2017).
Brugnatelli, V. & Tibaldi, A. Effects in North Africa of the 934-940 CE Eldgja and 1783-1784 CE Laki eruptions (Iceland) revealed by previously unrecognized written sources. Bull. Volcanol. 82, 73 (2020).
Thordarson, T. & Self, S. Atmospheric and environmental effects of the 1783–1784 Laki eruption: a review and reassessment. J. Geophys. Res. 108, 4011 (2003).
Gao, C., Yang, L. & Liu, F. Hydroclimatic anomalies in China during the post-Laki years and the role of concurring El Niño. Adv. Clim. Change Res. 12, 187–198 (2021).
Damodaran, V. et al. The 1780s: Global Climate Anomalies, Floods, Droughts, and Famines 517–550 (Palgrave Macmillan UK, 2017).
Písek, J. & Brázdil, R. Responses of large volcanic eruptions in the instrumental and documentary climatic data over Central Europe. Int. J. Climatol. 26, 439–459 (2006).
Mills, M. J. et al. Radiative and chemical response to interactive stratospheric sulfate aerosols in fully coupled CESM1(WACCM). J. Geophys. Res. Atmos. 122, 13-061 (2017).
Zambri, B., Robock, A., Mills, M. J. & Schmidt, A. Modeling the 1783–1784 Laki eruption in Iceland: 2. Climate impacts. J. Geophys. Res. Atmos. 124, 6770–6790 (2019).
Valler, V., Franke, J., Brugnara, Y. & Bronnimann, S. An updated global atmospheric paleo-reanalysis covering the last 400 years. Geosci. Data J. 9, 89–107 (2022).
Franke, J., Valler, V., Brugnara, Y. & Brönnimann, S. E. Ensemble Kalman Fitting paleo-reanalysis version 2 (EKF400_v2). World Data Center for Climate (WDCC) at DKRZ. https://doi.org/10.26050/WDCC/EKF400_v2.0 (2020).
Steiger, N. & Tejedor, E. Winter Temperature Eurasian Data Assimilation Reconstruction (WinTEDA). Zenodo, https://doi.org/10.5281/zenodo.6806314 (2022).
Zambri, B., Robock, A., Mills, M. J. & Schmidt, A. Modeling the 1783–1784 Laki eruption in Iceland: 1. Aerosol evolution and global stratospheric circulation impacts. J. Geophys. Res. Atmos. 124, 6750–6769 (2019).
Otto-Bliesner, B. L. et al. Climate variability and change since 850 CE: an ensemble approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 97, 735–754 (2016).
Schmidt, G. A. et al. Climate forcing reconstructions for use in PMIP simulations of the Last Millennium (v1.1). Geosci. Model Dev. 5, 185–191 (2012).
Fasullo, J. T., Otto Bliesner, B. L. & Stevenson, S. The influence of volcanic aerosol meridional structure on monsoon responses over the last millennium. Geophys. Res. Lett. 46, 12350–12359 (2019).
Dalla Santa, K. & Polvani, L. M. Volcanic stratospheric injections up to 160 Tg(S) yield a Eurasian winter warming indistinguishable from internal variability. Atmos. Chem. Phys. 22, 8843–8862 (2022).
D’Arrigo, R., Seager, R., Smerdon, J. E., LeGrande, A. N. & Cook, E. R. The anomalous winter of 1783-1784: Was the Laki eruption or an analog of the 2009-2010 winter to blame? Geophys. Res. Lett. 38, L05706 (2011).
Salminen, A., Asikainen, T., Maliniemi, V. & Mursula, K. Effect of energetic electron precipitation on the northern polar vortex: explaining the QBO modulation via control of meridional circulation. J. Geophys. Res. Atmos. 124, 5807–5821 (2019).
Bittner, M., Timmreck, C., Schmidt, H., Toohey, M. & Krüger, K. The impact of wave-mean flow interaction on the Northern Hemisphere polar vortex after tropical volcanic eruptions. J. Geophys. Res. Atmos. 121, 5281–5297 (2016).
Toohey, M., Krüger, K., Bittner, M., Timmreck, C. & Schmidt, H. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure. Atmos. Chem. Phys. 14, 13063–13079 (2014).
Stevenson, S., Fasullo, J. T., Otto-Bliesner, B. L., Tomas, R. A. & Gao, C. Role of eruption season in reconciling model and proxy responses to tropical volcanism. Proc. Natl. Acad. Sci. USA 114, 1822–1826 (2017).
Hutchison, W. et al. High-resolution ice-core analyses identify the Eldgjá Eruption and a cluster of icelandic and trans-continental tephras between 936 and 943 CE. J. Geophys. Res. Atmos. 129, e2023JD040142 (2024).
Fuglestvedt, H. F., Gabriel, I., Sigl, M., Thordarson, T. & Krüger, K. Revisiting the 10th-CEntury Eldgjá Eruption: modeling the climatic and environmental impacts. Geophys. Res. Lett. 52, e2024GL110507 (2025).
Banerjee, A. et al. Robust winter warming over Eurasia under stratospheric sulfate geoengineering—the role of stratospheric dynamics. Atmos. Chem. Phys. 21, 6985–6997 (2021).
Stevenson, D. S. et al. Atmospheric impact of the 1783–1784 Laki eruption: Part I Chemistry modelling. Atmos. Chem. Phys. 3, 487–507 (2003).
Fuglestvedt, H. F. et al. Volcanic forcing of high-latitude Northern Hemisphere eruptions. npj Clim. Atmos. Sci. 7, 10 (2024).
Zhuo, Z., Fuglestvedt, H. F., Toohey, M. & Krüger, K. Initial atmospheric conditions control transport of volcanic volatiles, forcing and impacts. Atmos. Chem. Phys. 24, 6233–6249 (2024).
Zoëga, T., Storelvmo, T. & Krüger, K. Modeled surface climate response to effusive icelandic volcanic eruptions: sensitivity to season and size. Atmos. Chem. Phys. 25, 2989–3010 (2025).
Gettelman, A., Kay, J. E. & Shell, K. M. The evolution of climate sensitivity and climate feedbacks in the Community Atmosphere Model. J. Clim. 25, 1453–1469 (2012).
Zuo, M., Man, W., Zhou, T. & Guo, Z. Different impacts of northern, tropical, and southern volcanic eruptions on the tropical Pacific SST in the last millennium. J. Clim. 31, 6729–6744 (2018).
Stevenson, S., Otto-Bliesner, B., Fasullo, J. & Brady, E. El Niño Like” hydroclimate responses to last millennium volcanic eruptions. J. Clim. 29, 2907–2921 (2016).
Grandey, B. S. et al. Effective radiative forcing in the aerosol–climate model cam5.3-marc-arg. Atmos. Chem. Phys. 18, 15783–15810 (2018).
Hurrell, J. W. et al. The Community Earth System Model: a framework for collaborative research. Bull. Amer. Meteorol. Soc. 94, 1339–1360 (2013).
Zanchettin, D. et al. Clarifying the relative role of forcing uncertainties and initial-condition unknowns in spreading the climate response to volcanic eruptions. Geophys. Res. Lett. 46, 1602–1611 (2019).
Henley, B. J. et al. A Tripole Index for the Interdecadal Pacific Oscillation. Clim. Dyn. 45, 3077–3090 (2015).
Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa. Nat. Commun. 8, 778 (2017).
Robock, A. Comment on “No consistent ENSO response to volcanic forcing over the last millennium. Science 369, eabc0502 (2020).
Franke, J., Bronnimann, S., Bhend, J. & Brugnara, Y. A monthly global paleo-reanalysis of the atmosphere from 1600 to 2005 for studying past climatic variations. Sci. Data 4, 170076 (2017).
Azoulay, A., Schmidt, H. & Timmreck, C. The arctic polar vortex response to volcanic forcing of different strengths. J. Geophys. Res. Atmos. 126, e2020JD034450 (2021).
Toohey, M., Stevens, B., Schmidt, H. & Timmreck, C. Easy Volcanic Aerosol (EVA v1.0): an idealized forcing generator for climate simulations. Geosci. Model Dev. 9, 4049–4070 (2016).
Acknowledgements
The authors thank the two reviewers for their constructive comments and suggestions, which enhance the scientific rigor and objectivity of the conclusions. C.G. is supported by the National Key Technologies R&D Program of China, grant 2024YFF0808504, and the National Natural Science Foundation of China grant 42275046. F.L. is supported by the Key National Technologies R&D Program of China, grant 2024YFF0809200. A.R. is supported by a U.S. National Science Foundation grant AGS-2017113.
Author information
Authors and Affiliations
Contributions
C.G. and F.L. conceived of the study. L.Y. conducted model simulation and data analysis. L.Y., C.G., and F.L. jointly wrote the manuscript with input from other co-authors. A.R. and D.C. provided interpretative guidance. All authors read and commented upon the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Keiichiro Hara and Alireza Bahadori. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Yang, L., Gao, C., Liu, F. et al. Persistent stratospheric cold-season aerosols from the 1783 Laki eruption produced winter warming over Northern Eurasia. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03197-5
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03197-5


