Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Biocatalysis

Subjects

Abstract

Biocatalysis has become an important aspect of modern organic synthesis, both in academia and across the chemical and pharmaceutical industries. Its success has been largely due to a rapid expansion of the range of chemical reactions accessible, made possible by advanced tools for enzyme discovery coupled with high-throughput laboratory evolution techniques for biocatalyst optimization. A wide range of tailor-made enzymes with high efficiencies and selectivities can now be produced quickly and on a gram to kilogram scale, with dedicated databases and search tools aimed at making these biocatalysts accessible to a broader scientific community. This Primer discusses the current state-of-the-art methodology in the field, including route design, enzyme discovery, protein engineering and the implementation of biocatalysis in industry. We highlight recent advances, such as de novo design and directed evolution, and discuss parameters that make a good reproducible biocatalytic process for industry. The general concepts will be illustrated by recent examples of applications in academia and industry, including the development of multistep enzyme cascades.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of different products synthesized using biocatalysis.
Fig. 2: Sources of biocatalysts.
Fig. 3: Directed evolution cycle.
Fig. 4: Computational approaches to enzyme design.
Fig. 5: Design and engineering of biocatalysts using non-canonical amino acids.
Fig. 6: Biocatalytic cascades and their development.
Fig. 7: Beneficial properties of an excellent biocatalyst under industrial process conditions.
Fig. 8: Industrial examples of biocatalytic cascades.

Similar content being viewed by others

References

  1. Yamada, H. & Kobayashi, M. Nitrile hydratase and its application to industrial production of acrylamide. Biosci. Biotechnol. Biochem. 60, 1391–1400 (1996).

    Google Scholar 

  2. Kirk, O., Borchert, T. V. & Fuglsang, C. C. Industrial enzyme applications. Curr. Opin. Biotechnol. 13, 345–351 (2002).

    Google Scholar 

  3. Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Google Scholar 

  4. Wu, S., Snajdrova, R., Moore, J. C., Baldenius, K. & Bornscheuer, U. T. Biocatalysis: enzymatic synthesis for industrial applications. Angew. Chem. Int. Ed. 60, 88–119 (2021).

    Google Scholar 

  5. Sheldon, R. A., Brady, D. & Bode, M. L. The hitchhiker’s guide to biocatalysis: recent advances in the use of enzymes in organic synthesis. Chem. Sci. 11, 2587–2605 (2020). This article presents an excellent recent overall review of biocatalysis.

    Google Scholar 

  6. Birmingham, W. R. et al. Bioretrosynthetic construction of a didanosine biosynthetic pathway. Nat. Chem. Biol. 10, 392–399 (2014). This article develops the concept of ‘bio-retrosynthesis’ and its application to afford an important biomolecule.

    Google Scholar 

  7. Huffman, M. A. et al. Design of an in vitro biocatalytic cascade for the manufacture of islatravir. Science 366, 1255–1259 (2019). This article presents the very impressive development of a multistep enzyme cascade with multiple enzyme engineering challenges by an industrial team.

    ADS  Google Scholar 

  8. Finnigan, W. et al. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021). This article establishes a database and computer-aided synthesis planning tool that allows scientists to design enzyme cascades.

    Google Scholar 

  9. Charnock, S., Bernardini, A. M., Monza, E., Lucas, M. F. & Sutton, P. W. in Applied Biocatalysis (eds Whittall, J. & Sutton, P. W.) 27–133 (Wiley, 2020).

  10. Bateman, A. et al. UniProt: the Universal Protein Knowledgebase. Nucleic Acids Res. 45, D158–D169 (2017).

    Google Scholar 

  11. Buchholz, P. C. F. et al. BioCatNet: a database system for the integration of enzyme sequences and biocatalytic experiments. ChemBioChem 17, 2093–2098 (2016).

    Google Scholar 

  12. Scott, T. A. & Piel, J. The hidden enzymology of bacterial natural product biosynthesis. Nat. Rev. Chem. 3, 404–425 (2019).

    Google Scholar 

  13. Martinez, S. & Hausinger, R. P. Catalytic mechanisms of Fe(II)- and 2-oxoglutarate-dependent oxygenases. J. Biol. Chem. 290, 20702–20711 (2015).

    Google Scholar 

  14. Zwick, C. R. & Renata, H. Harnessing the biocatalytic potential of iron- and α-ketoglutarate-dependent dioxygenases in natural product total synthesis. Nat. Prod. Rep. 37, 1065–1079 (2020).

    Google Scholar 

  15. Lukat, P. et al. Biosynthesis of methyl-proline containing griselimycins, natural products with anti-tuberculosis activity. Chem. Sci. 8, 7521–7527 (2017).

    Google Scholar 

  16. Zwick, C. R. & Renata, H. Remote C–H hydroxylation by an α-ketoglutarate-dependent dioxygenase enables efficient chemoenzymatic synthesis of manzacidin C and proline analogs. J. Am. Chem. Soc. 140, 1165–1169 (2018).

    Google Scholar 

  17. Neugebauer, M. E. et al. A family of radical halogenases for the engineering of amino-acid-based products. Nat. Chem. Biol. 15, 1009–1016 (2019).

    Google Scholar 

  18. Chekan, J. R. et al. Scalable biosynthesis of the seaweed neurochemical, kainic acid. Angew. Chem. Int. Ed. 58, 8454–8457 (2019).

    ADS  Google Scholar 

  19. Chakrabarty, S., Wang, Y., Perkins, J. C. & Narayan, A. R. H. Scalable biocatalytic C–H oxyfunctionalization reactions. Chem. Soc. Rev. 49, 8137–8155 (2020). This article presents an excellent review on the current state of the art of C–H oxyfunctionalizations of organic molecules using biocatalysis.

    Google Scholar 

  20. Liao, C. & Seebeck, F. P. S-Adenosylhomocysteine as a methyl transfer catalyst in biocatalytic methylation reactions. Nat. Catal. 2, 696–701 (2019).

    Google Scholar 

  21. Marsh, C. O. et al. A natural Diels–Alder biocatalyst enables efficient [4 + 2] cycloaddition under harsh reaction conditions. ChemCatChem 11, 5027–5031 (2019).

    Google Scholar 

  22. Fisher, B. F., Snodgrass, H. M., Jones, K. A., Andorfer, M. C. & Lewis, J. C. Site-selective C–H halogenation using flavin-dependent halogenases identified via family-wide activity profiling. ACS Cent. Sci. 5, 1844–1856 (2019).

    Google Scholar 

  23. Galanie, S., Entwistle, D. & Lalonde, J. Engineering biosynthetic enzymes for industrial natural product synthesis. Nat. Prod. Rep. 37, 1122–1143 (2020).

    Google Scholar 

  24. Schultz, B. J., Kim, S. Y., Lau, W. & Sattely, E. S. Total biosynthesis for milligram-scale production of etoposide intermediates in a plant chassis. J. Am. Chem. Soc. 141, 19231–19235 (2019).

    Google Scholar 

  25. Chen, M., Liu, C. T. & Tang, Y. Discovery and biocatalytic application of a PLP-dependent amino acid γ-substitution enzyme that catalyzes C–C bond formation. J. Am. Chem. Soc. 142, 10506–10515 (2020).

    Google Scholar 

  26. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Google Scholar 

  27. Goldsmith, M. & Tawfik, D. S. Enzyme engineering: reaching the maximal catalytic efficiency peak. Curr. Opin. Struct. Biol. 47, 140–150 (2017).

    Google Scholar 

  28. Handelsman, J. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685 (2004).

    Google Scholar 

  29. Iqbal, H. A., Feng, Z. & Brady, S. F. Biocatalysts and small molecule products from metagenomic studies. Curr. Opin. Chem. Biol. 16, 109–116 (2012).

    Google Scholar 

  30. Coscolín, C. et al. Bioprospecting reveals class ω-transaminases converting bulky ketones and environmentally relevant polyamines. Appl. Environ. Microbiol. 85, e02404-18 (2019).

    Google Scholar 

  31. Green, A. P., Turner, N. J. & O’Reilly, E. Chiral amine synthesis using ω-transaminases: an amine donor that displaces equilibria and enables high-throughput screening. Angew. Chem. Int. Ed. 53, 10714–10717 (2014).

    Google Scholar 

  32. Baud, D., Ladkau, N., Moody, T. S., Ward, J. M. & Hailes, H. C. A rapid, sensitive colorimetric assay for the high-throughput screening of transaminases in liquid or solid-phase. Chem. Commun. 51, 17225–17228 (2015).

    Google Scholar 

  33. Nasseri, S. A., Betschart, L., Opaleva, D., Rahfeld, P. & Withers, S. G. A mechanism-based approach to screening metagenomic libraries for discovery of unconventional glycosidases. Angew. Chem. Int. Ed. 57, 11359–11364 (2018).

    Google Scholar 

  34. Colin, P. Y. et al. Ultrahigh-throughput discovery of promiscuous enzymes by picodroplet functional metagenomics. Nat. Commun. 6, 1–12 (2015).

    ADS  Google Scholar 

  35. Rahfeld, P. et al. An enzymatic pathway in the human gut microbiome that converts A to universal O type blood. Nat. Microbiol. 4, 1475–1485 (2019). This article identifies a two-enzyme system from a large gut microbiome library that enables generation of universal O-type blood from A-type donors.

    Google Scholar 

  36. Smith, D. R. M. et al. An unusual flavin-dependent halogenase from the metagenome of the marine sponge Theonella swinhoei WA. ACS Chem. Biol. 12, 1281–1287 (2017).

    Google Scholar 

  37. Baud, D., Jeffries, J. W. E., Moody, T. S., Ward, J. M. & Hailes, H. C. A metagenomics approach for new biocatalyst discovery: application to transaminases and the synthesis of allylic amines. Green. Chem. 19, 1134–1143 (2017).

    Google Scholar 

  38. Armstrong, Z. et al. Metagenomics reveals functional synergy and novel polysaccharide utilization loci in the Castor canadensis fecal microbiome. ISME J. 12, 2757–2769 (2018).

    Google Scholar 

  39. Bornscheuer, U. T. et al. Engineering the third wave of biocatalysis. Nature 485, 185–194 (2012).

    ADS  Google Scholar 

  40. Arnold, F. H. Directed evolution: bringing new chemistry to life. Angew. Chem. Int. Ed. 57, 4143–4148 (2018). This article presents a review of directed evolution by the 2018 Nobel Prize Laureate for Chemistry.

    Google Scholar 

  41. Qu, G., Li, A., Acevedo-Rocha, C. G., Sun, Z. & Reetz, M. T. The crucial role of methodology development in directed evolution of selective enzymes. Angew. Chem. Int. Ed. 59, 13204–13231 (2020).

    Google Scholar 

  42. Reetz, M. T., Bocola, M., Carballeira, J. D., Zha, D. & Vogel, A. Expanding the range of substrate acceptance of enzymes: combinatorial active-site saturation test. Angew. Chem. Int. Ed. 44, 4192–4196 (2005).

    Google Scholar 

  43. Reetz, M. T., Kahakeaw, D. & Lohmer, R. Addressing the numbers problem in directed evolution. ChemBioChem 9, 1797–1804 (2008).

    Google Scholar 

  44. Kille, S. et al. Reducing codon redundancy and screening effort of combinatorial protein libraries created by saturation mutagenesis. ACS Synth. Biol. 2, 83–92 (2013).

    Google Scholar 

  45. Cadwell, R. C. & Joyce, G. F. Mutagenic PCR. CSH Protoc. https://doi.org/10.1101/pdb.prot4143 (2006).

    Article  Google Scholar 

  46. Stemmer, W. P. C. Rapid evolution of a protein in vitro by DNA shuffling. Nature 370, 389–391 (1994). This article establishes DNA shuffling as a method for generation of gene libraries for directed evolution.

    ADS  Google Scholar 

  47. Schober, M. et al. Chiral synthesis of LSD1 inhibitor GSK2879552 enabled by directed evolution of an imine reductase. Nat. Catal. 2, 909–915 (2019).

    Google Scholar 

  48. Heath, R. S., Pontini, M., Bechi, B. & Turner, N. J. Development of an R-selective amine oxidase with broad substrate specificity and high enantioselectivity. ChemCatChem 6, 996–1002 (2014).

    Google Scholar 

  49. Weiß, M. S., Pavlidis, I. V., Vickers, C., Hohne, M. & Bornscheuer, U. T. Glycine oxidase based high-throughput solid-phase assay for substrate profiling and directed evolution of (R)- and (S)-selective amine transaminases. Anal. Chem. 86, 11847–11853 (2014).

    Google Scholar 

  50. Yan, C. et al. Real-time screening of biocatalysts in live bacterial colonies. J. Am. Chem. Soc. 139, 1408–1411 (2017). This article presents recent approaches to using label-free screening methods based on mass spectrometry.

    Google Scholar 

  51. Becker, S., Schmoldt, H. U., Adams, T. M., Wilhelm, S. & Kolmar, H. Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr. Opin. Biotechnol. 15, 323–329 (2004).

    Google Scholar 

  52. Chen, T. et al. Evolution of thermophilic DNA polymerases for the recognition and amplification of C2′-modified DNA. Nat. Chem. 8, 556–562 (2016).

    Google Scholar 

  53. Agresti, J. J. et al. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    ADS  Google Scholar 

  54. Obexer, R. et al. Emergence of a catalytic tetrad during evolution of a highly active artificial aldolase. Nat. Chem. 9, 50–56 (2017).

    Google Scholar 

  55. Wang, L. & Schultz, P. G. A general approach for the generation of orthogonal tRNAs. Chem. Biol. 8, 883–890 (2001).

    Google Scholar 

  56. Bryson, D. I. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253–1260 (2017).

    Google Scholar 

  57. Ravikumar, A., Arrieta, A. & Liu, C. C. An orthogonal DNA replication system in yeast. Nat. Chem. Biol. 10, 175–177 (2014).

    Google Scholar 

  58. Ghislieri, D. et al. Engineering an enantioselective amine oxidase for the synthesis of pharmaceutical building blocks and alkaloid natural products. J. Am. Chem. Soc. 135, 10863–10869 (2013).

    Google Scholar 

  59. Debon, A. et al. Ultrahigh-throughput screening enables efficient single-round oxidase remodelling. Nat. Catal. 2, 740–747 (2019).

    Google Scholar 

  60. Holland-Moritz, D. A. et al. Mass activated droplet sorting (MADS) enables high-throughput screening of enzymatic reactions at nanoliter scale. Angew. Chem. Int. Ed. 59, 4470–4477 (2020). This article applies droplet sorting as one of the most successful methods for ultra-high-throughput screening of enzyme libraries.

    Google Scholar 

  61. Wan, W., Tharp, J. M. & Liu, W. R. Pyrrolysyl-tRNA synthetase: an ordinary enzyme but an outstanding genetic code expansion tool. Biochim. Biophys. Acta 1844, 1059–1070 (2014).

    Google Scholar 

  62. Warshel, A. et al. Electrostatic basis for enzyme catalysis. Chem. Rev. 106, 3210–3235 (2006).

    Google Scholar 

  63. Boehr, D. D., Nussinov, R. & Wright, P. E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Google Scholar 

  64. Osuna, S. The challenge of predicting distal active site mutations in computational enzyme design. WIREs Comput. Mol. Sci. 11, e1502 (2021).

    Google Scholar 

  65. Kiss, G., Çelebi-Ölçüm, N., Moretti, R., Baker, D. & Houk, K. N. Computational enzyme design. Angew. Chem. Int. Ed. 52, 5700–5725 (2013).

    Google Scholar 

  66. Privett, H. K. et al. Iterative approach to computational enzyme design. Proc. Natl Acad. Sci. USA 109, 3790–3795 (2012).

    ADS  Google Scholar 

  67. Wijma, H. J. et al. Enantioselective enzymes by computational design and in silico screening. Angew. Chem. 127, 3797–3801 (2015).

    Google Scholar 

  68. Davey, J. A. & Chica, R. A. Multistate approaches in computational protein design. Protein Sci. 21, 1241–1252 (2012).

    Google Scholar 

  69. Mondal, D., Kolev, V. & Warshel, A. Combinatorial approach for exploring conformational space and activation barriers in computer-aided enzyme design. ACS Catal. 10, 6002–6012 (2020).

    Google Scholar 

  70. Maria-Solano, M. A., Serrano-Hervás, E., Romero-Rivera, A., Iglesias-Fernández, J. & Osuna, S. Role of conformational dynamics in the evolution of novel enzyme function. Chem. Commun. 54, 6622–6634 (2018).

    Google Scholar 

  71. Campbell, E. C. et al. Laboratory evolution of protein conformational dynamics. Curr. Opin. Struct. Biol. 50, 49–57 (2018).

    Google Scholar 

  72. Crean, R. M., Gardner, J. M. & Kamerlin, S. C. L. Harnessing conformational plasticity to generate designer enzymes. J. Am. Chem. Soc. 142, 11324–11342 (2020).

    Google Scholar 

  73. Kreß, N., Halder, J. M., Rapp, L. R. & Hauer, B. Unlocked potential of dynamic elements in protein structures: channels and loops. Curr. Opin. Chem. Biol. 47, 109–116 (2018).

    Google Scholar 

  74. Vavra, O. et al. CaverDock: a molecular docking-based tool to analyse ligand transport through protein tunnels and channels. Bioinformatics 35, 4986–4993 (2019).

    Google Scholar 

  75. Otten, R. et al. How directed evolution reshapes the energy landscape in an enzyme to boost catalysis. Science 370, 1442–1446 (2020).

    ADS  Google Scholar 

  76. Romero-Rivera, A., Garcia-Borràs, M. & Osuna, S. Role of conformational dynamics in the evolution of retro-aldolase activity. ACS Catal. 7, 8524–8532 (2017).

    Google Scholar 

  77. Casini, A. et al. A pressure test to make 10 molecules in 90 days: external evaluation of methods to engineer biology. J. Am. Chem. Soc. 140, 4302–4316 (2018).

    Google Scholar 

  78. Gardner, J. M., Biler, M., Risso, V. A., Sanchez-Ruiz, J. M. & Kamerlin, S. C. L. Manipulating conformational dynamics to repurpose ancient proteins for modern catalytic functions. ACS Catal. 10, 4863–4870 (2020).

    Google Scholar 

  79. Pabis, A., Risso, V. A., Sanchez-Ruiz, J. M. & Kamerlin, S. C. Cooperativity and flexibility in enzyme evolution. Curr. Opin. Struct. Biol. 48, 83–92 (2018).

    Google Scholar 

  80. Liu, C. C. & Schultz, P. G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010). This article reviews the methods to expand the genetic code for the introduction of non-natural amino acids into proteins.

    Google Scholar 

  81. Chin, J. W. Expanding and reprogramming the genetic code. Nature 550, 53–60 (2017).

    ADS  Google Scholar 

  82. Seyedsayamdost, M. R., Xie, J., Chan, C. T. Y., Schultz, P. G. & Stubbe, J. Site-specific insertion of 3-aminotyrosine into subunit α2 of E. coli ribonucleotide reductase: direct evidence for involvement of Y730 and Y731 in radical propagation. J. Am. Chem. Soc. 129, 15060–15071 (2007).

    Google Scholar 

  83. Faraldos, J. A. et al. Probing eudesmane cation–π interactions in catalysis by aristolochene synthase with non-canonical amino acids. J. Am. Chem. Soc. 133, 13906–13909 (2011).

    Google Scholar 

  84. Wu, Y. & Boxer, S. G. A critical test of the electrostatic contribution to catalysis with noncanonical amino acids in ketosteroid isomerase. J. Am. Chem. Soc. 138, 11890–11895 (2016).

    Google Scholar 

  85. Huguenin-Dezot, N. et al. Trapping biosynthetic acyl-enzyme intermediates with encoded 2,3-diaminopropionic acid. Nature 565, 112–117 (2019).

    ADS  Google Scholar 

  86. Ortmayer, M. et al. Rewiring the ‘push–pull’ catalytic machinery of a heme enzyme using an expanded genetic code. ACS Catal. 10, 2735–2746 (2020).

    Google Scholar 

  87. Burke, A. J. et al. Design and evolution of an enzyme with a non-canonical organocatalytic mechanism. Nature 570, 219–223 (2019). This article is a recent example of using non-canonical amino acids in protein evolution to obtain new enzyme activities.

    ADS  Google Scholar 

  88. Drienovská, I., Mayer, C., Dulson, C. & Roelfes, G. A designer enzyme for hydrazone and oxime formation featuring an unnatural catalytic aniline residue. Nat. Chem. 10, 946–952 (2018).

    Google Scholar 

  89. Santoro, S. W., Wang, L., Herberich, B., King, D. S. & Schultz, P. G. An efficient system for the evolution of aminoacyl-tRNA synthetase specificity. Nat. Biotechnol. 20, 1044–1048 (2002).

    Google Scholar 

  90. Pott, M. et al. A noncanonical proximal heme ligand affords an efficient peroxidase in a globin fold. J. Am. Chem. Soc. 140, 1535–1543 (2018).

    Google Scholar 

  91. Li, J. C., Liu, T., Wang, Y., Mehta, A. P. & Schultz, P. G. Enhancing protein stability with genetically encoded noncanonical amino acids. J. Am. Chem. Soc. 140, 15997–16000 (2018).

    Google Scholar 

  92. Wurz, R. P. Chiral dialkylaminopyridine catalysts in asymmetric synthesis. Chem. Rev. 107, 5570–5595 (2007).

    Google Scholar 

  93. Bolon, D. N. & Mayo, S. L. Enzyme-like proteins by computational design. Proc. Natl Acad. Sci. USA 98, 14274–14279 (2001).

    ADS  Google Scholar 

  94. Richter, F. et al. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 134, 16197–16206 (2012).

    Google Scholar 

  95. Moroz, Y. S. et al. New tricks for old proteins: single mutations in a nonenzymatic protein give rise to various enzymatic activities. J. Am. Chem. Soc. 137, 14905–14911 (2015).

    Google Scholar 

  96. Burton, A. J., Thomson, A. R., Dawson, W. M., Brady, R. L. & Woolfson, D. N. Installing hydrolytic activity into a completely de novo protein framework. Nat. Chem. 8, 837–844 (2016).

    Google Scholar 

  97. Nazor, J., Liu, J. & Huisman, G. Enzyme evolution for industrial biocatalytic cascades. Curr. Opin. Biotechnol. 69, 182–190 (2021). This review focuses on recent industrial biocatalytic cascades.

    Google Scholar 

  98. McIntosh, J. A. & Owens, A. Enzyme engineering for biosynthetic cascades. Curr. Opin. Green Sustain. Chem. 29, 100448 (2021).

    Google Scholar 

  99. Schrittwieser, J. H., Velikogne, S., Hall, M. & Kroutil, W. Artificial biocatalytic linear cascades for preparation of organic molecules. Chem. Rev. 118, 270–348 (2018).

    Google Scholar 

  100. Mayer, S. F., Kroutil, W. & Faber, K. Enzyme-initiated domino (cascade) reactions. Chem. Soc. Rev. 30, 332–339 (2001).

    Google Scholar 

  101. García-Junceda, E., Lavandera, I., Rother, D. & Schrittwieser, J. H. (Chemo)enzymatic cascades — nature’s synthetic strategy transferred to the laboratory. J. Mol. Catal. B Enzym. 114, 1–6 (2015).

    Google Scholar 

  102. Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Google Scholar 

  103. France, S. P., Hepworth, L. J., Turner, N. J. & Flitsch, S. L. Constructing biocatalytic cascades: in vitro and in vivo approaches to de novo multi-enzyme pathways. ACS Catal. 7, 710–724 (2017). This article reviews the literature on a wide range of multienzyme de novo cascades using isolated enzymes and whole-cell systems.

    Google Scholar 

  104. Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013). This review develops the concept of biocatalytic retrosynthesis.

    Google Scholar 

  105. Hönig, M., Sondermann, P., Turner, N. J. & Carreira, E. M. Enantioselective chemo- and biocatalysis: partners in retrosynthesis. Angew. Chem. Int. Ed. 56, 8942–8973 (2017).

    Google Scholar 

  106. Green, A. P. & Turner, N. J. Biocatalytic retrosynthesis: redesigning synthetic routes to high-value chemicals. Perspect. Sci. 9, 42–48 (2016).

    Google Scholar 

  107. de Souza, R. O. M. A., Miranda, L. S. M. & Bornscheuer, U. T. A retrosynthesis approach for biocatalysis in organic synthesis. Chem. A Eur. J. 23, 12040–12063 (2017).

    Google Scholar 

  108. Bachmann, B. O. Biosynthesis: is it time to go retro? Nat. Chem. Biol. 6, 390–393 (2010).

    Google Scholar 

  109. Hadadi, N. & Hatzimanikatis, V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28, 99–104 (2015).

    Google Scholar 

  110. Coley, C. W., Green, W. H. & Jensen, K. F. Machine learning in computer-aided synthesis planning. Acc. Chem. Res. 51, 1281–1289 (2018).

    Google Scholar 

  111. Mohamad, N. R., Marzuki, N. H. C., Buang, N. A., Huyop, F. & Wahab, R. A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 29, 205–220 (2015).

    Google Scholar 

  112. Basso, A. & Serban, S. Industrial applications of immobilized enzymes — a review. Mol. Catal. 479, 110607 (2019).

    Google Scholar 

  113. Fryszkowska, A. & Devine, P. N. Biocatalysis in drug discovery and development. Curr. Opin. Chem. Biol. 55, 151–160 (2020).

    Google Scholar 

  114. Latham, J. et al. in Applied Biocatalysis (eds Whittall, J. & Sutton, P. W.) 1–25 (Wiley, 2020).

  115. Prier, C. K. & Kosjek, B. Recent preparative applications of redox enzymes. Curr. Opin. Chem. Biol. 49, 105–112 (2019).

    Google Scholar 

  116. Woodley, J. M. New frontiers in biocatalysis for sustainable synthesis. Curr. Opin. Green. Sustain. Chem. 21, 22–26 (2020).

    Google Scholar 

  117. Sheldon, R. A. & Woodley, J. M. Role of biocatalysis in sustainable chemistry. Chem. Rev. 118, 801–838 (2018).

    Google Scholar 

  118. Sheldon, R. A. Metrics of green chemistry and sustainability: past, present, and future. ACS Sustain. Chem. Eng. 6, 32–48 (2018).

    Google Scholar 

  119. Tieves, F. et al. Energising the E-factor: the E+-factor. Tetrahedron 75, 1311–1314 (2019).

    Google Scholar 

  120. Hinzmann, A., Glinski, S., Worm, M. & Gröger, H. Enzymatic synthesis of aliphatic nitriles at a substrate loading of up to 1.4 kg/l: a biocatalytic record achieved with a heme protein. J. Org. Chem. 84, 4867–4872 (2019).

    Google Scholar 

  121. Bornadel, A. et al. Technical considerations for scale-up of imine-reductase-catalyzed reductive amination: a case study. Org. Process. Res. Dev. 23, 1262–1268 (2019).

    Google Scholar 

  122. Hülsewede, D., Meyer, L. & von Langermann, J. Application of in situ product crystallization and related techniques in biocatalytic processes. Chem. A Eur. J. 25, 4871–4884 (2019).

    Google Scholar 

  123. Fellechner, O., Blatkiewicz, M. & Smirnova, I. Reactive separations for in situ product removal of enzymatic reactions: a review. Chem. Ing. Tech. 91, 1522–1543 (2019).

    Google Scholar 

  124. Aalbers, F. S. et al. Approaching boiling point stability of an alcohol dehydrogenase through computationally-guided enzyme engineering. eLife 9, e54639 (2020).

    Google Scholar 

  125. Gumulya, Y. et al. Engineering highly functional thermostable proteins using ancestral sequence reconstruction. Nat. Catal. 1, 878–888 (2018).

    Google Scholar 

  126. Thomas, A., Cutlan, R., Finnigan, W., van der Giezen, M. & Harmer, N. Highly thermostable carboxylic acid reductases generated by ancestral sequence reconstruction. Commun. Biol. 2, 1–12 (2019).

    Google Scholar 

  127. Nicoll, C. R. et al. Ancestral-sequence reconstruction unveils the structural basis of function in mammalian FMOs. Nat. Struct. Mol. Biol. 27, 14–24 (2020).

    Google Scholar 

  128. Gomez-Fernandez, B. J., Risso, V. A., Rueda, A., Sanchez-Ruiz, J. M. & Alcalde, M. Ancestral resurrection and directed evolution of fungal mesozoic laccases. Appl. Environ. Microbiol. 86, e00778-20 (2020).

    Google Scholar 

  129. Carletti, M. S. et al. Revenant: a database of resurrected proteins. Database. 2020, 31 (2020).

    Google Scholar 

  130. Truppo, M. D., Strotman, H. & Hughes, G. Development of an immobilized transaminase capable of operating in organic solvent. ChemCatChem 4, 1071–1074 (2012).

    Google Scholar 

  131. Mattey, A. P. et al. Natural heterogeneous catalysis with immobilised oxidase biocatalysts. RSC Adv. 10, 19501–19505 (2020).

    ADS  Google Scholar 

  132. Böhmer, W. et al. Highly efficient production of chiral amines in batch and continuous flow by immobilized ω-transaminases on controlled porosity glass metal-ion affinity carrier. J. Biotechnol. 291, 52–60 (2019).

    Google Scholar 

  133. Britton, J., Majumdar, S. & Weiss, G. A. Continuous flow biocatalysis. Chem. Soc. Rev. 47, 5891–5918 (2018).

    Google Scholar 

  134. Rodrigues, R. C., Ortiz, C., Berenguer-Murcia, Á., Torres, R. & Fernández-Lafuente, R. Modifying enzyme activity and selectivity by immobilization. Chem. Soc. Rev. 42, 6290–6307 (2013).

    Google Scholar 

  135. Sheldon, R. A. in Green Biocatalysis (ed. Patel, R. N.) 1–15 (Wiley, 2016).

  136. Cespugli, M. et al. Rice husk as an inexpensive renewable immobilization carrier for biocatalysts employed in the food, cosmetic and polymer sectors. Catalysts 8, 471 (2018).

    Google Scholar 

  137. Woodley, J. M. Towards the sustainable production of bulk-chemicals using biotechnology. N. Biotechnol. 59, 59–64 (2020).

    Google Scholar 

  138. Hughes, D. L. Biocatalysis in drug development — highlights of the recent patent literature. Org. Process. Res. Dev. 22, 1063–1080 (2018).

    Google Scholar 

  139. de María, P., de Gonzalo, G. & Alcántara, A. Biocatalysis as useful tool in asymmetric synthesis: an assessment of recently granted patents (2014–2019). Catalysts 9, 802 (2019).

    Google Scholar 

  140. Hauer, B. Embracing nature’s catalysts: a viewpoint on the future of biocatalysis. ACS Catal. 10, 8418–8427 (2020). This article presents an insightful review of the future challenges of biocatalysis in academia and industry.

    Google Scholar 

  141. Jiao, S., Li, F., Yu, H. & Shen, Z. Advances in acrylamide bioproduction catalyzed with Rhodococcus cells harboring nitrile hydratase. Appl. Microbiol. Biotechnol. 104, 1001–1012 (2020).

    Google Scholar 

  142. Savile, C. K. et al. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329, 305–309 (2010).

    ADS  Google Scholar 

  143. Eichhorn, E. et al. Biocatalytic process for (−)-ambrox production using squalene hopene cyclase. Adv. Synth. Catal. 360, 2339–2351 (2018).

    Google Scholar 

  144. Baker Dockrey, S. A., Lukowski, A. L., Becker, M. R. & Narayan, A. R. H. Biocatalytic site- and enantioselective oxidative dearomatization of phenols. Nat. Chem. 10, 119–125 (2018).

    Google Scholar 

  145. Li, G., Wang, J.-B. & Reetz, M. T. Biocatalysts for the pharmaceutical industry created by structure-guided directed evolution of stereoselective enzymes. Bioorg. Med. Chem. 26, 1241–1251 (2018).

    Google Scholar 

  146. Arora, K. K. et al. Manufacturing Process and Intermediates for a Pyrrolo[2,3- D]Pyrimidine Compound and use Thereof. US Patent 10,815,240 (2020).

  147. Jaeger, K. E., Eggert, T., Eipper, A. & Reetz, M. T. Directed evolution and the creation of enantioselective biocatalysts. Appl. Microbiol. Biotechnol. 55, 519–530 (2001).

    Google Scholar 

  148. Manning, J. et al. Regio- and enantio-selective chemo-enzymatic C–H-lactonization of decanoic acid to (S)-δ-decalactone. Angew. Chem. Int. Ed. 58, 5668–5671 (2019).

    Google Scholar 

  149. Zhang, J. et al. Engineered C–N lyase: enantioselective synthesis of chiral synthons for artificial dipeptide sweeteners. Angew. Chem. 132, 437–443 (2020).

    Google Scholar 

  150. Bruggink, A., Schoevaart, R. & Kieboom, T. Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org. Process. Res. Dev. 7, 622–640 (2003).

    Google Scholar 

  151. Sperl, J. M. & Sieber, V. Multienzyme cascade reactions — status and recent advances. ACS Catal. 8, 2385–2396 (2018).

    Google Scholar 

  152. Lenz, M., Borlinghaus, N., Weinmann, L. & Nestl, B. M. Recent advances in imine reductase-catalyzed reactions. World J. Microbiol. Biotechnol. 33, 199 (2017).

    Google Scholar 

  153. Schaffer, S. et al. Producing amines and diamines from a carboxylic acid or dicarboxylic acid or a monoester thereof. US Patent 9,725,746 (2017)

  154. Benkovics, T. et al. Evolving to an ideal synthesis of molnupiravir, an investigational treatment for COVID-19. Preprint at https://doi.org/10.26434/chemrxiv.13472373.v1 (2020).

  155. Yin, Z. et al. Computing platforms for big biological data analytics: perspectives and challenges. Comput. Struct. Biotechnol. J. 15, 403–411 (2017).

    Google Scholar 

  156. Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 44, D7–D19 (2016).

    Google Scholar 

  157. Goodman, J. Computer sSoftware review: Reaxys Reaxys. Elsevier Properties SA 360 Park Avenue South, New York, NY 10010-1710. www.info.reaxys.com. J. Chem. Inf. Model. 49, 2897–2898 (2009).

    Google Scholar 

  158. Garritano, J. R. Evolution of SciFinder, 2011–2013: new features, new content. Sci. Technol. Libr. 32, 346–371 (2013).

    Google Scholar 

  159. Jeske, L., Placzek, S., Schomburg, I., Chang, A. & Schomburg, D. BRENDA in 2019: a European ELIXIR core data resource. Nucleic Acids Res. 47, D542–D549 (2019).

    Google Scholar 

  160. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y. & Morishima, K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 45, D353–D361 (2017).

    Google Scholar 

  161. Gunera, J., Kindinger, F., Li, S. M. & Kolb, P. PrenDB, a substrate prediction database to enable biocatalytic use of prenyltransferases. J. Biol. Chem. 292, 4003–4021 (2017).

    Google Scholar 

  162. Van Santen, J. A. et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent. Sci. 5, 1824–1833 (2019).

    Google Scholar 

  163. Tipton, K. F. et al. Standards for reporting enzyme data: the STRENDA consortium: what it aims to do and why it should be helpful. Perspect. Sci. 1, 131–137 (2014).

    Google Scholar 

  164. Swainston, N. et al. STRENDA DB: enabling the validation and sharing of enzyme kinetics data. FEBS J. 285, 2193–2204 (2018).

    Google Scholar 

  165. Perkel, J. M. The Internet of Things comes to the lab. Nature 542, 125–126 (2017).

    ADS  Google Scholar 

  166. Jennings-Antipov, L. D. & Gardner, T. S. Digital publishing isn’t enough: the case for ‘blueprints’ in scientific communication. Emerg. Top. Life Sci. 2, 755–758 (2018).

    Google Scholar 

  167. Goodwin, N. C., Morrison, J. P., Fuerst, D. E. & Hadi, T. Biocatalysis in medicinal chemistry: challenges to access and drivers for adoption. ACS Med. Chem. Lett. 10, 1363–1366 (2019).

    Google Scholar 

  168. Nielsen, J. & Keasling, J. D. Engineering cellular metabolism. Cell 164, 1185–1197 (2016).

    Google Scholar 

  169. Truppo, M. D. Biocatalysis in the pharmaceutical industry: the need for speed. ACS Med. Chem. Lett. 8, 476–480 (2017). This article presents an excellent review of the adaptation and challenges of biocatalysis in the pharmaceutical industry, with particular focus on timescales of process development.

    Google Scholar 

  170. Yang, K. K., Wu, Z. & Arnold, F. H. Machine-learning-guided directed evolution for protein engineering. Nat. Methods 16, 687–694 (2019).

    Google Scholar 

  171. Markel, U. et al. Advances in ultrahigh-throughput screening for directed enzyme evolution. Chem. Soc. Rev. 49, 233–262 (2020).

    Google Scholar 

  172. Bunzel, H. A., Garrabou, X., Pott, M. & Hilvert, D. Speeding up enzyme discovery and engineering with ultrahigh-throughput methods. Curr. Opin. Struct. Biol. 48, 149–156 (2018).

    Google Scholar 

  173. Hillson, N. et al. Building a global alliance of biofoundries. Nat. Commun. 10, 1–4 (2019).

    ADS  Google Scholar 

  174. Windle, C. L., Müller, M., Nelson, A. & Berry, A. Engineering aldolases as biocatalysts. Curr. Opin. Chem. Biol. 19, 25–33 (2014).

    Google Scholar 

  175. Brovetto, M., Gamenara, D., Saenz Méndez, P. & Seoane, G. A. C–C bond-forming lyases in organic synthesis. Chem. Rev. 111, 4346–4403 (2011).

    Google Scholar 

  176. Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C–C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    Google Scholar 

  177. Li, Z. et al. Engineering cytochrome P450 enzyme systems for biomedical and biotechnological applications. J. Biol. Chem. 295, 833–849 (2020).

    Google Scholar 

  178. Fessner, N. D. P450 monooxygenases enable rapid late-stage diversification of natural products via C–H bond activation. ChemCatChem 11, 2226–2242 (2019).

    Google Scholar 

  179. Lall, M. S. et al. Late-stage lead diversification coupled with quantitative nuclear magnetic resonance spectroscopy to identify new structure–activity relationship vectors at nanomole-scale synthesis: application to loratadine, a human histamine H1 receptor inverse agonist. J. Med. Chem. 63, 7268–7292 (2020).

    Google Scholar 

  180. Dong, J. J. et al. Biocatalytic oxidation reactions: a chemist’s perspective. Angew. Chem. Int. Ed. 57, 9238–9261 (2018).

    Google Scholar 

  181. Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

    Google Scholar 

  182. Khambhati, K. et al. Exploring the potential of cell-free protein synthesis for extending the abilities of biological systems. Front. Bioeng. Biotechnol. 7, 248 (2019).

    Google Scholar 

  183. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    ADS  Google Scholar 

  184. Hammer, S. C., Knight, A. M. & Arnold, F. H. Design and evolution of enzymes for non-natural chemistry. Curr. Opin. Green Sustain. Chem. 7, 23–30 (2017).

    Google Scholar 

  185. DeHovitz, J. S. et al. Static to inducibly dynamic stereocontrol: the convergent use of racemic β-substituted ketones. Science 369, 1113–1118 (2020).

    ADS  Google Scholar 

  186. O’Reilly, E., Köhler, V., Flitsch, S. L. & Turner, N. J. Cytochromes P450 as useful biocatalysts: addressing the limitations. Chem. Commun. 47, 2490–2501 (2011).

    Google Scholar 

  187. Basler, S. et al. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nat. Chem. 13, 231–235 (2021).

    Google Scholar 

  188. Liu, Z. & Arnold, F. H. New-to-nature chemistry from old protein machinery: carbene and nitrene transferases. Curr. Opin. Biotechnol. 69, 43–51 (2021). This review describes recent developments of new to nature reactions catalysed by engineered enzymes.

    Google Scholar 

  189. Callaway, E. ‘It will change everything’: DeepMind’s AI makes gigantic leap in solving protein structures. Nature 588, 203–204 (2020). This article presents a recent breakthrough in computational protein structure prediction from the primary sequence.

    ADS  Google Scholar 

  190. Dou, J. et al. De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491 (2018).

    ADS  Google Scholar 

  191. Senior, A. W. et al. Improved protein structure prediction using potentials from deep learning. Nature 577, 706–710 (2020).

    ADS  Google Scholar 

  192. Huang, P. S., Boyken, S. E. & Baker, D. The coming of age of de novo protein design. Nature 537, 320–327 (2016).

    ADS  Google Scholar 

  193. Fischer, M. & Pleiss, J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res. 31, 319–321 (2003).

    Google Scholar 

  194. Lombard, V., Golaconda Ramulu, H., Drula, E., Coutinho, P. M. & Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495 (2014). This article discusses the curated comprehensive database of carbohydrate-active enzymes (CAZymes) that has been a useful tool to the glycoscience community.

    Google Scholar 

  195. Savelli, B. et al. RedoxiBase: a database for ROS homeostasis regulated proteins. Redox Biol. 26, 101247 (2019).

    Google Scholar 

Download references

Acknowledgements

The authors are grateful for funding from the European Research Council (ERC) (S.L.F., 788231; A.P.G., 757991; S.O., 679001; N.J.T., 742987), the Engineering and Physical Sciences Research Council (EPSRC) (S.L.F. and N.J.T., EP/S005226/1), the Biotechnology and Biological Sciences Research Council (BBSRC) (S.L.F. and N.J.T., BB/M027791/1, BB/M028836/1; A.P.G., BB/M027023/1), the Spanish Ministry of Economy and Competitiveness (MINECO) (S.O., PGC2018-102192-B-I00), Generalitat de Catalunya (S.O., SGR 2017 1707) and the University of Manchester (Presidential Fellowship to S.L.L.).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.L.F., H.N. and K.S.R.); Experimentation (E.L.B., A.P.G., H.N., S.O., K.S.R., N.J.T., S.L.L., L.J.H. and W.F.); Results (M.A.H. and E.R.); Applications (S.P.F., M.A.H. and E.R.); Reproducibility and data deposition (W.F. and L.J.H.); Limitations and optimizations (W.F., L.J.H., M.A.H. and E.R.); Outlook (S.L.F.); overview of Primer (S.L.F.). All authors contributed equally to planning and revision of the manuscript as described. Please note that co-authors have been listed in alphabetical order.

Corresponding author

Correspondence to Sabine L. Flitsch.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Methods Primers thanks L. Betancor, A. Fryszkowska and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BioCatNet: https://www.biocatnet.de/

Basic Local Alignment Search Tool : https://blast.ncbi.nlm.nih.gov/Blast.cgi

BRENDA: https://www.brenda-enzymes.org/

CAVER: http://www.caver.cz/

KEGG: https://www.genome.jp/kegg/

InterPro: https://www.ebi.ac.uk/interpro/

Pfam: https://pfam.xfam.org/

PrenDB: http://prendb.pharmazie.uni-marburg.de/prendb/home/

Protein Data Bank: https://www.rcsb.org/

RetroBioCat: https://retrobiocat.com/

Revenant: https://revenant.inf.pucp.edu.pe/

Rosetta: https://www.rosettacommons.org/

UniProt: https://www.uniprot.org/

Glossary

Enzyme cascade

Within the biocatalysis community this term is used broadly for concurrent, multienzyme one-pot biocatalytic reactions as well as reactions in which components are added sequentially or process steps are telescoped.

Metagenomic libraries

Genomic libraries constructed by the direct cloning of the large fragments of the environmental DNA into an appropriate vector, transformed into the host bacteria.

C(sp 3)–H functionalization

A type of reaction in which a C–H bond, in which the carbon is sp3 hybridized, is cleaved and a new C–X bond is formed (where X is usually carbon, oxygen, nitrogen or a halide).

Diels–Alderases

Enzymes that catalyse a [4 + 2] cycloaddition reaction between a conjugated diene and a substituted alkene forming a cyclohexene derivative.

Rates of catalysis

The rates by which substrates are converted into products in catalytic reactions.

Saturation mutagenesis

A method that allows the randomization of a target codon or set of codons in a gene.

Iterative combinatorial active site testing

A method that allows the generation of DNA libraries where active site positions are randomized in pairs

Error-prone PCR

A PCR (polymerase chain reaction) that is run under reaction conditions that introduce random mutations into the target DNA sequence.

Gene shuffling

A method that allows for the generation of chimeric libraries of genes.

DNA shuffling

A method that allows the recombination of beneficial mutations in a directed evolution experiment.

High performance liquid chromatography

An analytical technique that allows for the rapid separation and quantification of compound mixtures using pressurized liquid solvent passed through chromatographic columns.

Nonsense codon

A codon within the genetic code that does not encode an amino acid but is recognized as a stop codon in transcription and translation of DNA.

Regioselectivity

The property that favours bond formation or breaking at a particular atom over all other possible atoms in a molecule.

Enzyme operational stability

Retention of enzyme activity when the enzyme is in use.

Evolvability

Capacity of an enzyme to acquire beneficial properties or functions through genetic modification.

Design of experiments

A statistical approach to analyse the influence of various factors in a system to predict the optimal operating conditions.

BLAST

(Basic Local Alignment Search Tool). A tool that compares nucleotide or protein sequences of interest (most commonly to sequences within a database), and finds regions of statistically significant similarity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, E.L., Finnigan, W., France, S.P. et al. Biocatalysis. Nat Rev Methods Primers 1, 46 (2021). https://doi.org/10.1038/s43586-021-00044-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-021-00044-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing