Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Communications Earth & Environment
  • View all journals
  • Search
  • My Account Login
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. communications earth & environment
  3. articles
  4. article
Shipping and water diversion pathways expand the global area at risk from invasive freshwater bivalves
Download PDF
Download PDF
  • Article
  • Open access
  • Published: 04 February 2026

Shipping and water diversion pathways expand the global area at risk from invasive freshwater bivalves

  • Jiahao Zhang1,2,
  • Mengzhen Xu  ORCID: orcid.org/0000-0002-2507-19351,
  • Aibin Zhan3,4,
  • Chunlong Liu  ORCID: orcid.org/0000-0002-3376-45555,
  • He Tian  ORCID: orcid.org/0000-0001-7328-21826,
  • Gustavo Darrigran7,
  • Zhaoyin Wang1 &
  • …
  • Xudong Fu  ORCID: orcid.org/0000-0003-0744-05461 

Communications Earth & Environment , Article number:  (2026) Cite this article

We are providing an unedited version of this manuscript to give early access to its findings. Before final publication, the manuscript will undergo further editing. Please note there may be errors present which affect the content, and all legal disclaimers apply.

Subjects

  • Ecological modelling
  • Environmental impact

Abstract

Invasive species affect freshwater ecosystems and economies worldwide, with their dispersal facilitated by human activities such as shipping and large water transfer projects. Here, we use the golden mussel (Limnoperna fortunei) as a model species and develop an integrated framework that combines a dispersal model for introduction risk with a species distribution model for establishment risk, using global shipping routes and water diversion projects as the main pathways. Our simulations reveal an expansion of high-risk basins over time, particularly after the 1990s, with coastal basins acting as invasion bridgeheads from which populations can spread inland. Several basins in North America, Europe, Australia, the Indochina Peninsula and the Amazon basin, although not yet invaded, emerge as environmentally suitable and increasingly connected, indicating elevated future invasion risk. Our study highlights the importance of implementing management strategies for invasive species, such as ballast water treatment and installing prevention measures in water diversion/transfer schemes.

Data availability

All relevant data used in this study, including occurrence records of Limnoperna fortunei, global shipping routes and inter-basin water diversion/transfer project data, have been deposited in Figshare (https://doi.org/10.6084/m9.figshare.30938933).

Code availability

The R code used to implement the invasion risk model and to generate the main analyses and figures has been deposited in Figshare (https://doi.org/10.6084/m9.figshare.30938933).

References

  1. Galil, B. S., Mienis, H. K., Hoffman, R. & Goren, M. Non-indigenous species along the Israeli Mediterranean coast: tally, policy, outlook. Hydrobiologia 848, 2031–2031 (2021).

    Google Scholar 

  2. Gallardo, B., Clavero, M., Sánchez, M. I. & Vilà, M. Global ecological impacts of invasive species in aquatic ecosystems. Glob. Change Biol. 22, 151–163 (2016).

    Google Scholar 

  3. Diagne, C. et al. High and rising economic costs of biological invasions worldwide. Nature 592, 571 (2021).

    Google Scholar 

  4. Roy, H. E. P. et al. Summary for policymakers of the thematic assessment report on invasive alien species and their control. In: Roy, H. E. P., A., Stoett, P., Renard Truong, T., Bacher, S., Galil, B. S., Hulme, P. E., Ikeda, T., Sankaran, K. V., McGeoch, M. A., Meyerson, L. A., Nuñez, M. A., Ordonez, A., Rahlao, S. J., Schwindt, E., Seebens, H., Sheppard, A. W., Vandvik, V. (ed) (Bonn, 2023).

  5. Sala, O. E. et al. Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Google Scholar 

  6. Dudgeon, D. et al. Freshwater biodiversity: importance, threats, status and conservation challenges[J]. Biol. Rev. 81, 163–182 (2006).

    Google Scholar 

  7. Moorhouse, T. P. & Macdonald, D. W. Are invasives worse in freshwater than terrestrial ecosystems? J. Wiley Interdiscip. Rev. Water 2, 1–8 (2015).

    Google Scholar 

  8. Floerl, O. & Inglis, G. J. Starting the invasion pathway: the interaction between source populations and human transport vectors. Biol. Invasions 7, 589–606 (2005).

    Google Scholar 

  9. Hulme, P. E. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 46, 10–18 (2009).

    Google Scholar 

  10. Leuven, R. S. E. W. et al. The river Rhine: a global highway for dispersal of aquatic invasive species. Biol. Invasions 11, 1989–2008 (2009).

    Google Scholar 

  11. Lin, Y., Gao, Z. X. & Zhan, A. Introduction and use of non-native species for aquaculture in China: status, risks and management solutions. Rev. Aquac. 7, 28–58 (2015).

    Google Scholar 

  12. Prié, V. How was France invaded? 170 years of colonisation of metropolitan France by freshwater mussels. Hydrobiologia 852, 1323–1337 (2023).

    Google Scholar 

  13. Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).

    Google Scholar 

  14. Ricciardi, A. Patterns of invasion in the Laurentian Great Lakes in relation to changes in vector activity[J]. Divers. Distrib. 12, 425–433 (2006).

    Google Scholar 

  15. Blackburn, T. M. et al. A proposed unified framework for biological invasions. J. Trends Ecol. Evol. 26, 333–339 (2011).

    Google Scholar 

  16. Elith, J. & Leathwick, J. R. Species distribution models: ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).

    Google Scholar 

  17. Melo-Merino, S. M., Reyes-Bonilla, H. & Lira-Noriega, A. Ecological niche models and species distribution models in marine environments: a literature review and spatial analysis of evidence. Ecol. Model. 415, 108837 (2020).

    Google Scholar 

  18. Blanco, A. et al. Spotting intruders: Species distribution models for managing invasive intertidal macroalgae. J. Environ. Manag. 281, 111861 (2021).

    Google Scholar 

  19. Kaluza, P., Kölzsch, A., Gastner, M. T. & Blasius, B. The complex network of global cargo ship movements. J. R. Soc. Interface 7, 1093–1103 (2010).

    Google Scholar 

  20. Keller, R. P., Drake, J. M., Drew, M. B. & Lodge, D. M. Linking environmental conditions and ship movements to estimate invasive species transport across the global shipping network. Divers. Distrib. 17, 93–102 (2011).

    Google Scholar 

  21. Tavasszy, L., Minderhoud, M., Perrin, J. F. & Notteboom, T. A strategic network choice model for global container flows: specification, estimation and application. J. Transp. Geogr. 19, 1163–1172 (2011).

    Google Scholar 

  22. Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D. & Lambiotte, R. Memory in network flows and its effects on spreading dynamics and community detection. Nat. Commun. 5, 4630 (2014).

    Google Scholar 

  23. Saebi, M. et al. Network analysis of ballast-mediated species transfer reveals important introduction and dispersal patterns in the Arctic. Sci. Rep. 10, 19558 (2020).

    Google Scholar 

  24. Saebi, M. et al. Higher-order patterns of aquatic species spread through the global shipping network. PLoS ONE 15, e0220353 (2020).

    Google Scholar 

  25. Soto, I. et al. Taming the terminological tempest in invasion science. Biol. Rev. 99, 1357–1390 (2024).

    Google Scholar 

  26. Cole, E., Keller, R. P. & Garbach, K. Risk of invasive species spread by recreational boaters remains high despite widespread adoption of conservation behaviors. J. Environ. Manag. 229, 112–119 (2019).

    Google Scholar 

  27. Ludwig, S. et al. High connectivity and migration potentiate the invasion of Limnoperna fortunei (Mollusca: Mytilidae) in South America. Hydrobiologia 848, 499–513 (2021).

    Google Scholar 

  28. Li, Z., Xu, M. & Shi, Y. Centrality in global shipping network basing on worldwide shipping areas. GeoJournal 80, 47–60 (2014).

    Google Scholar 

  29. Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).

    Google Scholar 

  30. Davidson, I. C., Scianni, C., Minton, M. S. & Ruiz, G. M. A history of ship specialization and consequences for marine invasions, management and policy. J. Appl. Ecol. 55, 1799–1811 (2018).

    Google Scholar 

  31. Zhan, A. B. et al. Water diversions facilitate spread of non-native species. Biol. Invasions 17, 3073–3080 (2015).

    Google Scholar 

  32. Zhuang, W. Eco-environmental impact of inter-basin water transfer projects: a review. Environ. Sci. Pollut. Res. 23, 12867–12879 (2016).

    Google Scholar 

  33. Zeng, Q., Qin, L. & Li, X. The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Sci. Total Environ. 536, 675–686 (2015).

    Google Scholar 

  34. Boltovskoy, D. et al. What we know and don’t know about the invasive golden mussel Limnoperna fortunei. Hydrobiologia 852, 1275–1322 (2022).

    Google Scholar 

  35. Xia, Z. Q., Barker, J. R., Zhan, A. B., Haffner, G. D. & MacIsaac, H. J. Golden mussel (Limnoperna fortunei) survival during winter at the northern invasion front implies a potential high-latitude distribution. Divers. Distrib. 27, 1422–1434 (2021).

    Google Scholar 

  36. Zhao, N. et al. Study of factors influencing the invasion of Golden Mussels (Limnoperna fortune) in water transfer projects. Aquat. Ecosyst. Health Manag. 22, 385–395 (2019).

    Google Scholar 

  37. Kimura, T. The earliest record of Limnoperna fortunei (Dunker) from Japan. Chiribotan. J. Malacol. Soc. Jpn. 25, 34–35 (1994).

    Google Scholar 

  38. Tominaga, A., Goka, K., Kimura, T. & Ito, K. Genetic structure of Japanese introduced populations of the Golden Mussel, Limnoperna fortunei, and the estimation of their range expansion process. Biodiversity 10, 61–66 (2009).

    Google Scholar 

  39. Zhan, A. B. et al. Scale-dependent post-establishment spread and genetic diversity in an invading mollusc in South America. Divers. Distrib. 18, 1042–1055 (2012).

    Google Scholar 

  40. Ghabooli, S. et al. Genetic diversity in introduced golden mussel populations corresponds to vector activity. PLoS ONE 8, e59328 (2013).

    Google Scholar 

  41. Darrigran, G. & Damborenea, C. A South American bioinvasion case history: Limnoperna fortunei (Dunker, 1857), the golden mussel. Am. Malacol. Bull. 20, 105–112 (2005).

    Google Scholar 

  42. Wang, C. C., Xu, M. Z., Zhang, J. H. & Zhou, X. D. High-latitude invasion and environmental adaptability of the freshwater mussel Limnoperna fortunei in Beijing, China. Ecol. Appl. 34, e2887 (2024).

    Google Scholar 

  43. Magara, Y., Matsui, Y., Goto, Y. & Yuasa, A. Invasion of the non-indigenous nuisance mussel, Limnoperna fortunei, into water supply facilities in Japan. J. Water Suppl. Res. Technol. AQUA 50, 113–124 (2001).

    Google Scholar 

  44. Nunes, A. L., Tricarico, E., Panov, V. E., Cardoso, A. C. & Katsanevakis, S. Pathways and gateways of freshwater invasions in Europe. Aquat. Invasions 10, 359–370 (2015).

    Google Scholar 

  45. García-Díaz, P. et al. Transport pathways shape the biogeography of alien freshwater fishes in Australia. Divers. Distrib. 24, 1405–1415 (2018).

    Google Scholar 

  46. Oliveira, M. D., Hamilton, S. K. & Jacobi, C. M. Forecasting the expansion of the invasive golden mussel limnopernafortunei in Brazilian and North American rivers based on its occurrence in the Paraguay River and Pantanal Wetland of Brazil. Aquat. Invasions 5, 59–73 (2010).

    Google Scholar 

  47. Campos, M. C. S. et al. Modelling of the potential distribution of Limnoperna fortunei (Dunker, 1857) on a global scale. Aquat. Invasions 9, 253–265 (2014).

    Google Scholar 

  48. Karatayev, A. Y., Burlakova, L. E. & Padilla, D. K. Zebra versus quagga mussels: a review of their spread, population dynamics, and ecosystem impacts. Hydrobiologia 746, 97–112 (2015).

    Google Scholar 

  49. Campara, L., Francic, V., Maglic, L. & Hasanspahic, N. Overview and Comparison of the IMO and the US Maritime Administration Ballast Water Management Regulations. J. Mar. Sci. Eng. 7, 283 (2019).

    Google Scholar 

  50. Berkman, P. A., Garton, D. W., Haltuch, M. A., Kennedy, G. W. & Febo, L. R. Habitat shift in invading species: zebra and quagga mussel population characteristics on shallow soft substrates. Biol. Invasions 2, 1–6 (2000).

    Google Scholar 

  51. Cuhel, R. L. & Aguilar, C. Ecosystem transformations of the Laurentian Great Lake Michigan by nonindigenous biological invaders. Annu. Rev. Mar. Sci. 5, 289–320 (2013).

    Google Scholar 

  52. Darrigran, G., Damborenea, C., Drago, E. C., de Drago, I. E. & Paira, A. Environmental factors restrict the invasion process of Limnoperna fortunei (Mytilidae) in the Neotropical region: a case study from the Andean tributaries. Annal. Limnol. Int. J. Limnol. 47, 221–229 (2011).

    Google Scholar 

  53. Chu, C. A prelimininary study on the climate change of China in the past 5000 years. Sci. Sin. 1, 15–38 (1973).

    Google Scholar 

  54. Linke, S. et al. Global hydro-environmental sub-basin and river reach characteristics at high spatial resolution. Sci. Data 6, 283 (2019).

    Google Scholar 

  55. Shumilova, O., Tockner, K., Thieme, M., Koska, A. & Zarfl, C. Global water transfer megaprojects: a potential solution for the water-food-energy nexus? Front. Environ. Sci. 6, 150 (2018).

    Google Scholar 

  56. Gollasch, S., Lenz, J., Dammer, M. & Andres, H. G. Survival of tropical ballast water organisms during a cruise from the Indian Ocean to the North Sea. J. Plankton Res. 22, 923–937 (2000).

    Google Scholar 

  57. Angonesi, L. G., da Rosa, N. G. & Berrivenuti, C. E. Tolerance to salinities shocks of the invasive mussel under experimental conditions. Iheringia Ser. Zoologia 98, 66–69 (2008).

    Google Scholar 

  58. Sylvester, F., Cataldo, D. H., Notaro, C. & Boltovskoy, D. Fluctuating salinity improves survival of the invasive freshwater golden mussel at high salinity: Implications for the introduction of aquatic species through estuarine ports. Biol. Invasions 15, 1355–1366 (2013).

    Google Scholar 

  59. Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).

    Google Scholar 

  60. Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).

    Google Scholar 

  61. Merow, C., Smith, M. J. & Silander, J. A. J. r A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).

    Google Scholar 

  62. Low, B. W., Zeng, Y., Tan, H. H. & Yeo, D. C. Predictor complexity and feature selection affect Maxent model transferability: Evidence from global freshwater invasive species. Divers. Distrib. 27, 497–511 (2021).

    Google Scholar 

  63. Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175 (2008).

    Google Scholar 

Download references

Acknowledgements

The study was financially supported by the National Key Research and Development Program of China (2021YFC3200905 and 2021YFC3200902), the National Natural Science Foundation of China (U2243222), and the State Key Laboratory of Hydroscience and Engineering Project (No. sklhse-TD-2024-E01).

Author information

Authors and Affiliations

  1. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing, China

    Jiahao Zhang, Mengzhen Xu, Zhaoyin Wang & Xudong Fu

  2. National Inland Waterway Regulation Engineering Research Center, Chongqing Jiaotong University, Chongqing, China

    Jiahao Zhang

  3. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China

    Aibin Zhan

  4. University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China

    Aibin Zhan

  5. The Key Laboratory of Mariculture, Ministry of Education, College of Fisheries, Ocean University of China, Qingdao, China

    Chunlong Liu

  6. School of Integrated Circuits, Tsinghua University, Beijing, China

    He Tian

  7. División Zoología Invertebrados, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, CONICET, La Plata, Argentina

    Gustavo Darrigran

Authors
  1. Jiahao Zhang
    View author publications

    Search author on:PubMed Google Scholar

  2. Mengzhen Xu
    View author publications

    Search author on:PubMed Google Scholar

  3. Aibin Zhan
    View author publications

    Search author on:PubMed Google Scholar

  4. Chunlong Liu
    View author publications

    Search author on:PubMed Google Scholar

  5. He Tian
    View author publications

    Search author on:PubMed Google Scholar

  6. Gustavo Darrigran
    View author publications

    Search author on:PubMed Google Scholar

  7. Zhaoyin Wang
    View author publications

    Search author on:PubMed Google Scholar

  8. Xudong Fu
    View author publications

    Search author on:PubMed Google Scholar

Contributions

Jiahao Zhang performed data analysis and visualization and wrote the first draft of the manuscript. Mengzhen Xu designed the study, carried out data analysis, and revised the manuscript. Aibin Zhan carried out data analysis and revised the manuscript. Chunlong Liu analysed invasion records and revised the manuscript. He Tian revised the manuscript. Gustavo Darrigran provided and curated data from South America and revised the manuscript. Zhaoyin Wang and Xudong Fu revised the manuscript.

Corresponding author

Correspondence to Mengzhen Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Communications Earth and Environment thanks the anonymous reviewers for their contribution to the peer review of this work. Primary Handling Editors: Haihan Zhang and Joseph Aslin. A peer review file is available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Transparent Peer Review file

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Xu, M., Zhan, A. et al. Shipping and water diversion pathways expand the global area at risk from invasive freshwater bivalves. Commun Earth Environ (2026). https://doi.org/10.1038/s43247-026-03256-x

Download citation

  • Received: 24 February 2024

  • Accepted: 23 January 2026

  • Published: 04 February 2026

  • DOI: https://doi.org/10.1038/s43247-026-03256-x

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Aims & Scope
  • Journal Information
  • Open Access Fees and Funding
  • Journal Metrics
  • Editors
  • Editorial Board
  • Calls for Papers
  • Referees
  • Editorial Values Statement
  • Editorial policies
  • Conferences
  • Contact

Publish with us

  • For authors
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Communications Earth & Environment (Commun Earth Environ)

ISSN 2662-4435 (online)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2026 Springer Nature Limited

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene