Abstract
Microbialites preserve crucial records of early life and geobiological processes, yet interpreting their formation mechanisms remains challenging. Here we analyze Oligocene oncolites from the Junggar Basin that retain exceptional lipid biomarkers due to limited diagenetic alteration. These spheroidal structures exhibit alternating calcite-rich laminae with Fe-Mn coatings, revealed through petrographic and elemental mapping. Lipid analysis identifies prokaryote-dominated communities, particularly phototrophs and heterotrophs, with carbonate-associated biomarkers indicating continuous microbial activity during growth. The release of saturated fatty acid derivatives through acid treatment further confirms exceptional organic preservation. We demonstrate that oncoid formation involved complex microbial consortia mediating calcification. These deposits correlate with accelerated Tianshan Mountain uplift, which triggered lake shallowing and turbulent conditions that enhanced benthic microbial productivity prior to Central Asian aridification. Our findings establish microbialites as sensitive indicators of coupled tectonic and environmental changes during the Oligocene-Miocene transition.

Similar content being viewed by others
Data availability
All data generated from this study are included in the article and Supplementary Inventory.
References
Riding, R. Microbial carbonates: the geological record of calcified bacterial–algal mats and biofilms. Sedimentology 47, 179–214 (2000).
Bosak, T., Knoll, A. H. & Petroff, A. P. The meaning of stromatolites. Annu. Rev. Earth Planet. Sci. 41, 21–44 (2013).
Lowe, D. R. Stromatolites 3400-myr old from the Archean of Western Australia. Nature 284, 441–443 (1980).
Walter, M., Buick, R. & Dunlop, J. Stromatolites 3400–3500 Myr old from the North pole area, Western Australia. Nature 284, 443–445 (1980).
Wilmeth, D. T. et al. Evidence for benthic oxygen production in Neoarchean lacustrine stromatolites. Geology 50, 907–911 (2022).
Nutman, A. P., Bennett, V. C., Friend, C. R., Van Kranendonk, M. J. & Chivas, A. R. Rapid emergence of life shown by discovery of 3700-million-year-old microbial structures. Nature 537, 535–538 (2016).
Lyons, T. W. et al. Co-evolution of early Earth environments and microbial life. Nat. Rev. Microbiol. 22, 572–586 (2024).
Benzerara, K. et al. Nanoscale detection of organic signatures in carbonate microbialites. Proc. Natl. Acad. Sci. 103, 9440–9445 (2006).
Laval, B. et al. Modern freshwater microbialite analogues for ancient dendritic reef structures. Nature 407, 626–629 (2000).
Wacey, D., Gleeson, D. & Kilburn, M. Microbialite taphonomy and biogenicity: new insights from NanoSIMS. Geobiology 8, 403–416 (2010).
Grotzinger, J. P. & Knoll, A. H. Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu. Rev. Earth Planet. Sci. 27, 313–358 (1999).
Sun, F. et al. Methanogen microfossils and methanogenesis in Permian lake deposits. Geology 49, 13–18 (2021).
Perri, E. & Tucker, M. Bacterial fossils and microbial dolomite in Triassic stromatolites. Geology 35, 207–210 (2007).
Sánchez-Román, M. et al. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record. Geology 36, 879–882 (2008).
Decho, A.W., Visscher, P.T & Reid R.P. Production and cycling of natural microbial exopolymers (EPS) within a marine stromatolite. In: Geobiology: objectives, concepts, perspectives). Elsevier (2005).
Pentecost, A. Association of cyanobacteria with tufa deposits: identity, enumeration, and nature of the sheath material revealed by histochemistry. Geomicrobiol. J. 4, 285–298 (1985).
Reid, R. P. et al. The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406, 989–992 (2000).
Gebelein, C. D. Distribution, morphology, and accretion rate of recent subtidal algal stromatolites, Bermuda. J. Sediment Res. 39, 49–69 (1969).
Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996).
Allwood, A. C., Rosing, M. T., Flannery, D. T., Hurowitz, J. A. & Heirwegh, C. M. Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563, 241–244 (2018).
Lowe, D. R. Abiological origin of described stromatolites older than 3.2 Ga. Geology 22, 387–390 (1994).
Zuckerkandl, E. & Pauling, L. Molecules as documents of evolutionary history. J. Theor. Biol. 8, 357–366 (1965).
Summons, R. E., Welander, P. V. & Gold, D. A. Lipid biomarkers: molecular tools for illuminating the history of microbial life. Nat. Rev. Microbiol. 20, 174–185 (2022).
Naeher, S., Cui, X. & Summons, R. E. Biomarkers: molecular tools to study life, environment, and climate. Elem.: Int. Mag. Mineral. Geochem. Petrol. 18, 79–85 (2022).
Briggs, D. E. & Summons, R. E. Ancient biomolecules: their origins, fossilization, and role in revealing the history of life. BioEssays 36, 482–490 (2014).
Ourisson, G., Albrecht, P. & Rohmer, M. The hopanoids: palaeochemistry and biochemistry of a group of natural products. Pure Appl. Chem. 51, 709–729 (1979).
Summons, R. E., Jahnke, L. L., Hope, J. M. & Logan, G. A. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400, 554–557 (1999).
Summons, R. E. & Jahnke, L. L. Identification of the methylhopanes in sediments and petroleum. Geochim Cosmochim. Acta 54, 247–251 (1990).
Farrimond, P., Talbot, H., Watson, D., Schulz, L. & Wilhelms, A. Methylhopanoids: molecular indicators of ancient bacteria and a petroleum correlation tool. Geochim Cosmochim. Acta 68, 3873–3882 (2004).
French, K., Rocher, D., Zumberge, J. & Summons, R. Assessing the distribution of sedimentary C 40 carotenoids through time. Geobiology 13, 139–151 (2015).
Peters, K.E., Walters, C.C. & Moldowan, J.M. The Biomarker Guide. Cambridge University Press (2005).
Ma, J., French, K.L., Cui, X., Bryant, D.A. & Summons, R.E. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Proceedings of the National Academy of Sciences 118, (2021).
Ma, J., Cui, X., Liu, X.-l., Wakeham, S.G. & Summons, R.E. Rapid sulfurization obscures carotenoid distributions in modern euxinic environments. Geochim. Cosmochim. Acta, (2024).
Yang, H. et al. Resistant degradation of petrogenic organic carbon in the weathering of calcareous rocks. Glob. Planet. Change, 104727 (2025).
Grice, K., Holman, A. I., Plet, C. & Tripp, M. Fossilised biomolecules and biomarkers in carbonate concretions from Konservat-Lagerstätten. Minerals 9, 158 (2019).
Summons, R. et al. Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora. Geobiology 11, 420–436 (2013).
Charvet, J. et al. Palaeozoic tectonic evolution of the Tianshan belt, NW China. Sci. China Earth Sci. 54, 166–184 (2011).
Wang, J. et al. Source-to-sink analysis of a transtensional rift basin from syn-rift to uplift stages. J. Sediment Res. 89, 335–352 (2019).
Ji, J., Zhu, M., Wang, X., Luo, P. & Dong, X. Ages of the Cenozoic strata on the southern margin of Junggar Basin, Northwestern China. J. Stratigr. 34, 43–50 (2010).
Xiao, W., Windley, B. F., Allen, M. B. & Han, C. Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res. 23, 1316–1341 (2013).
Yang, W. et al. Source to sink relations between the Tian Shan and Junggar Basin (northwest China) from Late Palaeozoic to Quaternary: evidence from detrital U-Pb zircon geochronology. Basin Res. 25, 219–240 (2013).
Avouac, J.-P., Tapponnier, P., Bai, M., You, H. & Wang, G. Active thrusting and folding along the northern Tien Shan and late Cenozoic rotation of the Tarim relative to Dzungaria and Kazakhstan. J. Geophys. Res.: Solid Earth 98, 6755–6804 (1993).
Yin, A. et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics 17, 1–27 (1998).
Guo, Z., Zhang, Z,, Wu, C., Fang, S. & Zhang, R. The Mesozoic and Cenozoic exhumation history of Tianshan and comparative studies to the Junggar and Altai Mountains. Acta Geol. Sin. 80, 1–15 (2006).
Ma, J. et al. Discovery of carotenoids and its paleolake significance in the Oligocene Anjihaihe Formation, southern Junggar Basin, China. Acta Geol. Sin. 94, 1853–1868 (2020).
Ji, J. et al. Episodic uplift of the Tianshan Mountains since the late Oligocene constrained by magnetostratigraphy of the Jingou River section, in the southern margin of the Junggar Basin, China. J. Geophys. Res. 113, (2008).
Charreau, J. et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section (northwest China). Tectonics 28, n/a–n/a (2009).
Peryt, T.M. Classification of coated grains. In: Coated grains. Springer (1983).
Védrine, S., Strasser, A. & Hug, W. Oncoid growth and distribution controlled by sea-level fluctuations and climate (Late Oxfordian, Swiss Jura Mountains). Facies 53, 535–552 (2007).
Schaefer, M. O., Gutzmer, J. & Beukes, N. J. Late Paleoproterozoic Mn-rich oncoids: Earliest evidence for microbially mediated Mn precipitation. Geology 29, 835–838 (2001).
Dahanayake, K., Gerdes, G. & Krumbein, W. E. Stromatolites, oncolites and oolites biogenically formed in situ. Naturwissenschaften 72, 513–518 (1985).
Flügel, E. & Munnecke, A. Microfacies of carbonate rocks: a nalysis, interpretation and application. Springer (2010).
Buongiorno, J., Gomez, F. J., Fike, D. A. & Kah, L. C. Mineralized microbialites as archives of environmental evolution, Laguna Negra, Catamarca Province, Argentina. Geobiology 17, 199–222 (2019).
Gomez, F. J., Kah, L. C., Bartley, J. K. & Astini, R. A. Microbialites in a high-altitude andean lake: multiple controls on carbonate precipitation and lamina accertion in high-altitude lacustrine microbialites. Palaios 29, 233–249 (2014).
Arp, G. et al. Photosynthesis versus exopolymer degradation in the formation of microbialites on the atoll of Kiritimati, Republic of Kiribati, Central Pacific. Geomicrobiol. J. 29, 29–65 (2012).
Winsborough, B. M. & Golubić, S. The role of diatoms in stromatolite growth: two examples from modern freshwater settings 1. J. Phycol. 23, 195–201 (1987).
Decho, A. W. Overview of biopolymer-induced mineralization: what goes on in biofilms? Ecol. Eng. 36, 137–144 (2010).
Visscher, P.T. & Stolz, J.F. Microbial mats as bioreactors: populations, processes, and products. In: Geobiology: objectives, concepts, perspectives). Elsevier (2005).
Riding, R.E. Microbial sediments. Springer Science & Business Media (2000).
Black, M. The algal sediments of Andros Island, Bahamas. Philos. Trans. R. Soc. Lond. Ser. B, Contain. Pap. a Biol. Character 222, 165–192 (1932).
Pamela Reid, R., James, N. P., Macintyre, I. G., Dupraz, C. P. & Burne, R. V. Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49, 299–324 (2003).
Ren, Y. et al. Nano-mineralogy and growth environment of Fe-Mn polymetallic crusts and nodules from the South China Sea. Front. Mar. Sci. 10, 1141926 (2023).
Usui, A., Mellin, T. A., Nohara, M. & Yuasa, M. Structural stability of marine 10 Å manganates from the Ogasawara (Bonin) Arc: Implication for low-temperature hydrothermal activity. Mar. Geol. 86, 41–56 (1989).
Bodeï, S., Manceau, A., Geoffroy, N., Baronnet, A. & Buatier, M. Formation of todorokite from vernadite in Ni-rich hemipelagic sediments. Geochim Cosmochim. Acta 71, 5698–5716 (2007).
Conrad, T., Hein, J. R., Paytan, A. & Clague, D. A. Formation of Fe-Mn crusts within a continental margin environment. Ore Geol. Rev. 87, 25–40 (2017).
Atkins, A. L., Shaw, S. & Peacock, C. L. Nucleation and growth of todorokite from birnessite: Implications for trace-metal cycling in marine sediments. Geochim. Cosmochim. Acta 144, 109–125 (2014).
Akai, J., Iida, A., Akai, K. & Chiba, A. Mn and Fe minerals of possible biogenic origin from two Precambrian stromatolites in western Australia. Geol. Soc. Jpn. 103, 484–488 (1997).
Giresse, P, Wiewiora, A. & Lacka, B. Processes of Holocene ferromanganese-coated grains (oncolites) in the nearshore shelf of Cameroon. J. Sediment Res. 68, (1998).
Tan, W., Liang, Y., Xu, Y. & Wang, M. Structural-controlled formation of nano-particle hematite and their removal performance for heavy metal ions: A review. Chemosphere 306, 135540 (2022).
Wright, V. & Tucker, M. Carbonate sediments and limestones: constituents. Carbonate Sedimentology Blackwell, Oxford, 1–27 (1990).
Duguid, S. M., Kyser, T. K., James, N. P. & Rankey, E. C. Microbes and ooids. J. Sediment Res. 80, 236–251 (2010).
Diaz, M. R. et al. Geochemical evidence of microbial activity within ooids. Sedimentology 62, 2090–2112 (2015).
Diaz, M. R., Eberli, G. P., Blackwelder, P., Phillips, B. & Swart, P. K. Microbially mediated organomineralization in the formation of ooids. Geology 45, 771–774 (2017).
Papineau, D., Yin, J., Devine, K. G., Liu, D. & She, Z. Chemically oscillating reactions during the diagenetic formation of Ediacaran siliceous and carbonate botryoids. Minerals 11, 1060 (2021).
Ingalls, A. E., Aller, R. C., Lee, C. & Wakeham, S. G. Organic matter diagenesis in shallow water carbonate sediments. Geochim. Cosmochim. Acta 68, 4363–4379 (2004).
Abelson, P.H., Hoering, T.C. & Parker, PL. Fatty acids in sedimentary rocks. Adv. Org. Geochem. 169–174 (2013).
Kvenvolden, K. A. Molecular distributions of normal fatty acids and paraffins in some Lower Cretaceous sediments. Nature 209, 573–577 (1966).
Gaines, S.M., Eglinton, G. & Rullkotter, J. Echoes of life: what fossil molecules reveal about earth history. Oxford University Press (2008).
Qafoku, O. et al. Chemical composition, coordination, and stability of Ca–organic associations in the presence of dissolving calcite. Environ. Sci.: Nano 10, 1504–1517 (2023).
Harwood, J.L., Russell, N.J., Harwood, J.L. & Russell, N.J. Major lipid types in plants and micro-organisms. Lipids in plants and microbes, 7–34 (1984).
Eglinton, G. & Hamilton, R. J. Leaf Epicuticular Waxes: The waxy outer surfaces of most plants display a wide diversity of fine structure and chemical constituents. science 156, 1322–1335 (1967).
Kenyon, C. Fatty acid composition of unicellular strains of blue-green algae. J. Bacteriol. 109, 827–834 (1972).
Oliver, J. D. & Colwell, R. R. Extractable lipids of gram-negative marine bacteria: phospholipid composition. J. Bacteriol. 114, 897–908 (1973).
Navarrete, A. et al. Physiological status and community composition of microbial mats of the Ebro Delta, Spain, by signature lipid biomarkers. Microb. Ecol. 39, 92–99 (2000).
Ibekwe, A. M. & Kennedy, A. C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 26, 151–163 (1998).
Allen, M. A., Neilan, B. A., Burns, B. P., Jahnke, L. L. & Summons, R. E. Lipid biomarkers in Hamelin Pool microbial mats and stromatolites. Org. Geochem. 41, 1207–1218 (2010).
Welander, P. V., Coleman, M. L., Sessions, A. L., Summons, R. E. & Newman, D. K. Identification of a methylase required for 2-methylhopanoid production and implications for the interpretation of sedimentary hopanes. Proc. Natl. Acad. Sci. 107, 8537–8542 (2010).
Kuypers, M. M., van Breugel, Y., Schouten, S., Erba, E. & Damsté, J. S. S. N2-fixing cyanobacteria supplied nutrient N for Cretaceous oceanic anoxic events. Geology 32, 853–856 (2004).
Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl. Acad. Sci. 104, 15099–15104 (2007).
Ricci, J. N. et al. Diverse capacity for 2-methylhopanoid production correlates with a specific ecological niche. ISME J. 8, 675–684 (2014).
Garby, T. J. et al. Lack of methylated hopanoids renders the cyanobacterium Nostoc punctiforme sensitive to osmotic and pH stress. Appl. Environ. Microbiol. 83, e00777–00717 (2017).
Wu, C.-H., Bialecka-Fornal, M. & Newman, D. K. Methylation at the C-2 position of hopanoids increases rigidity in native bacterial membranes. Elife 4, e05663 (2015).
Eickhoff, M., Birgel, D., Talbot, H., Peckmann, J. & Kappler, A. Oxidation of F e (II) leads to increased C-2 methylation of pentacyclic triterpenoids in the anoxygenic phototrophic bacterium R hodopseudomonas palustris strain TIE-1. Geobiology 11, 268–278 (2013).
Naafs, B., Bianchini, G., Monteiro, F. M. & Sánchez-Baracaldo, P. The occurrence of 2-methylhopanoids in modern bacteria and the geological record. Geobiology 20, 41–59 (2022).
Rohmer, M., Bouvier-Nave, P. & Ourisson, G. Distribution of hopanoid triterpenes in prokaryotes. Microbiology 130, 1137–1150 (1984).
Zundel, M. & Rohmer, M. Prokaryotic triterpenoids: 1. 3β-Methylhopanoids from Acetobacter species and Methylococcus capsulatus. Eur. J. Biochem. 150, 23–27 (1985).
Welander, P. V. & Summons, R. E. Discovery, taxonomic distribution, and phenotypic characterization of a gene required for 3-methylhopanoid production. Proc. Natl. Acad. Sci. 109, 12905–12910 (2012).
Hanson, R. S. & Hanson, T. E. Methanotrophic bacteria. Microbiol. Rev. 60, 439–471 (1996).
Mayer, M. H. et al. Anaerobic 3-methylhopanoid production by an acidophilic photosynthetic purple bacterium. Arch. Microbiol. 203, 6041–6052 (2021).
Emerson, D., Fleming, E. J. & McBeth, J. M. Iron-oxidizing bacteria: an environmental and genomic perspective. Annu. Rev. Microbiol. 64, 561–583 (2010).
Zhao, C., Shi, M., Lei, Y. & Feng, Q. Silicified floating microbial mats from the Mesoproterozoic Wumishan Formation, North China: preservation and ecological significance. Precambrian Res. 425, 107816 (2025).
Guo, Z. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).
Manabe, S. & Broccoli, A. Mountains and arid climates of middle latitudes. Science 247, 192–195 (1990).
An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan plateau since Late Miocene times. Nature 411, 62–66 (2001).
Wang, X. et al. The role of the westerlies and orography in Asian hydroclimate since the late Oligocene. Geology 48, 728–732 (2020).
Ramstein, G., Fluteau, F., Besse, J. & Joussaume, S. Effect of orogeny, plate motion and land–sea distribution on Eurasian climate change over the past 30 million years. Nature 386, 788–795 (1997).
Miao, Y., Herrmann, M., Wu, F., Yan, X. & Yang, S. What controlled Mid–Late Miocene long-term aridification in Central Asia?—Global cooling or Tibetan Plateau uplift: A review. Earth-Sci. Rev. 112, 155–172 (2012).
Licht, A. et al. Asian monsoons in a late Eocene greenhouse world. Nature 513, 501–506 (2014).
Bosboom, R. E. et al. Aridification in continental Asia after the middle Eocene climatic optimum (MECO). Earth Planet Sci. Lett. 389, 34–42 (2014).
Sun, J. et al. Late Oligocene–Miocene mid-latitude aridification and wind patterns in the Asian interior. Geology 38, 515–518 (2010).
Zheng, H. et al. Late oligocene–Early Miocene birth of the Taklimakan Desert. Proc. Natl. Acad. Sci. 112, 7662–7667 (2015).
Song, B. W., Ji, J. L., Wang, C. W., Xu, Y. D. & Zhang, K. X. Intensified aridity in the Qaidam Basin during the Middle Miocene: constraints from ostracod, stable isotope, and weathering records. Can. J. Earth Sci. 54, 242–256 (2017).
Overmann, J., Cypionka, H. & Pfennig, N. An extremely low-light-adapted phototrophic sulfur bacterium from the Black Sea. Limnol. Oceanogr. 37, 150–155 (1992).
Repeta, D., Simpson, D., Jorgensen, B. & Jannasch, H. Evidence for anoxygenic photosynthesis from the distribution of bacterio-chlorophylls in the Black Sea. Nature 342, 69–72 (1989).
Sylvan, J. B., Toner, B. M. & Edwards, K. J. Life and death of deep-sea vents: bacterial diversity and ecosystem succession on inactive hydrothermal sulfides. MBio 3, e00279–00211 (2012).
Li, Q., Li, L., Zhang, Y. & Guo, Z. Oligocene incursion of the Paratethys seawater to the Junggar Basin, NW China: insight from multiple isotopic analysis of carbonate. Sci. Rep. 10, 6601 (2020).
Zhou, Y. et al. Cenozoic tectonic patterns and their controls on growth strata in the northern Tianshan fold and thrust belt, northwest China. J. Asian Earth Sci. 198, 104237 (2020).
Yang, W. et al. Sensitivity of lacustrine stromatolites to Cenozoic tectonic and climatic forcing in the southern Junggar Basin, NW China: New insights from mineralogical, stable and clumped isotope compositions. Palaeogeogr., Palaeoclimatol. Palaeoecol. 514, 109–123 (2019).
Rousseau, R. M. Detection limit and estimate of uncertainty of analytical XRF results. Rigaku J. 18, 33–47 (2001).
Li, Q., Zhang, Y., Dong, L. & Guo, Z. Oligocene syndepositional lacustrine dolomite: A study from the southern Junggar Basin, NW China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 503, 69–80 (2018).
Acknowledgements
Financial support at Shanghai Jiao Tong University (SJTU) is provided by the National Natural Science Foundation of China (42573024, 42203030, 42273075), the Shanghai Pujiang Programme (24PJA048), and the SJTU startup grant (WH220544005). Initial sampling, mineralogic, and petrographic analyses were supported by the National Natural Science Foundation of China (42072125). J.M. gratefully acknowledges insightful discussions with Dr. Jingbo Chen at SJTU regarding mineral and XRD results, as well as technical support from Liqing Sun and Yan Zhu (Boyue Instruments, Shanghai) for μXRF analytical guidance. The authors sincerely appreciate the constructive comments provided by the editor and anonymous reviewers, which significantly improved the manuscript.
Author information
Authors and Affiliations
Contributions
J.M. and C.W. designed the research; Z.Z., X.C., and J.M. performed the biomarker analysis; Z.Z. and J.M. conducted mineral and isotopic analysis; Z.Z. and J.M. wrote the draft, and all authors have contributions on revising the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Communications Earth and Environment thanks Agustina I. Lencina and the other anonymous reviewer(s) for their contribution to the peer review of this work. Primary Handling Editors: Deborah Tangunan and Alireza Bahadori. A peer review file is available.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Zhao, Z., Wu, C., Cui, X. et al. Molecular fingerprinting of microbial consortia in late Oligocene microbialite architectures from a freshening Junggar paleolake, Central Asia. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03253-0
Received:
Accepted:
Published:
DOI: https://doi.org/10.1038/s43247-026-03253-0


