Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Molecular fingerprinting of microbial consortia in late Oligocene microbialite architectures from a freshening Junggar paleolake, Central Asia
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 02 February 2026

Molecular fingerprinting of microbial consortia in late Oligocene microbialite architectures from a freshening Junggar paleolake, Central Asia

  • Zhenle Zhao  ORCID: orcid.org/0009-0001-0889-85781,
  • Chaodong Wu  ORCID: orcid.org/0000-0002-5503-88532,
  • Xingqian Cui  ORCID: orcid.org/0000-0001-6705-75951 &
  • …
  • Jian Ma  ORCID: orcid.org/0000-0001-8600-17491 

Communications Earth & Environment , Article number:  (2026) Cite this article

  • 388 Accesses

  • 7 Altmetric

  • Metrics details

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Carbon cycle
  • Palaeoclimate

Abstract

Microbialites preserve crucial records of early life and geobiological processes, yet interpreting their formation mechanisms remains challenging. Here we analyze Oligocene oncolites from the Junggar Basin that retain exceptional lipid biomarkers due to limited diagenetic alteration. These spheroidal structures exhibit alternating calcite-rich laminae with Fe-Mn coatings, revealed through petrographic and elemental mapping. Lipid analysis identifies prokaryote-dominated communities, particularly phototrophs and heterotrophs, with carbonate-associated biomarkers indicating continuous microbial activity during growth. The release of saturated fatty acid derivatives through acid treatment further confirms exceptional organic preservation. We demonstrate that oncoid formation involved complex microbial consortia mediating calcification. These deposits correlate with accelerated Tianshan Mountain uplift, which triggered lake shallowing and turbulent conditions that enhanced benthic microbial productivity prior to Central Asian aridification. Our findings establish microbialites as sensitive indicators of coupled tectonic and environmental changes during the Oligocene-Miocene transition.

Similar content being viewed by others

Organic carbon source controlled microbial olivine dissolution in small-scale flow-through bioreactors, for CO2 removal

Article Open access 02 April 2024

Biotic induction and microbial ecological dynamics of Oceanic Anoxic Event 2

Article Open access 16 June 2022

Microbial biosignature preservation in carbonated serpentine from the Samail Ophiolite, Oman

Article Open access 07 October 2022

Data availability

All data generated from this study are included in the article and Supplementary Inventory.

References

  1. Riding, R. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47, 179–214 (2000).

    Google Scholar 

  2. Bosak, T., Knoll, A. H. & Petroff, A. P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41, 21–44 (2013).

    Google Scholar 

  3. Lowe, D. R. Stromatolites 3400-myr old from the Archean of Western Australia. Nature 284, 441–443 (1980).

    Google Scholar 

  4. Walter, M., Buick, R. & Dunlop, J. Stromatolites 3400–3500 Myr old from the North pole area, Western Australia. Nature 284, 443–445 (1980).

    Google Scholar 

  5. Wilmeth, D. T. et al. Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites. Geology 50, 907–911 (2022).

    Google Scholar 

  6. Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures. Nature 537, 535–538 (2016).

    Google Scholar 

  7. Lyons, T. W. et al. Co-evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).

    Google Scholar 

  8. Benzerara, K. et al. Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. 103, 9440–9445 (2006).

    Google Scholar 

  9. Laval, B. et al. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature 407, 626–629 (2000).

    Google Scholar 

  10. Wacey, D., Gleeson, D. & Kilburn, M. Microbialite taphonomy and biogenicity: new insights from NanoSIMS. Geobiology 8, 403–416 (2010).

    Google Scholar 

  11. Grotzinger, J. P. & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).

    Google Scholar 

  12. Sun, F. et al. Methanogen microfossils and methanogenesis in Permian lake deposits. Geology 49, 13–18 (2021).

    Google Scholar 

  13. Perri, E. & Tucker, M. Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology 35, 207–210 (2007).

    Google Scholar 

  14. Sánchez-Román, M. et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology 36, 879–882 (2008).

    Google Scholar 

  15. Decho, A.W., Visscher, P.T & Reid R.P. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. In: Geobiology: objectives, concepts, perspectives). Elsevier (2005).

  16. Pentecost, A. Association of cyanobacteria with tufa deposits: identity, enumeration, and nature of the sheath material revealed by histochemistry. Geomicrobiol. J. 4, 285–298 (1985).

    Google Scholar 

  17. Reid, R. P. et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989–992 (2000).

    Google Scholar 

  18. Gebelein, C. D. Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. J. Sediment Res. 39, 49–69 (1969).

    Google Scholar 

  19. Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996).

    Google Scholar 

  20. Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563, 241–244 (2018).

    Google Scholar 

  21. Lowe, D. R. Abiological origin of described stromatolites older than 3.2 Ga. Geology 22, 387–390 (1994).

    Google Scholar 

  22. Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).

    Google Scholar 

  23. Summons, R. E., Welander, P. V. & Gold, D. A. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat. Rev. Microbiol. 20, 174–185 (2022).

    Google Scholar 

  24. Naeher, S., Cui, X. & Summons, R. E. Biomarkers: molecular tools to study life, environment, and climate. Elem.: Int. Mag. Mineral. Geochem. Petrol. 18, 79–85 (2022).

    Google Scholar 

  25. Briggs, D. E. & Summons, R. E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36, 482–490 (2014).

    Google Scholar 

  26. Ourisson, G., Albrecht, P. & Rohmer, M. The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709–729 (1979).

    Google Scholar 

  27. Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).

    Google Scholar 

  28. Summons, R. E. & Jahnke, L. L. Identification of the methylhopanes in sediments and petroleum. Geochim Cosmochim. Acta 54, 247–251 (1990).

    Google Scholar 

  29. Farrimond, P., Talbot, H., Watson, D., Schulz, L. & Wilhelms, A. Methylhopanoids: molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim Cosmochim. Acta 68, 3873–3882 (2004).

    Google Scholar 

  30. French, K., Rocher, D., Zumberge, J. & Summons, R. Assessing the distribution of sedimentary C 40 carotenoids through time. Geobiology 13, 139–151 (2015).

    Google Scholar 

  31. Peters, K.E., Walters, C.C. & Moldowan, J.M. The Biomarker Guide. Cambridge University Press (2005).

  32. Ma, J., French, K.L., Cui, X., Bryant, D.A. & Summons, R.E. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Proceedings of the National Academy of Sciences 118, (2021).

  33. Ma, J., Cui, X., Liu, X.-l., Wakeham, S.G. & Summons, R.E. Rapid sulfurization obscures carotenoid distributions in modern euxinic environments. Geochim. Cosmochim. Acta, (2024).

  34. Yang, H. et al. Resistant degradation of petrogenic organic carbon in the weathering of calcareous rocks. Glob. Planet. Change, 104727 (2025).

  35. Grice, K., Holman, A. I., Plet, C. & Tripp, M. Fossilised biomolecules and biomarkers in carbonate concretions from Konservat-Lagerstätten. Minerals 9, 158 (2019).

    Google Scholar 

  36. Summons, R. et al. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora. Geobiology 11, 420–436 (2013).

    Google Scholar 

  37. Charvet, J. et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci. China Earth Sci. 54, 166–184 (2011).

    Google Scholar 

  38. Wang, J. et al. Source-to-sink analysis of a transtensional rift basin from syn-rift to uplift stages. J. Sediment Res. 89, 335–352 (2019).

    Google Scholar 

  39. Ji, J., Zhu, M., Wang, X., Luo, P. & Dong, X. Ages of the Cenozoic strata on the southern margin of Junggar Basin, Northwestern China. J. Stratigr. 34, 43–50 (2010).

    Google Scholar 

  40. Xiao, W., Windley, B. F., Allen, M. B. & Han, C. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 23, 1316–1341 (2013).

    Google Scholar 

  41. Yang, W. et al. Source to sink relations between the Tian Shan and Junggar Basin (northwest China) from Late Palaeozoic to Quaternary: evidence from detrital U-Pb zircon geochronology. Basin Res. 25, 219–240 (2013).

    Google Scholar 

  42. Avouac, J.-P., Tapponnier, P., Bai, M., You, H. & Wang, G. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res.: Solid Earth 98, 6755–6804 (1993).

    Google Scholar 

  43. Yin, A. et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 17, 1–27 (1998).

    Google Scholar 

  44. Guo, Z., Zhang, Z,, Wu, C., Fang, S. & Zhang, R. The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai Mountains. Acta Geol. Sin. 80, 1–15 (2006).

  45. Ma, J. et al. Discovery of carotenoids and its paleolake significance in the Oligocene Anjihaihe Formation, southern Junggar Basin, China. Acta Geol. Sin. 94, 1853–1868 (2020).

    Google Scholar 

  46. Ji, J. et al. Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China. J. Geophys. Res. 113, (2008).

  47. Charreau, J. et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics 28, n/a–n/a (2009).

    Google Scholar 

  48. Peryt, T.M. Classification of coated grains. In: Coated grains. Springer (1983).

  49. Védrine, S., Strasser, A. & Hug, W. Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53, 535–552 (2007).

    Google Scholar 

  50. Schaefer, M. O., Gutzmer, J. & Beukes, N. J. Late Paleoproterozoic Mn-rich oncoids: Earliest evidence for microbially mediated Mn precipitation. Geology 29, 835–838 (2001).

    Google Scholar 

  51. Dahanayake, K., Gerdes, G. & Krumbein, W. E. Stromatolites, oncolites and oolites biogenically formed in situ. Naturwissenschaften 72, 513–518 (1985).

    Google Scholar 

  52. Flügel, E. & Munnecke, A. Microfacies of carbonate rocks: a nalysis, interpretation and application. Springer (2010).

  53. Buongiorno, J., Gomez, F. J., Fike, D. A. & Kah, L. C. Mineralized microbialites as archives of environmental evolution, Laguna Negra, Catamarca Province, Argentina. Geobiology 17, 199–222 (2019).

    Google Scholar 

  54. Gomez, F. J., Kah, L. C., Bartley, J. K. & Astini, R. A. Microbialites in a high-altitude andean lake: multiple controls on carbonate precipitation and lamina accertion in high-altitude lacustrine microbialites. Palaios 29, 233–249 (2014).

    Google Scholar 

  55. Arp, G. et al. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiol. J. 29, 29–65 (2012).

    Google Scholar 

  56. Winsborough, B. M. & Golubić, S. The role of diatoms in stromatolite growth: two examples from modern freshwater settings 1. J. Phycol. 23, 195–201 (1987).

    Google Scholar 

  57. Decho, A. W. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol. Eng. 36, 137–144 (2010).

    Google Scholar 

  58. Visscher, P.T. & Stolz, J.F. Microbial mats as bioreactors: populations, processes, and products. In: Geobiology: objectives, concepts, perspectives). Elsevier (2005).

  59. Riding, R.E. Microbial sediments. Springer Science & Business Media (2000).

  60. Black, M. The algal sediments of Andros Island, Bahamas. Philos. Trans. R. Soc. Lond. Ser. B, Contain. Pap. a Biol. Character 222, 165–192 (1932).

    Google Scholar 

  61. Pamela Reid, R., James, N. P., Macintyre, I. G., Dupraz, C. P. & Burne, R. V. Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49, 299–324 (2003).

    Google Scholar 

  62. Ren, Y. et al. Nano-mineralogy and growth environment of Fe-Mn polymetallic crusts and nodules from the South China Sea. Front. Mar. Sci. 10, 1141926 (2023).

    Google Scholar 

  63. Usui, A., Mellin, T. A., Nohara, M. & Yuasa, M. Structural stability of marine 10 Å manganates from the Ogasawara (Bonin) Arc: Implication for low-temperature hydrothermal activity. Mar. Geol. 86, 41–56 (1989).

    Google Scholar 

  64. Bodeï, S., Manceau, A., Geoffroy, N., Baronnet, A. & Buatier, M. Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochim Cosmochim. Acta 71, 5698–5716 (2007).

    Google Scholar 

  65. Conrad, T., Hein, J. R., Paytan, A. & Clague, D. A. Formation of Fe-Mn crusts within a continental margin environment. Ore Geol. Rev. 87, 25–40 (2017).

    Google Scholar 

  66. Atkins, A. L., Shaw, S. & Peacock, C. L. Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochim. Cosmochim. Acta 144, 109–125 (2014).

    Google Scholar 

  67. Akai, J., Iida, A., Akai, K. & Chiba, A. Mn and Fe minerals of possible biogenic origin from two Precambrian stromatolites in western Australia. Geol. Soc. Jpn. 103, 484–488 (1997).

    Google Scholar 

  68. Giresse, P, Wiewiora, A. & Lacka, B. Processes of Holocene ferromanganese-coated grains (oncolites) in the nearshore shelf of Cameroon. J. Sediment Res. 68, (1998).

  69. Tan, W., Liang, Y., Xu, Y. & Wang, M. Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review. Chemosphere 306, 135540 (2022).

    Google Scholar 

  70. Wright, V. & Tucker, M. Carbonate sediments and limestones: constituents. Carbonate Sedimentology Blackwell, Oxford, 1–27 (1990).

  71. Duguid, S. M., Kyser, T. K., James, N. P. & Rankey, E. C. Microbes and ooids. J. Sediment Res. 80, 236–251 (2010).

    Google Scholar 

  72. Diaz, M. R. et al. Geochemical evidence of microbial activity within ooids. Sedimentology 62, 2090–2112 (2015).

    Google Scholar 

  73. Diaz, M. R., Eberli, G. P., Blackwelder, P., Phillips, B. & Swart, P. K. Microbially mediated organomineralization in the formation of ooids. Geology 45, 771–774 (2017).

    Google Scholar 

  74. Papineau, D., Yin, J., Devine, K. G., Liu, D. & She, Z. Chemically oscillating reactions during the diagenetic formation of Ediacaran siliceous and carbonate botryoids. Minerals 11, 1060 (2021).

    Google Scholar 

  75. Ingalls, A. E., Aller, R. C., Lee, C. & Wakeham, S. G. Organic matter diagenesis in shallow water carbonate sediments. Geochim. Cosmochim. Acta 68, 4363–4379 (2004).

    Google Scholar 

  76. Abelson, P.H., Hoering, T.C. & Parker, PL. Fatty acids in sedimentary rocks. Adv. Org. Geochem. 169–174 (2013).

  77. Kvenvolden, K. A. Molecular distributions of normal fatty acids and paraffins in some Lower Cretaceous sediments. Nature 209, 573–577 (1966).

    Google Scholar 

  78. Gaines, S.M., Eglinton, G. & Rullkotter, J. Echoes of life: what fossil molecules reveal about earth history. Oxford University Press (2008).

  79. Qafoku, O. et al. Chemical composition, coordination, and stability of Ca–organic associations in the presence of dissolving calcite. Environ. Sci.: Nano 10, 1504–1517 (2023).

    Google Scholar 

  80. Harwood, J.L., Russell, N.J., Harwood, J.L. & Russell, N.J. Major lipid types in plants and micro-organisms. Lipids in plants and microbes, 7–34 (1984).

  81. Eglinton, G. & Hamilton, R. J. Leaf Epicuticular Waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. science 156, 1322–1335 (1967).

    Google Scholar 

  82. Kenyon, C. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 109, 827–834 (1972).

    Google Scholar 

  83. Oliver, J. D. & Colwell, R. R. Extractable lipids of gram-negative marine bacteria: phospholipid composition. J. Bacteriol. 114, 897–908 (1973).

    Google Scholar 

  84. Navarrete, A. et al. Physiological status and community composition of microbial mats of the Ebro Delta, Spain, by signature lipid biomarkers. Microb. Ecol. 39, 92–99 (2000).

    Google Scholar 

  85. Ibekwe, A. M. & Kennedy, A. C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 26, 151–163 (1998).

    Google Scholar 

  86. Allen, M. A., Neilan, B. A., Burns, B. P., Jahnke, L. L. & Summons, R. E. Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Org. Geochem. 41, 1207–1218 (2010).

    Google Scholar 

  87. Welander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E. & Newman, D. K. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc. Natl. Acad. Sci. 107, 8537–8542 (2010).

    Google Scholar 

  88. Kuypers, M. M., van Breugel, Y., Schouten, S., Erba, E. & Damsté, J. S. S. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32, 853–856 (2004).

    Google Scholar 

  89. Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl. Acad. Sci. 104, 15099–15104 (2007).

    Google Scholar 

  90. Ricci, J. N. et al. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J. 8, 675–684 (2014).

    Google Scholar 

  91. Garby, T. J. et al. Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress. Appl. Environ. Microbiol. 83, e00777–00717 (2017).

    Google Scholar 

  92. Wu, C.-H., Bialecka-Fornal, M. & Newman, D. K. Methylation at the C-2 position of hopanoids increases rigidity in native bacterial membranes. Elife 4, e05663 (2015).

    Google Scholar 

  93. Eickhoff, M., Birgel, D., Talbot, H., Peckmann, J. & Kappler, A. Oxidation of F e (II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium R hodopseudomonas palustris strain TIE-1. Geobiology 11, 268–278 (2013).

    Google Scholar 

  94. Naafs, B., Bianchini, G., Monteiro, F. M. & Sánchez-Baracaldo, P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. Geobiology 20, 41–59 (2022).

    Google Scholar 

  95. Rohmer, M., Bouvier-Nave, P. & Ourisson, G. Distribution of hopanoid triterpenes in prokaryotes. Microbiology 130, 1137–1150 (1984).

    Google Scholar 

  96. Zundel, M. & Rohmer, M. Prokaryotic triterpenoids: 1. 3β-Methylhopanoids from Acetobacter species and Methylococcus capsulatus. Eur. J. Biochem. 150, 23–27 (1985).

    Google Scholar 

  97. Welander, P. V. & Summons, R. E. Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc. Natl. Acad. Sci. 109, 12905–12910 (2012).

    Google Scholar 

  98. Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).

    Google Scholar 

  99. Mayer, M. H. et al. Anaerobic 3-methylhopanoid production by an acidophilic photosynthetic purple bacterium. Arch. Microbiol. 203, 6041–6052 (2021).

    Google Scholar 

  100. Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).

    Google Scholar 

  101. Zhao, C., Shi, M., Lei, Y. & Feng, Q. Silicified floating microbial mats from the Mesoproterozoic Wumishan Formation, North China: preservation and ecological significance. Precambrian Res. 425, 107816 (2025).

    Google Scholar 

  102. Guo, Z. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).

    Google Scholar 

  103. Manabe, S. & Broccoli, A. Mountains and arid climates of middle latitudes. Science 247, 192–195 (1990).

    Google Scholar 

  104. An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).

    Google Scholar 

  105. Wang, X. et al. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology 48, 728–732 (2020).

    Google Scholar 

  106. Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).

    Google Scholar 

  107. Miao, Y., Herrmann, M., Wu, F., Yan, X. & Yang, S. What controlled Mid–Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev. 112, 155–172 (2012).

    Google Scholar 

  108. Licht, A. et al. Asian monsoons in a late Eocene greenhouse world. Nature 513, 501–506 (2014).

    Google Scholar 

  109. Bosboom, R. E. et al. Aridification in continental Asia after the middle Eocene climatic optimum (MECO). Earth Planet Sci. Lett. 389, 34–42 (2014).

    Google Scholar 

  110. Sun, J. et al. Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38, 515–518 (2010).

    Google Scholar 

  111. Zheng, H. et al. Late oligocene–Early Miocene birth of the Taklimakan Desert. Proc. Natl. Acad. Sci. 112, 7662–7667 (2015).

    Google Scholar 

  112. Song, B. W., Ji, J. L., Wang, C. W., Xu, Y. D. & Zhang, K. X. Intensified aridity in the Qaidam Basin during the Middle Miocene: constraints from ostracod, stable isotope, and weathering records. Can. J. Earth Sci. 54, 242–256 (2017).

    Google Scholar 

  113. Overmann, J., Cypionka, H. & Pfennig, N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol. Oceanogr. 37, 150–155 (1992).

    Google Scholar 

  114. Repeta, D., Simpson, D., Jorgensen, B. & Jannasch, H. Evidence for anoxygenic photosynthesis from the distribution of bacterio-chlorophylls in the Black Sea. Nature 342, 69–72 (1989).

    Google Scholar 

  115. Sylvan, J. B., Toner, B. M. & Edwards, K. J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. MBio 3, e00279–00211 (2012).

    Google Scholar 

  116. Li, Q., Li, L., Zhang, Y. & Guo, Z. Oligocene incursion of the Paratethys seawater to the Junggar Basin, NW China: insight from multiple isotopic analysis of carbonate. Sci. Rep. 10, 6601 (2020).

    Google Scholar 

  117. Zhou, Y. et al. Cenozoic tectonic patterns and their controls on growth strata in the northern Tianshan fold and thrust belt, northwest China. J. Asian Earth Sci. 198, 104237 (2020).

    Google Scholar 

  118. Yang, W. et al. Sensitivity of lacustrine stromatolites to Cenozoic tectonic and climatic forcing in the southern Junggar Basin, NW China: New insights from mineralogical, stable and clumped isotope compositions. Palaeogeogr., Palaeoclimatol. Palaeoecol. 514, 109–123 (2019).

    Google Scholar 

  119. Rousseau, R. M. Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J. 18, 33–47 (2001).

    Google Scholar 

  120. Li, Q., Zhang, Y., Dong, L. & Guo, Z. Oligocene syndepositional lacustrine dolomite: A study from the southern Junggar Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 503, 69–80 (2018).

    Google Scholar 

Download references

Acknowledgements

Financial support at Shanghai Jiao Tong University (SJTU) is provided by the National Natural Science Foundation of China (42573024, 42203030, 42273075), the Shanghai Pujiang Programme (24PJA048), and the SJTU startup grant (WH220544005). Initial sampling, mineralogic, and petrographic analyses were supported by the National Natural Science Foundation of China (42072125). J.M. gratefully acknowledges insightful discussions with Dr. Jingbo Chen at SJTU regarding mineral and XRD results, as well as technical support from Liqing Sun and Yan Zhu (Boyue Instruments, Shanghai) for μXRF analytical guidance. The authors sincerely appreciate the constructive comments provided by the editor and anonymous reviewers, which significantly improved the manuscript.

Author information

Authors and Affiliations

  1. School of Oceanography, Shanghai Jiao Tong University, Shanghai, China

    Zhenle Zhao, Xingqian Cui & Jian Ma

  2. Key Laboratory of Orogenic Belts and Crustal Evolution, Ministry of Education, School of Earth and Space Sciences, Peking University, Beijing, China

    Chaodong Wu

Authors
  1. Zhenle Zhao
    View author publications

    Search author on:PubMed Google Scholar

  2. Chaodong Wu
    View author publications

    Search author on:PubMed Google Scholar

  3. Xingqian Cui
    View author publications

    Search author on:PubMed Google Scholar

  4. Jian Ma
    View author publications

    Search author on:PubMed Google Scholar

Contributions

J.M. and C.W. designed the research; Z.Z., X.C., and J.M. performed the biomarker analysis; Z.Z. and J.M. conducted mineral and isotopic analysis; Z.Z. and J.M. wrote the draft, and all authors have contributions on revising the manuscript.

Corresponding author

Correspondence to Jian Ma.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks Agustina I. Lencina and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Deborah Tangunan and Alireza Bahadori. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Transparent Peer Review file

Supplementary Information

nr-reporting-summary

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Wu, C., Cui, X. et al. Molecular fingerprinting of microbial consortia in late Oligocene microbialite architectures from a freshening Junggar paleolake, Central Asia. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03253-0

Download citation

  • Received: 31 July 2025

  • Accepted: 22 January 2026

  • Published: 02 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03253-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing