Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Mycorrhizal-specific responses of rhizosphere soil properties and fine-root traits to polystyrene microplastic addition in a temperate mixed forest
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 27 January 2026

Mycorrhizal-specific responses of rhizosphere soil properties and fine-root traits to polystyrene microplastic addition in a temperate mixed forest

  • Yingtong Zhou1,
  • Ivano Brunner  ORCID: orcid.org/0000-0003-3436-995X2,
  • Ziping Liu1,
  • Wei Guo3,
  • Xiaoyue Na3,
  • Jiaxin Liu3,
  • Junni Wang1,
  • Cunguo Wang  ORCID: orcid.org/0009-0000-1182-21041 &
  • …
  • Mai-He Li  ORCID: orcid.org/0000-0002-7029-28411,2,4 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Element cycles
  • Environmental impact
  • Forest ecology

Abstract

While microplastic impacts on aquatic and agricultural systems are well-documented, their impacts on forest ecosystems remain poorly understood. We assessed how microplastic addition affects rhizosphere soil properties and fine-root traits for ectomycorrhizal (ECM) and arbuscular mycorrhizal (AM) associations in a mixed temperate forest. In ECM-associated soils, microplastics increased nitrogen availability and nitrate reductase activity but decreased phosphorus and phosphatase activity; AM-associated soils showed the opposite pattern. Morphologically, ECM roots exhibited reduced branching but increased hyphal density and colonization. Conversely, AM roots displayed increased specific root length and tip density but decreased cortical thickness and tissue density. These divergent, mycorrhizal-specific responses suggest that increasing microplastic pollution may fundamentally alter nutrient cycling and species composition dynamics in temperate forests.

Similar content being viewed by others

Effects of arbuscular mycorrhizal fungi and soil substrate on invasive plant Alternanthera philoxeroides

Article Open access 01 July 2025

Mycorrhizal associations and root morphology shape mechanical performance in woody plants from cold regions

Article Open access 23 May 2025

Fine-resolution global maps of root biomass carbon colonized by arbuscular and ectomycorrhizal fungi

Article Open access 25 January 2023

Data availability

The data utilized in this study are accessible from https://doi.org/10.5281/zenodo.17538924.

References

  1. Bergmann, M. et al. White and wonderful? Microplastics prevail in snow from the Alps to the Arctic. Sci. Adv. 5, eaax1157 (2019).

    Google Scholar 

  2. Rillig, M. C. Microplastic disguising as soil carbon storage. Environ. Sci. Technol. 52, 6079–6080 (2018).

    Google Scholar 

  3. Liese, B. et al. Uptake of microplastics and impacts on plant traits of savoy cabbage. Ecotoxicol. Environ. Saf. 272, 116086 (2024).

    Google Scholar 

  4. Ma, R. et al. Microplastics affect C, N, and P cycling in natural environments: highlighting the driver of soil hydraulic properties. J. Hazard. Mater. 459, 132326 (2023).

    Google Scholar 

  5. Richard, C. T. et al. Lost at sea: where is all the plastic? Science 304, 838 (2004).

    Google Scholar 

  6. Li, H. et al. Single and composite damage mechanisms of soil polyethylene/polyvinyl chloride microplastics to the photosynthetic performance of soybean (Glycine max [L.] merr.). Front. Plant Sci. 13, 1100291 (2023).

    Google Scholar 

  7. Li, R. et al. Visual tracking of label-free microplastics in wheat seedlings and their effects on crop growth and physiology. J. Hazard. Mater. 456, 131675 (2023).

    Google Scholar 

  8. Weber, C. J., Rillig, M. C. & Bigalke, M. Mind the gap: forest soils as a hidden hub for global micro- and nanoplastic pollution. Microplastics Nanoplastics 3, 19 (2023).

    Google Scholar 

  9. Green, J. K. & Keena, T. F. The limits of forest carbon sequestration. Science 376, 692–693 (2022).

    Google Scholar 

  10. Cayuela, C., Levia, D. F., Latron, J. & Llorens, P. Particulate matter fluxes in a mediterranean mountain forest: interspecific differences between throughfall and stemflow in oak and pinestands. J. Geophys. Res. Atmos. 124, 5106–5116 (2019).

    Google Scholar 

  11. Wang, W. et al. Responses of lettuce (Lactuca sativa L.) growth and soil properties to conventional non-biodegradable and new biodegradable microplastics. Environ. Pollut. 341, 122897 (2024).

    Google Scholar 

  12. Ranauda, M. A. et al. From the rhizosphere to plant fitness: implications of microplastics soil pollution. Environ. Exp. Bot. 226, 105874 (2024).

    Google Scholar 

  13. de Souza Machado, A. A., Kloas, W., Zarfl, C., Hempel, S. & Rillig, M. C. Microplastics as an emerging threat to terrestrial ecosystems. Glob. Change Biol. 24, 1405–1416 (2018).

    Google Scholar 

  14. Guerrero-Ramírez, N. et al. Global root traits (GRooT) database. Glob. Ecol. Biogeogr. 30, 25–37 (2020).

    Google Scholar 

  15. Guo, W. et al. Linking fine-root diameter across root orders with climatic, biological and edaphic factors in the northern hemisphere. Oikos 2024, e10763 (2024).

    Google Scholar 

  16. Xu, H. et al. Effects of microplastics concentration on plant root traits and biomass: experiment and meta-analysis. Ecotoxicol. Environ. Saf. 285, 117038 (2024).

    Google Scholar 

  17. Sun, H., Lei, C., Xu, J. & Li, R. Foliar uptake and leaf-to-root translocation of nanoplastics with different coating charge in maize plants. J. Hazard. Mater. 416, 125854 (2021).

    Google Scholar 

  18. Rozman, U. et al. An extensive characterization of various environmentally relevant microplastics–material properties, leaching and ecotoxicity testing. Sci. Total Environ. 773, 145576 (2021).

    Google Scholar 

  19. Lehmann, A. et al. Microplastic fiber and drought effects on plants and soil are only slightly modified by arbuscular mycorrhizal fungi. Soil Ecol. Lett. 4, 32–44 (2020).

    Google Scholar 

  20. Chen, H. et al. Arbuscular mycorrhizal fungi can inhibit the allocation of microplastics from crop roots to aboveground edible parts. J. Agric. Food Chem. 71, 18323–18332 (2023).

    Google Scholar 

  21. Urbina, M. A., Correa, F., Aburto, F. & Ferrio, J. P. Adsorption of polyethylene microbeads and physiological effects on hydroponic maize. Sci. Total Environ. 741, 140216 (2020).

    Google Scholar 

  22. Spanò, C. et al. Polystyrene nanoplastics affect seed germination, cell biology and physiology of rice seedlings in-short term treatments: evidence of their internalization and translocation. Plant Physiol. Biochem. 172, 158–166 (2022).

    Google Scholar 

  23. Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl. Acad. Sci. USA 113, 8741–8746 (2016).

    Google Scholar 

  24. Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl. Acad. Sci. USA 116, 23163–23168 (2019).

    Google Scholar 

  25. van der Heijden, M. G. A., Martin, F. M., Selosse, M. A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).

    Google Scholar 

  26. Rillig, M. C., Lehmann, A., Mounts, I. R. & Bock, B. M. Concurrent common fungal networks formed by different guilds of fungi. N. Phytol. 246, 33–38 (2025).

    Google Scholar 

  27. Choreño-Parra, E. M. & Treseder, K. K. Mycorrhizal fungi modify decomposition: a meta-analysis. N. Phytol. 242, 2763–2774 (2024).

    Google Scholar 

  28. Mayer, M. et al. Soil fertility determines whether ectomycorrhizal fungi accelerate or decelerate decomposition in a temperate forest. N. Phytol. 239, 325–339 (2023).

    Google Scholar 

  29. Leifheit, E. F., Lehmann, A. & Rillig, M. C. Potential effects of microplastic on arbuscular mycorrhizal fungi. Front. Plant Sci. 12, 626709 (2021).

    Google Scholar 

  30. Kanold, E., Buchanan, S. W., Dunfield, K. & Antunes, P. M. Microplastic additions modulate intraspecific variability in root traits and mycorrhizal responses across root-life history strategies. Funct. Ecol. 38, 2369–2377 (2024).

    Google Scholar 

  31. de Souza Machado, A. A. et al. Microplastics can change soil properties and affect plant performance. Environ. Sci. Technol. 53, 6044–6052 (2019).

    Google Scholar 

  32. Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).

    Google Scholar 

  33. Chari, N. R., Muratore, T. J. & Taylor, B. N. Long-term soil warming drives different belowground responses in arbuscular mycorrhizal and ectomycorrhizal trees. Glob. Change Biol. 30, 1–11 (2024).

    Google Scholar 

  34. Pregitzer, K. S. et al. Fine root architecture of nine North American trees. Ecol. Monogr. 72, 293–309 (2002).

    Google Scholar 

  35. Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).

    Google Scholar 

  36. Austen, K., MacLean, J., Balanzategui, D. & Hölker, F. Microplastic inclusion in birch tree roots. Sci. Total Environ. 808, 152085 (2022).

    Google Scholar 

  37. Midgley, M. G. & Phillips, R. P. Mycorrhizal associations of dominant trees influence nitrate leaching responses to N deposition. Biogeochemistry 117, 241–253 (2013).

    Google Scholar 

  38. Kuyper, T. W. & Jansa, J. Arbuscular mycorrhiza: advances and retreats in our understanding of the ecological functioning of the mother of all root symbioses. Plant Soil 489, 41–88 (2023).

    Google Scholar 

  39. Wen, H. et al. Diverse and high pollution of microplastics in seasonal snow across northeastern China. Sci. Total Environ. 907, 167923 (2024).

    Google Scholar 

  40. Wang, Q. et al. Effects of microplastics and carbon nanotubes on soil geochemical properties and bacterial communities. J. Hazard. Mater. 433, 128826 (2022).

    Google Scholar 

  41. Dijkstra, F. A., Carrillo, Y., Pendall, E. & Morgan, J. A. Rhizosphere priming: a nutrient perspective. Front. Microbiol. 4, 216 (2013).

    Google Scholar 

  42. Phillips, R. P. & Fahey, T. J. The influence of soil fertility on rhizosphere effects in northern hardwood forest soils. Soil Sci. Soc. Am. J. 72, 453–461 (2008).

    Google Scholar 

  43. Huang, S. et al. Polyethylene and polyvinyl chloride microplastics promote soil nitrification and alter the composition of key nitrogen functional bacterial groups. J. Hazard. Mater. 453, 131391 (2023).

    Google Scholar 

  44. Zhou, J., Xu, H., Xiang, Y. & Wu, J. Effects of microplastics pollution on plant and soil phosphorus: a meta-analysis. J. Hazard. Mater. 461, 132705 (2024).

    Google Scholar 

  45. Gao, B., Yao, H., Li, Y. & Zhu, Y. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil. Environ. Toxicol. Chem. 40, 352–365 (2021).

    Google Scholar 

  46. Rillig, M. C., Lehmann, A., de Souza Machado, A. A. & Yang, G. Microplastic effects on plants. N. Phytol. 223, 1066–1070 (2019).

    Google Scholar 

  47. Qin, W., Hu, C. & Oenema, O. Soil mulching significantly enhances yields and water and nitrogen use efficiencies of maize and wheat: a meta-analysis. Sci. Rep. 5, 16210 (2015).

    Google Scholar 

  48. Sajjad, M. et al. Microplastics in the soil environment: a critical review. Environ. Technol. Innov. 27, 102408 (2022).

    Google Scholar 

  49. Zhang, J. et al. Effects of plastic residues and microplastics on soil ecosystems: a global meta-analysis. J. Hazard. Mater. 435, 129065 (2022).

    Google Scholar 

  50. Wang, F., Wang, Q., Adams, C. A., Sun, Y. & Zhang, S. Effects of microplastics on soil properties: current knowledge and future perspectives. J. Hazard. Mater. 424, 127531 (2022).

    Google Scholar 

  51. Tong, Y. et al. Microplastics affect activity and spatial distribution of C, N, and P hydrolases in rice rhizosphere. Soil Ecol. Lett. 5, 220138 (2022).

    Google Scholar 

  52. Lozano, Y. M. et al. Effects of microplastics and drought on soil ecosystem functions and multifunctionality. J. Appl. Ecol. 58, 988–996 (2021).

    Google Scholar 

  53. Zhou, Y. et al. Polystyrene microplastic pollution induces species-specific shifts in root traits and rhizosphere conditions in a temperate forest. J. Hazard. Mater. 495, 139032 (2025).

    Google Scholar 

  54. Fei, Y. et al. Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Sci. Total Environ. 707, 135634 (2020).

    Google Scholar 

  55. Yan, Y. et al. Effect of polyvinyl chloride microplastics on bacterial community and nutrient status in two agricultural soils. Bull. Environ. Contam. Toxicol. 107, 602–609 (2021).

    Google Scholar 

  56. Ceccanti, C. et al. Polyethylene microplastics alter root functionality and affect strawberry plant physiology and fruit quality traits. J. Hazard. Mater. 470, 134164 (2024).

    Google Scholar 

  57. Bosker, T., Bouwman, L. J., Brun, N. R., Behrens, P. & Vijver, M. G. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum. Chemosphere 226, 774–781 (2019).

    Google Scholar 

  58. Liu, Y. et al. Microplastics reduce nitrogen uptake in peanut plants by damaging root cells and impairing soil nitrogen cycling. J. Hazard. Mater. 443, 130384 (2023).

    Google Scholar 

  59. Lian, P., Xu, L., Yang, L., Yue, K. & Peñuelas, J. Divergent soil P accrual in ectomycorrhizal and arbuscular mycorrhizal trees: insights from a common garden experiment in subtropical China. Front. Plant Sci. 15, 1333505 (2024).

    Google Scholar 

  60. Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon-nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).

    Google Scholar 

  61. Zhu, X. et al. Extraradical hyphae exhibit more plastic nutrient-acquisition strategies than roots under nitrogen enrichment in ectomycorrhiza-dominated forests. Glob. Change Biol. 29, 4605–4619 (2023).

    Google Scholar 

  62. Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).

    Google Scholar 

  63. Fort, F. et al. Root traits are related to plant water-use among rangeland mediterranean species. Funct. Ecol. 31, 1700–1709 (2017).

    Google Scholar 

  64. Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, eaba3756 (2020).

    Google Scholar 

  65. Geng, P. & Jin, G. Fine root morphology and chemical responses to N addition depend on root function and soil depth in a Korean pine plantation in Northeast China. For. Ecol. Manag. 520, 120407 (2022).

    Google Scholar 

  66. Zantis, L. J. et al. Species-dependent responses of crop plants to polystyrene microplastics. Environ. Pollut. 335, 122243 (2023).

    Google Scholar 

  67. Zhang, Y. Q. et al. Microplastic abundance thresholds shape the growth of 18 wild plant species: the importance of soil pH. J. Plant Ecol. 18, rtaf066 (2025).

    Google Scholar 

  68. Jonathan, A. B. et al. Plant-soil feedbacks and mycorrhizal type influence temperate forest population dynamics. Science 355, 181–184 (2017).

    Google Scholar 

  69. Fahey, C., Bell, F. W. & Antunes, P. M. Effects of dual mycorrhizal inoculation on Pinus strobus seedlings are influenced by soil resource availability. Plant Soil 479, 607–620 (2022).

    Google Scholar 

  70. Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl. Acad. Sci. USA 110, 20117–20122 (2013).

    Google Scholar 

  71. Mathur, S., Tomar, R. S. & Jajoo, A. Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress. Photosynth. Res. 139, 227–238 (2019).

    Google Scholar 

  72. Xie, K. et al. Plant nitrogen nutrition: the roles of arbuscular mycorrhizal fungi. J. Plant Physiol. 269, 153591 (2022).

    Google Scholar 

  73. Smith, S. E., Smith, F. A. & Jakobsen, I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. N. Phytol. 162, 511–524 (2004).

    Google Scholar 

  74. Jing, M., Shi, Z., Zhang, M., Zhang, M. & Wang, X. Nitrogen and phosphorus of plants associated with arbuscular and ectomycorrhizas are differentially influenced by drought. Plants 11, 2429 (2022).

    Google Scholar 

  75. Fu, W. et al. Community response of arbuscular mycorrhizal fungi to extreme drought in a cold-temperate grassland. N. Phytol. 234, 2003–2017 (2022).

    Google Scholar 

  76. Comas, L. H. & Eissenstat, D. M. Linking fine root traits to maximum potential growth rate among 11 mature temperate tree species. Funct. Ecol. 18, 388–397 (2004).

    Google Scholar 

  77. Fuller, S. & Gautam, A. A procedure for measuring microplastics using pressurized fluid extraction. Environ. Sci. Technol. 50, 5774–5780 (2016).

    Google Scholar 

  78. Huerta Lwanga, E. et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ. Sci. Technol. 50, 2685–2691 (2016).

    Google Scholar 

  79. Zang, H. et al. Microplastics in the agroecosystem: are they an emerging threat to the plant-soil system? Soil Biol. Biochem. 148, 107926 (2020).

    Google Scholar 

  80. de Souza Machado, A. A. et al. Impacts of microplastics on the soil biophysical environment. Environ. Sci. Technol. 52, 9656–9665 (2018).

    Google Scholar 

  81. Lu, R. K. Analytical Methods for Soil and Agriculture Chemistry (ed Lu, R. K.) 312–314 (China Agricultural Science and Technology Press, 2000).

  82. Gu, J., Xu, Y., Dong, X., Wang, H. & Wang, Z. Root diameter variations explained by anatomy and phylogeny of 50 tropical and temperate tree species. Tree Physiol. 34, 415–425 (2014).

    Google Scholar 

  83. McGonigle, T. P., Miller, M. H., Evans, D. G., Fairchild, G. L. & Swan, J. A. A new method which gives an objective measure of colonization of roots by vesicular—arbuscular mycorrhizal fungi. N. Phytol. 115, 495–501 (2006).

    Google Scholar 

  84. Mehlich, A. Mehlich 3 soil test extractant: a modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 15, 1409–1416 (2008).

    Google Scholar 

  85. Eivazi, F. & Tabatabai, M. A. Glucosidases and galactosidases in soils. Soil Biol. Biochem. 5, 601–606 (1988).

    Google Scholar 

  86. Marx, M. C., Wood, M. & Jarvis, S. C. A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol. Biochem. 33, 1633–1640 (2001).

    Google Scholar 

  87. Brundrett, M. Based on a workshop organized in conjunction with the ninth North American conference on mycorrhizae. in Practical Methods in Mycorrhiza Research (University of Guelph, 1994).

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of China (grant number 42171051).

Author information

Authors and Affiliations

  1. Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, School of Geographical Sciences, Ministry of Education, Northeast Normal University, Changchun, China

    Yingtong Zhou, Ziping Liu, Junni Wang, Cunguo Wang & Mai-He Li

  2. Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland

    Ivano Brunner & Mai-He Li

  3. College of Agronomy, Shenyang Agricultural University, Shenyang, China

    Wei Guo, Xiaoyue Na & Jiaxin Liu

  4. School of Life Science, Hebei University, Baoding, China

    Mai-He Li

Authors
  1. Yingtong Zhou
    View author publications

    Search author on:PubMed Google Scholar

  2. Ivano Brunner
    View author publications

    Search author on:PubMed Google Scholar

  3. Ziping Liu
    View author publications

    Search author on:PubMed Google Scholar

  4. Wei Guo
    View author publications

    Search author on:PubMed Google Scholar

  5. Xiaoyue Na
    View author publications

    Search author on:PubMed Google Scholar

  6. Jiaxin Liu
    View author publications

    Search author on:PubMed Google Scholar

  7. Junni Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Cunguo Wang
    View author publications

    Search author on:PubMed Google Scholar

  9. Mai-He Li
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Yingtong Zhou: data curation and writing-original draft preparation. Ivano Brunner: writing-reviewing and editing. Ziping Liu: conceptualization and visualization. Wei Guo: software and validation. Xiaoyue Na: data curation and formal analysis. Jiaxin Liu: investigation and visualization. Junni Wang: investigation and methodology. Cunguo Wang: funding acquisition, supervision, writing-reviewing and editing. Mai-He Li: supervision, writing-reviewing and editing.

Corresponding author

Correspondence to Cunguo Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Sarah R. Carrino-Kyke and Ramesha H. Jayaramaiah for their contribution to the peer review of this work. Primary handling editors: Somaparna Ghosh [A peer review file is available].

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review File

nr-reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Brunner, I., Liu, Z. et al. Mycorrhizal-specific responses of rhizosphere soil properties and fine-root traits to polystyrene microplastic addition in a temperate mixed forest. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03237-0

Download citation

  • Received: 09 May 2025

  • Accepted: 19 January 2026

  • Published: 27 January 2026

  • DOI: https://doi.org/10.1038/s43247-026-03237-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene