Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Dislocation creep may control bridgmanite deformation in the Earth’s lower mantle
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 26 January 2026

Dislocation creep may control bridgmanite deformation in the Earth’s lower mantle

  • Longli Guan  ORCID: orcid.org/0000-0002-2643-92601,2,
  • Daisuke Yamazaki  ORCID: orcid.org/0009-0001-8003-06502 na1,
  • Noriyoshi Tsujino  ORCID: orcid.org/0000-0001-9242-22403,
  • Yuji Higo3,
  • Sho Kakizawa  ORCID: orcid.org/0000-0001-7838-40653,
  • Xiang Wu  ORCID: orcid.org/0000-0002-3249-168X1 na1 &
  • …
  • Junfeng Zhang  ORCID: orcid.org/0000-0002-2834-28331 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 241 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Geodynamics
  • Geophysics
  • Mineralogy

Abstract

Seismic anisotropy in the Earth’s lower mantle, particularly around subduction zones, is commonly attributed to deformation by dislocation creep, yet much of the lower mantle appears nearly isotropic. This contrast complicates interpretations of mantle rheology. Here we report the temperature dependence of lattice preferred orientation in bridgmanite, the most abundant lower mantle mineral, through high-pressure deformation experiments at 25 gigapascals and 1700–2100 kelvin. Both iron-free and iron-bearing bridgmanite develop lattice preferred orientations across this temperature range, with distinct slip systems occurring below and above 1800 kelvin. Low-temperature fabric produces strong seismic anisotropy, whereas high-temperature fabric yields weak, near-isotropic signatures under horizontal shearing. These results provide a unified explanation for strong seismic anisotropy near subduction zones and globally near-isotropic behavior of the lower mantle. They suggest that dislocation creep could dominate lower mantle deformation while generating diverse seismic signatures, providing important understanding for lower mantle rheology and dynamics.

Similar content being viewed by others

Periclase deforms more slowly than bridgmanite under mantle conditions

Article Open access 11 January 2023

Depressed 660-km discontinuity caused by akimotoite–bridgmanite transition

Article Open access 05 January 2022

Decadal change of seismic structure in the Earth’s lowermost mantle

Article Open access 01 October 2025

Data availability

The data supporting the findings of this study are presented in the paper or in the Supplementary Information file. The dataset used in this study was deposited in the Zenodo (https://doi.org/10.5281/zenodo.18013117).

References

  1. Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Global radially anisotropic mantle structure from multiple datasets: a review, current challenges, and outlook. Tectonophysics 617, 1–19 (2014).

    Google Scholar 

  2. Montagner, J.-P. & Kennett, B. L. N. How to reconcile body-wave and normal-mode reference earth models. Geophys. J. Int. 125, 229–248 (1996).

    Google Scholar 

  3. Beghein, C., Trampert, J. & van Heijst, H. J. Radial anisotropy in seismic reference models of the mantle. J. Geophys. Res. Solid Earth 111, B02303 (2006).

  4. Panning, M. & Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379 (2006).

    Google Scholar 

  5. Karato, S. I., Zhang, S. & Wenk, H. R. Superplasticity in Earth’s lower mantle: evidence from seismic anisotropy and rock physics. Science 270, 458–461 (1995).

    Google Scholar 

  6. Tsujino, N. et al. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments. Sci. Adv. 8, 13 (2022).

    Google Scholar 

  7. Boioli, F. et al. Pure climb creep mechanism drives flow in Earth’s lower mantle. Sci. Adv. 3, e1601958 (2017).

    Google Scholar 

  8. Fan, J., Zhao, D., Li, C., Liu, L. & Dong, D. Remnants of shifting early Cenozoic Pacific lower mantle flow imaged beneath the Philippine Sea Plate. Nat. Geosci. 17, 347–352 (2024).

    Google Scholar 

  9. Ma, J., Tian, Y., Zhao, D., Liu, C. & Liu, T. Mantle dynamics of western Pacific and East Asia: new insights from P wave anisotropic tomography. Geochem. Geophys. Geosyst. 20, 3628–3658 (2019).

    Google Scholar 

  10. Guo, H., Zhao, D. & Ding, Z. Anisotropic tomography and mantle dynamics of the North China Craton. Geophys. J. Int. 236, 1455–1470 (2024).

    Google Scholar 

  11. Foley, B. J. & Long, M. D. Upper and mid-mantle anisotropy beneath the Tonga slab. Geophys. Res. Lett. 38, 1–5 (2011).

    Google Scholar 

  12. Wookey, J. & Kendall, J. M. Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. J. Geophys. Res. Solid Earth 109, 1–16 (2004).

    Google Scholar 

  13. Wookey, J., Kendall, J.-M. & Barruol, G. Mid-mantle deformation inferred from seismic anisotropy. Nature 415, 777–780 (2002).

    Google Scholar 

  14. Nowacki, A., Kendall, J.-M., Wookey, J. & Pemberton, A. Mid-mantle anisotropy in subduction zones and deep water transport. Geochem. Geophys. Geosyst. 16, 764–784 (2015).

    Google Scholar 

  15. Yuan, K. & Beghein, C. Seismic anisotropy changes across upper mantle phase transitions. Earth Planet. Sci. Lett. 374, 132–144 (2013).

    Google Scholar 

  16. Tsujino, N. et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 539, 81–84 (2016).

    Google Scholar 

  17. Cordier, P., Ungár, T., Zsoldos, L. & Tichy, G. Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 428, 837–840 (2004).

    Google Scholar 

  18. Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.-J. & Schardong, L. Ubiquitous lower-mantle anisotropy beneath subduction zones. Nat. Geosci. 12, 301–306 (2019).

    Google Scholar 

  19. Hess, H. H. Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629–631 (1964).

    Google Scholar 

  20. Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. Solid Earth 107, ECV-3 (2002).

  21. Mainprice, D., Barruol, G. & Ismaïl, W. B. The Seismic anisotropy of the Earth’s mantle: From single crystal to polycrystal. Geophys. Monogr. Ser. 117, 237–264 (2000).

    Google Scholar 

  22. Yamazaki, D. & Karato, S. I. Fabric development in (Mg,Fe)O during large strain, shear deformation: iImplications for seismic anisotropy in Earth’s lower mantle. Phys. Earth Planet. Inter. 131, 251–267 (2002).

    Google Scholar 

  23. Tschauner, O. et al. Discovery of davemaoite, CaSiO3–perovskite, as a mineral from the lower mantle. Science 374, 891–894 (2021).

    Google Scholar 

  24. Kawai, K. & Tsuchiya, T. Small shear modulus of cubic CaSiO3 perovskite. Geophys. Res. Lett. 42, 2718–2726 (2015).

    Google Scholar 

  25. Li, L. et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys. Earth Planet. Inter. 155, 249–259 (2006).

    Google Scholar 

  26. Xu, F. et al. Deformation of post-spinel under the lower mantle conditions. J. Geophys. Res. Solid Earth 127, 1–12 (2022).

    Google Scholar 

  27. Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351, 144–147 (2016).

    Google Scholar 

  28. Nzogang, B. C. et al. Characterization by scanning precession electron diffraction of an aggregate of bridgmanite and ferropericlase deformed at HP-HT. Geochem. Geophys. Geosyst. 19, 582–594 (2018).

    Google Scholar 

  29. Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet. Sci. Lett. 182, 209–221 (2000).

    Google Scholar 

  30. Liu, Z. et al. Bridgmanite is nearly dry at the top of the lower mantle. Earth Planet. Sci. Lett. 570, 117088 (2021).

  31. Ishii, T., Ohtani, E. & Shatskiy, A. Aluminum and hydrogen partitioning between bridgmanite and high-pressure hydrous phases: Implications for water storage in the lower mantle. Earth Planet. Sci. Lett. 583, 117441 (2022).

  32. Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).

    Google Scholar 

  33. Gouriet, K., Carrez, P. & Cordier, P. Modelling [100] and [010] screw dislocations in MgSiO3 perovskite based on the Peierls-Nabarro-Galerkin model. Model. Simul. Mater. Sci. Eng. 22, 025020 (2014).

    Google Scholar 

  34. Ferré, D., Carrez, P. & Cordier, P. First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls-Nabarro model. Phys. Earth Planet. Inter. 163, 283–291 (2007).

    Google Scholar 

  35. Mainprice, D., Tommasi, A., Ferré, D., Carrez, P. & Cordier, P. Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth Planet. Sci. Lett. 271, 135–144 (2008).

    Google Scholar 

  36. Hirel, P., Kraych, A., Carrez, P. & Cordier, P. Atomic core structure and mobility of [100](010) and [010](100) dislocations in MgSiO3 perovskite. Acta Mater. 79, 117–125 (2014).

    Google Scholar 

  37. Kraych, A., Carrez, P. & Cordier, P. On dislocation glide in MgSiO3 bridgmanite at high-pressure and high-temperature. Earth Planet. Sci. Lett. 452, 60–68 (2016).

    Google Scholar 

  38. Miyagi, L. & Wenk, H.-R. Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Phys. Chem. Miner. 43, 597–613 (2016).

    Google Scholar 

  39. Gay, J. P. et al. Depth dependent deformation and anisotropy of pyrolite in the Earth’s lower mantle. Geophys. Res. Lett. 51, e2024GL109433 (2024).

    Google Scholar 

  40. Katayama, I. & Karato, S. ichiro. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys. Earth Planet. Inter. 157, 33–45 (2006).

    Google Scholar 

  41. Karato, S., Jung, H., Katayama, I. & Skemer, P. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95 (2008).

    Google Scholar 

  42. Wentzcovitch, R. M., Karki, B. B., Cococcioni, M. & de Gironcoli, S. Thermoelastic properties of MgSiO3–Perovskite: Insights on the nature of the Earth’s lower mantle. Phys. Rev. Lett. 92, 4 (2004).

    Google Scholar 

  43. Irifune, T. Absence of an aluminous phase in the upper part of the Earth’s lower mantle Tetsuo. Nature 370, 131–133 (1994).

    Google Scholar 

  44. Liu, Z., Akaogi, M. & Katsura, T. Increase of the oxygen vacancy component in bridgmanite with temperature. Earth Planet. Sci. Lett. 505, 141–151 (2019).

    Google Scholar 

  45. Guan, L. Experimental investigations of the rheological properties of mantle minerals. PhD thesis, Okayama University (2023).

  46. Ishii, T., McCammon, C. & Katsura, T. Iron and aluminum substitution mechanism in the perovskite phase in the system MgSiO3-FeAlO3-MgO. Am. Mineral. 108, 738–743 (2023).

    Google Scholar 

  47. Katsura, T. Phase relations of bridgmanite, the most abundant mineral in the Earth’s lower mantle. Commun. Chem. 8, 28 (2025).

    Google Scholar 

  48. Ballaran, T. B. et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet. Sci. Lett. 333–334, 181–190 (2012).

    Google Scholar 

  49. Zhang, S., Cottaar, S., Liu, T., Stackhouse, S. & Militzer, B. High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: implications for the Earth’s lower mantle. Earth Planet. Sci. Lett. 434, 264–273 (2016).

    Google Scholar 

  50. Criniti, G., Kurnosov, A., Boffa Ballaran, T. & Frost, D. J. Single-crystal elasticity of MgSiO3 bridgmanite to mid-lower mantle pressure. J. Geophys. Res. Solid Earth 126, 5 (2021).

    Google Scholar 

  51. Kurnosov, A., Marquardt, H., Frost, D. J., Boffa Ballaran, T. & Ziberna, L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 543, 543–546 (2017).

    Google Scholar 

  52. Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).

    Google Scholar 

  53. Chen, J. Lower-mantle materials under pressure. Science 351, 122–123 (2016).

    Google Scholar 

  54. Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).

    Google Scholar 

  55. Fei, H. et al. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. Nature 620, 794–799 (2023).

    Google Scholar 

  56. Rudolph, M. L., Lekić, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).

    Google Scholar 

  57. Yamazaki, D. & Karato, S. I. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 86, 385–391 (2001).

    Google Scholar 

  58. Yoshino, T., Yamazaki, D., Ito, E. & Katsura, T. No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement. Geophys. Res. Lett. 35, L22303 (2008).

  59. Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).

    Google Scholar 

  60. Seto, Y. Whole pattern fitting for two-dimensional diffraction patterns from polycrystalline materials. Rev. High Pressure Sci. Technol. 22, 144–152 (2012).

    Google Scholar 

  61. Seto, Y., Nishio-Hamane, D., Nagai, T. & Sata, N. Development of a software suite on X-ray diffraction experiments. Rev. High Pressure Sci. Technol. 20, 269–276 (2010).

    Google Scholar 

  62. Nabarro, F. R. N. Steady-state diffusional creep. Philos. Mag. 16, 231–237 (1967).

    Google Scholar 

  63. Coble, R. L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963).

    Google Scholar 

  64. Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self- diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).

    Google Scholar 

  65. Mainprice, D. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput. Geosci. 16, 385–393 (1990).

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 42225202), the JSPS KAKENHI (No. 22H00180) and the China Postdoctoral Science Foundation (No. 2024M753018). The two-dimensional X-ray diffraction measurements of bridgmanite were conducted at BL04B1, SPring-8, Japan (Proposal Nos. 2020A0702, 2020A1753, 2021A1108, 2021B1153, 2021B1503, 2022A2074, 2022B1229, 2022B1194, 2022B1716, 2023A1103 and 2023B1401). This study was performed using joint-use facilities of the Institute for Planetary Materials, Okayama University. We thank T. Yoshino for the financial support of the experiments and J. Zhang for helpful discussion. We thank Y. Zhang for help in preparing the (Mg0.9Fe0.1)SiO3 powder and HACTO group members for helping with the collection of the two-dimensional diffraction data. This study benefited from the codes developed by Y. Seto and D. Mainprice for acquiring the LPO pattern and calculating the elastic anisotropy of bridgmanite, respectively.

Author information

Author notes
  1. These authors contributed equally: Daisuke Yamazaki, Xiang Wu.

Authors and Affiliations

  1. State Key Laboratory of Geological Processes and Mineral Resources, School of Earth Sciences, China University of Geosciences, Wuhan, China

    Longli Guan, Xiang Wu & Junfeng Zhang

  2. Institute for Planetary Materials, Okayama University, Tottori, Japan

    Longli Guan & Daisuke Yamazaki

  3. Japan Synchrotron Radiation Research Institute, Hyogo, Japan

    Noriyoshi Tsujino, Yuji Higo & Sho Kakizawa

Authors
  1. Longli Guan
    View author publications

    Search author on:PubMed Google Scholar

  2. Daisuke Yamazaki
    View author publications

    Search author on:PubMed Google Scholar

  3. Noriyoshi Tsujino
    View author publications

    Search author on:PubMed Google Scholar

  4. Yuji Higo
    View author publications

    Search author on:PubMed Google Scholar

  5. Sho Kakizawa
    View author publications

    Search author on:PubMed Google Scholar

  6. Xiang Wu
    View author publications

    Search author on:PubMed Google Scholar

  7. Junfeng Zhang
    View author publications

    Search author on:PubMed Google Scholar

Contributions

L.G. performed the research, analyzed data and wrote the manuscript; D.Y. designed research, reviewed and edited the manuscript; N.T. collected the raw data, reviewed and edited the manuscript; Y.H. and S.K. collected the raw data; X. W. wrote, reviewed and edited the manuscript; and J. Z. reviewed and edited the manuscript.

Corresponding authors

Correspondence to Daisuke Yamazaki or Xiang Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks George Amulele and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, L., Yamazaki, D., Tsujino, N. et al. Dislocation creep may control bridgmanite deformation in the Earth’s lower mantle. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03212-9

Download citation

  • Received: 30 September 2025

  • Accepted: 09 January 2026

  • Published: 26 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03212-9

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing