Abstract
Seismic anisotropy in the Earth’s lower mantle, particularly around subduction zones, is commonly attributed to deformation by dislocation creep, yet much of the lower mantle appears nearly isotropic. This contrast complicates interpretations of mantle rheology. Here we report the temperature dependence of lattice preferred orientation in bridgmanite, the most abundant lower mantle mineral, through high-pressure deformation experiments at 25 gigapascals and 1700–2100 kelvin. Both iron-free and iron-bearing bridgmanite develop lattice preferred orientations across this temperature range, with distinct slip systems occurring below and above 1800 kelvin. Low-temperature fabric produces strong seismic anisotropy, whereas high-temperature fabric yields weak, near-isotropic signatures under horizontal shearing. These results provide a unified explanation for strong seismic anisotropy near subduction zones and globally near-isotropic behavior of the lower mantle. They suggest that dislocation creep could dominate lower mantle deformation while generating diverse seismic signatures, providing important understanding for lower mantle rheology and dynamics.
Similar content being viewed by others
Data availability
The data supporting the findings of this study are presented in the paper or in the Supplementary Information file. The dataset used in this study was deposited in the Zenodo (https://doi.org/10.5281/zenodo.18013117).
References
Chang, S.-J., Ferreira, A. M. G., Ritsema, J., van Heijst, H. J. & Woodhouse, J. H. Global radially anisotropic mantle structure from multiple datasets: a review, current challenges, and outlook. Tectonophysics 617, 1–19 (2014).
Montagner, J.-P. & Kennett, B. L. N. How to reconcile body-wave and normal-mode reference earth models. Geophys. J. Int. 125, 229–248 (1996).
Beghein, C., Trampert, J. & van Heijst, H. J. Radial anisotropy in seismic reference models of the mantle. J. Geophys. Res. Solid Earth 111, B02303 (2006).
Panning, M. & Romanowicz, B. A three-dimensional radially anisotropic model of shear velocity in the whole mantle. Geophys. J. Int. 167, 361–379 (2006).
Karato, S. I., Zhang, S. & Wenk, H. R. Superplasticity in Earth’s lower mantle: evidence from seismic anisotropy and rock physics. Science 270, 458–461 (1995).
Tsujino, N. et al. Viscosity of bridgmanite determined by in situ stress and strain measurements in uniaxial deformation experiments. Sci. Adv. 8, 13 (2022).
Boioli, F. et al. Pure climb creep mechanism drives flow in Earth’s lower mantle. Sci. Adv. 3, e1601958 (2017).
Fan, J., Zhao, D., Li, C., Liu, L. & Dong, D. Remnants of shifting early Cenozoic Pacific lower mantle flow imaged beneath the Philippine Sea Plate. Nat. Geosci. 17, 347–352 (2024).
Ma, J., Tian, Y., Zhao, D., Liu, C. & Liu, T. Mantle dynamics of western Pacific and East Asia: new insights from P wave anisotropic tomography. Geochem. Geophys. Geosyst. 20, 3628–3658 (2019).
Guo, H., Zhao, D. & Ding, Z. Anisotropic tomography and mantle dynamics of the North China Craton. Geophys. J. Int. 236, 1455–1470 (2024).
Foley, B. J. & Long, M. D. Upper and mid-mantle anisotropy beneath the Tonga slab. Geophys. Res. Lett. 38, 1–5 (2011).
Wookey, J. & Kendall, J. M. Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. J. Geophys. Res. Solid Earth 109, 1–16 (2004).
Wookey, J., Kendall, J.-M. & Barruol, G. Mid-mantle deformation inferred from seismic anisotropy. Nature 415, 777–780 (2002).
Nowacki, A., Kendall, J.-M., Wookey, J. & Pemberton, A. Mid-mantle anisotropy in subduction zones and deep water transport. Geochem. Geophys. Geosyst. 16, 764–784 (2015).
Yuan, K. & Beghein, C. Seismic anisotropy changes across upper mantle phase transitions. Earth Planet. Sci. Lett. 374, 132–144 (2013).
Tsujino, N. et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 539, 81–84 (2016).
Cordier, P., Ungár, T., Zsoldos, L. & Tichy, G. Dislocation creep in MgSiO3 perovskite at conditions of the Earth’s uppermost lower mantle. Nature 428, 837–840 (2004).
Ferreira, A. M. G., Faccenda, M., Sturgeon, W., Chang, S.-J. & Schardong, L. Ubiquitous lower-mantle anisotropy beneath subduction zones. Nat. Geosci. 12, 301–306 (2019).
Hess, H. H. Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629–631 (1964).
Hirose, K. Phase transitions in pyrolitic mantle around 670-km depth: implications for upwelling of plumes from the lower mantle. J. Geophys. Res. Solid Earth 107, ECV-3 (2002).
Mainprice, D., Barruol, G. & Ismaïl, W. B. The Seismic anisotropy of the Earth’s mantle: From single crystal to polycrystal. Geophys. Monogr. Ser. 117, 237–264 (2000).
Yamazaki, D. & Karato, S. I. Fabric development in (Mg,Fe)O during large strain, shear deformation: iImplications for seismic anisotropy in Earth’s lower mantle. Phys. Earth Planet. Inter. 131, 251–267 (2002).
Tschauner, O. et al. Discovery of davemaoite, CaSiO3–perovskite, as a mineral from the lower mantle. Science 374, 891–894 (2021).
Kawai, K. & Tsuchiya, T. Small shear modulus of cubic CaSiO3 perovskite. Geophys. Res. Lett. 42, 2718–2726 (2015).
Li, L. et al. Elasticity of CaSiO3 perovskite at high pressure and high temperature. Phys. Earth Planet. Inter. 155, 249–259 (2006).
Xu, F. et al. Deformation of post-spinel under the lower mantle conditions. J. Geophys. Res. Solid Earth 127, 1–12 (2022).
Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351, 144–147 (2016).
Nzogang, B. C. et al. Characterization by scanning precession electron diffraction of an aggregate of bridgmanite and ferropericlase deformed at HP-HT. Geochem. Geophys. Geosyst. 19, 582–594 (2018).
Bolfan-Casanova, N., Keppler, H. & Rubie, D. C. Water partitioning between nominally anhydrous minerals in the MgO–SiO2–H2O system up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet. Sci. Lett. 182, 209–221 (2000).
Liu, Z. et al. Bridgmanite is nearly dry at the top of the lower mantle. Earth Planet. Sci. Lett. 570, 117088 (2021).
Ishii, T., Ohtani, E. & Shatskiy, A. Aluminum and hydrogen partitioning between bridgmanite and high-pressure hydrous phases: Implications for water storage in the lower mantle. Earth Planet. Sci. Lett. 583, 117441 (2022).
Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).
Gouriet, K., Carrez, P. & Cordier, P. Modelling [100] and [010] screw dislocations in MgSiO3 perovskite based on the Peierls-Nabarro-Galerkin model. Model. Simul. Mater. Sci. Eng. 22, 025020 (2014).
Ferré, D., Carrez, P. & Cordier, P. First principles determination of dislocations properties of MgSiO3 perovskite at 30 GPa based on the Peierls-Nabarro model. Phys. Earth Planet. Inter. 163, 283–291 (2007).
Mainprice, D., Tommasi, A., Ferré, D., Carrez, P. & Cordier, P. Predicted glide systems and crystal preferred orientations of polycrystalline silicate Mg-Perovskite at high pressure: Implications for the seismic anisotropy in the lower mantle. Earth Planet. Sci. Lett. 271, 135–144 (2008).
Hirel, P., Kraych, A., Carrez, P. & Cordier, P. Atomic core structure and mobility of [100](010) and [010](100) dislocations in MgSiO3 perovskite. Acta Mater. 79, 117–125 (2014).
Kraych, A., Carrez, P. & Cordier, P. On dislocation glide in MgSiO3 bridgmanite at high-pressure and high-temperature. Earth Planet. Sci. Lett. 452, 60–68 (2016).
Miyagi, L. & Wenk, H.-R. Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Phys. Chem. Miner. 43, 597–613 (2016).
Gay, J. P. et al. Depth dependent deformation and anisotropy of pyrolite in the Earth’s lower mantle. Geophys. Res. Lett. 51, e2024GL109433 (2024).
Katayama, I. & Karato, S. ichiro. Effect of temperature on the B- to C-type olivine fabric transition and implication for flow pattern in subduction zones. Phys. Earth Planet. Inter. 157, 33–45 (2006).
Karato, S., Jung, H., Katayama, I. & Skemer, P. Geodynamic significance of seismic anisotropy of the upper mantle: new insights from laboratory studies. Annu. Rev. Earth Planet. Sci. 36, 59–95 (2008).
Wentzcovitch, R. M., Karki, B. B., Cococcioni, M. & de Gironcoli, S. Thermoelastic properties of MgSiO3–Perovskite: Insights on the nature of the Earth’s lower mantle. Phys. Rev. Lett. 92, 4 (2004).
Irifune, T. Absence of an aluminous phase in the upper part of the Earth’s lower mantle Tetsuo. Nature 370, 131–133 (1994).
Liu, Z., Akaogi, M. & Katsura, T. Increase of the oxygen vacancy component in bridgmanite with temperature. Earth Planet. Sci. Lett. 505, 141–151 (2019).
Guan, L. Experimental investigations of the rheological properties of mantle minerals. PhD thesis, Okayama University (2023).
Ishii, T., McCammon, C. & Katsura, T. Iron and aluminum substitution mechanism in the perovskite phase in the system MgSiO3-FeAlO3-MgO. Am. Mineral. 108, 738–743 (2023).
Katsura, T. Phase relations of bridgmanite, the most abundant mineral in the Earth’s lower mantle. Commun. Chem. 8, 28 (2025).
Ballaran, T. B. et al. Effect of chemistry on the compressibility of silicate perovskite in the lower mantle. Earth Planet. Sci. Lett. 333–334, 181–190 (2012).
Zhang, S., Cottaar, S., Liu, T., Stackhouse, S. & Militzer, B. High-pressure, temperature elasticity of Fe- and Al-bearing MgSiO3: implications for the Earth’s lower mantle. Earth Planet. Sci. Lett. 434, 264–273 (2016).
Criniti, G., Kurnosov, A., Boffa Ballaran, T. & Frost, D. J. Single-crystal elasticity of MgSiO3 bridgmanite to mid-lower mantle pressure. J. Geophys. Res. Solid Earth 126, 5 (2021).
Kurnosov, A., Marquardt, H., Frost, D. J., Boffa Ballaran, T. & Ziberna, L. Evidence for a Fe3+-rich pyrolitic lower mantle from (Al,Fe)-bearing bridgmanite elasticity data. Nature 543, 543–546 (2017).
Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. Solid Earth 118, 5920–5938 (2013).
Chen, J. Lower-mantle materials under pressure. Science 351, 122–123 (2016).
Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M. & Hirose, K. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nat. Geosci. 10, 236–240 (2017).
Fei, H. et al. Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump. Nature 620, 794–799 (2023).
Rudolph, M. L., Lekić, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).
Yamazaki, D. & Karato, S. I. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 86, 385–391 (2001).
Yoshino, T., Yamazaki, D., Ito, E. & Katsura, T. No interconnection of ferro-periclase in post-spinel phase inferred from conductivity measurement. Geophys. Res. Lett. 35, L22303 (2008).
Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).
Seto, Y. Whole pattern fitting for two-dimensional diffraction patterns from polycrystalline materials. Rev. High Pressure Sci. Technol. 22, 144–152 (2012).
Seto, Y., Nishio-Hamane, D., Nagai, T. & Sata, N. Development of a software suite on X-ray diffraction experiments. Rev. High Pressure Sci. Technol. 20, 269–276 (2010).
Nabarro, F. R. N. Steady-state diffusional creep. Philos. Mag. 16, 231–237 (1967).
Coble, R. L. A model for boundary diffusion controlled creep in polycrystalline materials. J. Appl. Phys. 34, 1679–1682 (1963).
Yamazaki, D., Kato, T., Yurimoto, H., Ohtani, E. & Toriumi, M. Silicon self- diffusion in MgSiO3 perovskite at 25 GPa. Phys. Earth Planet. Inter. 119, 299–309 (2000).
Mainprice, D. A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals. Comput. Geosci. 16, 385–393 (1990).
Acknowledgements
This work is supported by the National Natural Science Foundation of China (No. 42225202), the JSPS KAKENHI (No. 22H00180) and the China Postdoctoral Science Foundation (No. 2024M753018). The two-dimensional X-ray diffraction measurements of bridgmanite were conducted at BL04B1, SPring-8, Japan (Proposal Nos. 2020A0702, 2020A1753, 2021A1108, 2021B1153, 2021B1503, 2022A2074, 2022B1229, 2022B1194, 2022B1716, 2023A1103 and 2023B1401). This study was performed using joint-use facilities of the Institute for Planetary Materials, Okayama University. We thank T. Yoshino for the financial support of the experiments and J. Zhang for helpful discussion. We thank Y. Zhang for help in preparing the (Mg0.9Fe0.1)SiO3 powder and HACTO group members for helping with the collection of the two-dimensional diffraction data. This study benefited from the codes developed by Y. Seto and D. Mainprice for acquiring the LPO pattern and calculating the elastic anisotropy of bridgmanite, respectively.
Author information
Authors and Affiliations
Contributions
L.G. performed the research, analyzed data and wrote the manuscript; D.Y. designed research, reviewed and edited the manuscript; N.T. collected the raw data, reviewed and edited the manuscript; Y.H. and S.K. collected the raw data; X. W. wrote, reviewed and edited the manuscript; and J. Z. reviewed and edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks George Amulele and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: Alireza Bahadori. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Guan, L., Yamazaki, D., Tsujino, N. et al. Dislocation creep may control bridgmanite deformation in the Earth’s lower mantle. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03212-9
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03212-9


