Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Artificial metalloenzymes

Abstract

The development of artificial metalloenzymes (ArMs) aims to expand the capabilities of enzymatic catalysis, most notably towards new reaction mechanisms. Frequently, ArMs harness metal cofactors that are not naturally found in enzymes and embed these in specifically selected or designed protein scaffolds. ArMs have been developed for a wide range of natural and non-natural reactions, underscoring their potential to revolutionize fields such as biocatalysis or metabolic engineering. At the same time, replicating the catalytic prowess of natural enzymes is a highly challenging task, and several limitations need to be overcome to make ArM catalysis widely applicable. In this Primer, we introduce the state of the art in designing and engineering ArMs, describing best practices and important examples and achievements. Moreover, we consider potential applications of ArMs, as well as outstanding challenges, and discuss how these may be addressed in the coming years.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Strategies for creating metalloenzymes with new activity.
Fig. 2: Common transition metal ions and their preferred coordination geometry.
Fig. 3: Representative ArMs resulting from cofactor anchoring within natural or de novo-designed protein scaffolds.
Fig. 4: Computational approaches to design and engineer ArMs.
Fig. 5: Examples of ArM-catalysed reactions with potential applications in industrial biocatalysis.
Fig. 6: ArM expression and assembly in Escherichia coli.

Similar content being viewed by others

References

  1. Buller, R. et al. From nature to industry: harnessing enzymes for biocatalysis. Science 382, eadh8615 (2023).

    Article  Google Scholar 

  2. Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Primers 1, 46 (2021).

    Article  Google Scholar 

  3. Coelho, P. S., Brustad, E. M., Kannan, A. & Arnold, F. H. Olefin cyclopropanation via carbene transfer catalyzed by engineered cytochrome P450 enzymes. Science 339, 307–310 (2013).

    Article  ADS  Google Scholar 

  4. Kan, S. B. J., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon–silicon bond formation: bringing silicon to life. Science 354, 1048–1051 (2016).

    Article  ADS  Google Scholar 

  5. Bordeaux, M., Tyagi, V. & Fasan, R. Highly diastereoselective and enantioselective olefin cyclopropanation using engineered myoglobin‐based catalysts. Angew. Chem. Int. Ed. 54, 1744–1748 (2015).

    Article  Google Scholar 

  6. Yamamura, K. & Kaiser, E. T. Studies on the oxidase activity of copper(II) carboxypeptidase A. J. Chem. Soc. Chem. Commun. 1976, 830–831 (1976).

    Article  Google Scholar 

  7. Wilson, M. E. & Whitesides, G. M. Conversion of a protein to a homogeneous asymmetric hydrogenation catalyst by site-specific modification with a diphosphinerhodium(I) moiety. J. Am. Chem. Soc. 100, 306–307 (1978).

    Article  Google Scholar 

  8. Bullock, R. M. et al. Using nature’s blueprint to expand catalysis with Earth-abundant metals. Science 369, eabc3183 (2020).

    Article  Google Scholar 

  9. Leveson-Gower, R. B., Mayer, C. & Roelfes, G. The importance of catalytic promiscuity for enzyme design and evolution. Nat. Rev. Chem. 3, 687–705 (2019).

    Article  Google Scholar 

  10. Tokuriki, N. & Tawfik, D. S. Stability effects of mutations and protein evolvability. Curr. Opin. Struct. Biol. 19, 596–604 (2009).

    Article  Google Scholar 

  11. Lu, Y., Yeung, N., Sieracki, N. & Marshall, N. M. Design of functional metalloproteins. Nature 460, 855–862 (2009).

    Article  ADS  Google Scholar 

  12. Yang, H., Srivastava, P., Zhang, C. & Lewis, J. C. A general method for artificial metalloenzyme formation through strain-promoted azide-alkyne cycloaddition. ChemBioChem 15, 223–227 (2014).

    Article  Google Scholar 

  13. Srivastava, P., Yang, H., Ellis-Guardiola, K. & Lewis, J. C. Engineering a dirhodium artificial metalloenzyme for selective olefin cyclopropanation. Nat. Commun. 6, 7789 (2015).

    Article  ADS  Google Scholar 

  14. Fujieda, N. et al. A well-defined osmium-cupin complex: hyperstable artificial osmium peroxygenase. J. Am. Chem. Soc. 139, 5149–5155 (2017).

    Article  Google Scholar 

  15. Chalkley, M. J., Mann, S. I. & Degrado, W. F. De novo metalloprotein design. Nat. Rev. Chem. 6, 31–50 (2021).

    Article  Google Scholar 

  16. Watson, J. L. et al. De novo design of protein structure and function with RFdiffusion. Nature 620, 1089–1100 (2023).

    Article  ADS  Google Scholar 

  17. Dauparas, J. et al. Robust deep learning-based protein sequence design using ProteinMPNN. Science 378, 49–56 (2022).

    Article  ADS  Google Scholar 

  18. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold all-atom. Science 384, eadl2528 (2024).

    Article  Google Scholar 

  19. Hoffnagle, A. M. & Tezcan, F. A. Atomically accurate design of metalloproteins with predefined coordination geometries. J. Am. Chem. Soc. 145, 14208–14214 (2023).

    Article  Google Scholar 

  20. Putignano, V., Rosato, A., Banci, L. & Andreini, C. MetalPDB in 2018: a database of metal sites in biological macromolecular structures. Nucleic Acids Res. 46, D459–D464 (2018).

    Article  Google Scholar 

  21. Akcapinar, G. B. & Sezerman, O. U. Computational approaches for de novo design and redesign of metal-binding sites on proteins. Biosci. Rep. 37, BSR20160179 (2017).

    Article  Google Scholar 

  22. Jeong, W. J. & Song, W. J. Design and directed evolution of noncanonical β-stereoselective metalloglycosidases. Nat. Commun. 13, 6844 (2022).

    Article  ADS  Google Scholar 

  23. Fujieda, N. et al. Cupin variants as a macromolecular ligand library for stereoselective Michael addition of nitroalkanes. Angew. Chem. Int. Ed. 59, 7717–7720 (2020).

    Article  Google Scholar 

  24. Churchfield, L. A. & Tezcan, F. A. Design and construction of functional supramolecular metalloprotein assemblies. Acc. Chem. Res. 52, 345–355 (2019).

    Article  Google Scholar 

  25. Song, W. J. & Tezcan, F. A. A designed supramolecular protein assembly with in vivo enzymatic activity. Science 346, 1525–1528 (2014). This study reports an artificial metallo-β-lactamase that is functional in the periplasm of E. coli and enables survival in the presence of ampicillin.

    Article  ADS  Google Scholar 

  26. Rittle, J., Field, M. J., Green, M. T. & Tezcan, F. A. An efficient, step-economical strategy for the design of functional metalloproteins. Nat. Chem. 11, 434–441 (2019).

    Article  Google Scholar 

  27. Choi, T. S. & Tezcan, F. A. Overcoming universal restrictions on metal selectivity by protein design. Nature 603, 522–527 (2022).

    Article  ADS  Google Scholar 

  28. Irving, H. & Williams, R. J. P. Order of stability of metal complexes. Nature 162, 746–747 (1948).

    Article  ADS  Google Scholar 

  29. Choi, T. S. & Tezcan, F. A. Design of a flexible, Zn-selective protein scaffold that displays anti-Irving–Williams behavior. J. Am. Chem. Soc. 144, 18090–18100 (2022).

    Article  Google Scholar 

  30. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  Google Scholar 

  31. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  ADS  Google Scholar 

  32. Grigoryan, G. & Degrado, W. F. Probing designability via a generalized model of helical bundle geometry. J. Mol. Biol. 405, 1079–1100 (2011).

    Article  Google Scholar 

  33. Lupas, A. N. & Bassler, J. Coiled coils — a model system for the 21st century. Trends Biochem. Sci. 42, 130–140 (2017).

    Article  Google Scholar 

  34. Zastrow, M. L., Peacock, A. F. A., Stuckey, J. A. & Pecoraro, V. L. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4, 118–123 (2012).

    Article  Google Scholar 

  35. Zastrow, M. L. & Pecoraro, V. L. Designing functional metalloproteins: from structural to catalytic metal sites. Coord. Chem. Rev. 257, 2565–2588 (2013).

    Article  Google Scholar 

  36. Yu, F., Penner-Hahn, J. E. & Pecoraro, V. L. De novo-designed metallopeptides with type 2 copper centers: modulation of reduction potentials and nitrite reductase activities. J. Am. Chem. Soc. 135, 18096–18107 (2013).

    Article  Google Scholar 

  37. Koebke, K. J. et al. Modifying the steric properties in the second coordination sphere of designed peptides leads to enhancement of nitrite reductase activity. Angew. Chem. Int. Ed. 57, 3954–3957 (2018).

    Article  Google Scholar 

  38. Lombardi, A., Pirro, F., Maglio, O., Chino, M. & Degrado, W. F. De novo design of four-helix bundle metalloproteins: one scaffold, diverse reactivities. Acc. Chem. Res. 52, 1148–1159 (2019).

    Article  Google Scholar 

  39. Kaplan, J. & Degrado, W. F. De novo design of catalytic proteins. Proc. Natl Acad. Sci. USA 101, 11566–11570 (2004).

    Article  ADS  Google Scholar 

  40. Faiella, M. et al. An artificial di-iron oxo-protein with phenol oxidase activity. Nat. Chem. Biol. 5, 882–884 (2009).

    Article  Google Scholar 

  41. Reig, A. J. et al. Alteration of the oxygen-dependent reactivity of de novo Due Ferri proteins. Nat. Chem. 4, 900–906 (2012).

    Article  Google Scholar 

  42. Chino, M. et al. A de novo heterodimeric Due Ferri protein minimizes the release of reactive intermediates in dioxygen‐dependent oxidation. Angew. Chem. Int. Ed. 56, 15580–15583 (2017).

    Article  ADS  Google Scholar 

  43. Paredes, A., Loh, B. M., Peduzzi, O. M., Reig, A. J. & Buettner, K. M. DNA cleavage by a de novo designed protein–titanium complex. Inorg. Chem. 59, 11248–11252 (2020).

    Article  Google Scholar 

  44. Der, B. S. et al. Metal-mediated affinity and orientation specificity in a computationally designed protein homodimer. J. Am. Chem. Soc. 134, 375–385 (2012).

    Article  Google Scholar 

  45. Studer, S. et al. Evolution of a highly active and enantiospecific metalloenzyme from short peptides. Science 362, 1285–1288 (2018). This study illustrates how a simple de novo-designed ArM can be turned into an efficient enzyme by means of directed evolution.

    Article  ADS  Google Scholar 

  46. Wei, Y. et al. Stably folded de novo proteins from a designed combinatorial library. Protein Sci. 12, 92–102 (2003).

    Article  Google Scholar 

  47. Schnettler, J. D. et al. Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins. Nat. Chem. 16, 1200–1208 (2024).

    Article  Google Scholar 

  48. Di Meo, T. et al. alphaRep A3: a versatile artificial scaffold for metalloenzyme design. Chemistry 23, 10156–10166 (2017).

    Article  Google Scholar 

  49. Huang, P.-S. et al. De novo design of a four-fold symmetric TIM-barrel protein with atomic-level accuracy. Nat. Chem. Biol. 12, 29–34 (2016).

    Article  ADS  Google Scholar 

  50. Caldwell, S. J. et al. Tight and specific lanthanide binding in a de novo TIM barrel with a large internal cavity designed by symmetric domain fusion. Proc. Natl Acad. Sci. USA 117, 30362–30369 (2020).

    Article  ADS  Google Scholar 

  51. Mattocks, J. A., Tirsch, J. L. & Cotruvo, J. A. in Methods in Enzymology Vol. 651 (ed. Cotruvo, J. A.) 23–61 (Academic, 2021).

  52. Klein, A. S. et al. A de novo metalloenzyme for cerium photoredox catalysis. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.4c04618 (2024). This study demonstrates metal-dependent photoredox catalysis in a de novo-designed ArM.

  53. Drienovská, I. & Roelfes, G. Expanding the enzyme universe with genetically encoded unnatural amino acids. Nat. Catal. 3, 193–202 (2020).

    Article  Google Scholar 

  54. Lee, J., Yang, M. & Song, W. J. The expanded landscape of metalloproteins by genetic incorporation of noncanonical amino acids. Bull. Korean Chem. Soc. 44, 23–34 (2023).

    Article  Google Scholar 

  55. Xie, J., Liu, W. & Schultz, P. G. A genetically encoded bidentate, metal-binding amino acid. Angew. Chem. Int. Ed. 46, 9239–9242 (2007).

    Article  Google Scholar 

  56. Lee, H. S. & Schultz, P. G. Biosynthesis of a site-specific DNA cleaving protein. J. Am. Chem. Soc. 130, 13194–13195 (2008).

    Article  Google Scholar 

  57. Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

    Article  Google Scholar 

  58. Jung, S.-M., Yang, M. & Song, W. J. Symmetry-adapted synthesis of dicopper oxidases with divergent dioxygen reactivity. Inorg. Chem. 61, 12433–12441 (2022).

    Article  Google Scholar 

  59. Lee, J. & Song, W. J. Photocatalytic C–O coupling enzymes that operate via intramolecular electron transfer. J. Am. Chem. Soc. 145, 5211–5221 (2023).

    Article  Google Scholar 

  60. Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    Article  ADS  Google Scholar 

  61. Key, H. M., Dydio, P., Clark, D. S. & Hartwig, J. F. Abiological catalysis by artificial haem proteins containing noble metals in place of iron. Nature 534, 534–537 (2016). This study demonstrates that the iron in myoglobin can be replaced with various noble metals, resulting in activity for new reactions.

    Article  ADS  Google Scholar 

  62. Liang, A. D., Serrano-Plana, J., Peterson, R. L. & Ward, T. R. Artificial metalloenzymes based on the biotin–streptavidin technology: enzymatic cascades and directed evolution. Acc. Chem. Res. 52, 585–595 (2019).

    Article  Google Scholar 

  63. Waser, V., Mukherjee, M., Tachibana, R., Igareta, N. V. & Ward, T. R. An artificial [Fe4S4]-containing metalloenzyme for the reduction of CO2 to hydrocarbons. J. Am. Chem. Soc. 145, 14823–14830 (2023).

    Article  Google Scholar 

  64. Christoffel, F. et al. Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nat. Catal. 4, 643–653 (2021).

    Article  Google Scholar 

  65. Wu, S. et al. Breaking symmetry: engineering single-chain dimeric streptavidin as host for artificial metalloenzymes. J. Am. Chem. Soc. 141, 15869–15878 (2019).

    Article  Google Scholar 

  66. Raines, D. J. et al. Redox-switchable siderophore anchor enables reversible artificial metalloenzyme assembly. Nat. Catal. 1, 680–688 (2018).

    Article  Google Scholar 

  67. Bos, J., Browne, W. R., Driessen, A. J. M. & Roelfes, G. Supramolecular assembly of artificial metalloenzymes based on the dimeric protein LmrR as promiscuous scaffold. J. Am. Chem. Soc. 137, 9796–9799 (2015).

    Article  Google Scholar 

  68. Zhou, Z. & Roelfes, G. Synergistic catalysis in an artificial enzyme by simultaneous action of two abiological catalytic sites. Nat. Catal. 3, 289–294 (2020). This study demonstrates the combination of two abiological catalytic groups to achieve synergistic catalysis.

    Article  Google Scholar 

  69. Lichtenstein, B. R. et al. Engineering oxidoreductases: maquette proteins designed from scratch. Biochem. Soc. Trans. 40, 561–566 (2012).

    Article  Google Scholar 

  70. Farid, T. A. et al. Elementary tetrahelical protein design for diverse oxidoreductase functions. Nat. Chem. Biol. 9, 826–833 (2013).

    Article  Google Scholar 

  71. Watkins, D. W. et al. Construction and in vivo assembly of a catalytically proficient and hyperthermostable de novo enzyme. Nat. Commun. 8, 358 (2017).

    Article  ADS  Google Scholar 

  72. Stenner, R., Steventon, J. W., Seddon, A. & Anderson, J. L. R. A de novo peroxidase is also a promiscuous yet stereoselective carbene transferase. Proc. Natl Acad. Sci. USA 117, 1419–1428 (2020).

    Article  ADS  Google Scholar 

  73. Hutchins, G. H. et al. An expandable, modular de novo protein platform for precision redox engineering. Proc. Natl Acad. Sci. USA 120, e2306046120 (2023).

    Article  Google Scholar 

  74. Ennist, N. M. et al. De novo protein design of photochemical reaction centers. Nat. Commun. 13, 4937 (2022).

    Article  ADS  Google Scholar 

  75. Kalvet, I. et al. Design of heme enzymes with a tunable substrate binding pocket adjacent to an open metal coordination site. J. Am. Chem. Soc. 145, 14307–14315 (2023).

    Article  Google Scholar 

  76. Doyle, L. et al. Rational design of α-helical tandem repeat proteins with closed architectures. Nature 528, 585–588 (2015).

    Article  ADS  Google Scholar 

  77. Bos, J., Fusetti, F., Driessen, A. J. M. & Roelfes, G. Enantioselective artificial metalloenzymes by creation of a novel active site at the protein dimer interface. Angew. Chem. Int. Ed. 51, 7472–7475 (2012).

    Article  Google Scholar 

  78. Bos, J., García-Herraiz, A. & Roelfes, G. An enantioselective artificial metallo-hydratase. Chem. Sci. 4, 3578–3582 (2013).

    Article  Google Scholar 

  79. Kato, S., Onoda, A., Schwaneberg, U. & Hayashi, T. Evolutionary engineering of a Cp*Rh(III) complex-linked artificial metalloenzyme with a chimeric β-barrel protein scaffold. J. Am. Chem. Soc. 145, 8285–8290 (2023).

    Article  Google Scholar 

  80. Zubi, Y. S., Liu, B., Gu, Y., Sahoo, D. & Lewis, J. C. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Chem. Sci. 13, 1459–1468 (2022).

    Article  Google Scholar 

  81. Liu, B., Zubi, Y. S. & Lewis, J. C. Iridium(III) polypyridine artificial metalloenzymes with tunable photophysical properties: a new platform for visible light photocatalysis in aqueous solution. Dalton Trans. 52, 5034–5038 (2023).

    Article  Google Scholar 

  82. Alonso, S. et al. Genetically engineered proteins with two active sites for enhanced biocatalysis and synergistic chemo- and biocatalysis. Nat. Catal. 3, 319–328 (2020).

    Article  Google Scholar 

  83. Stein, A. et al. A dual anchoring strategy for the directed evolution of improved artificial transfer hydrogenases based on carbonic anhydrase. ACS Cent. Sci. 7, 1874–1884 (2021).

    Article  Google Scholar 

  84. Hyster, T. K., Knorr, L., Ward, T. R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 338, 500–503 (2012).

    Article  ADS  Google Scholar 

  85. Nechay, M. R., Valdez, C. E. & Alexandrova, A. N. Computational treatment of metalloproteins. J. Phys. Chem. B 119, 5945–5956 (2015).

    Article  Google Scholar 

  86. Gallup, N. M. & Alexandrova, A. N. in Methods in Enzymology Vol. 577 (ed. Voth, G. A.) 319–339 (Academic, 2016).

  87. Hassan, I. S. et al. Tuning through-space interactions via the secondary coordination sphere of an artificial metalloenzyme leads to enhanced Rh(III)-catalysis. Chem. Sci. 13, 9220–9224 (2022).

    Article  Google Scholar 

  88. Reetz, M. T. Directed evolution of artificial metalloenzymes: a universal means to tune the selectivity of transition metal catalysts? Acc. Chem. Res. 52, 336–344 (2019).

    Article  Google Scholar 

  89. Wang, Y. et al. Directed evolution: methodologies and applications. Chem. Rev. 121, 12384–12444 (2021).

    Article  Google Scholar 

  90. Vornholt, T. et al. Systematic engineering of artificial metalloenzymes for new-to-nature reactions. Sci. Adv. 7, eabe4208 (2021).

    Article  ADS  Google Scholar 

  91. Vornholt, T. et al. Enhanced sequence-activity mapping and evolution of artificial metalloenzymes by active learning. ACS Cent. Sci. 10, 1357–1370 (2024).

    Article  Google Scholar 

  92. Vallapurackal, J. et al. Ultrahigh‐throughput screening of an artificial metalloenzyme using double emulsions. Angew. Chem. Int. Ed. 61, e202207328 (2022).

    Article  ADS  Google Scholar 

  93. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).This study demonstrates the application of a new-to-nature metathesis reaction in the periplasm of E. coli.

    Article  ADS  Google Scholar 

  94. Yang, H. et al. Evolving artificial metalloenzymes via random mutagenesis. Nat. Chem. 10, 318–324 (2018). This study provides an example of a covalent anchoring strategy and directed evolution by random mutagenesis.

    Article  ADS  Google Scholar 

  95. Basler, S. et al. Efficient Lewis acid catalysis of an abiological reaction in a de novo protein scaffold. Nat. Chem. 13, 231–235 (2021).

    Article  Google Scholar 

  96. Yang, J., Li, F.-Z. & Arnold, F. H. Opportunities and challenges for machine learning-assisted enzyme engineering. ACS Cent. Sci. 10, 226–241 (2024).

    Article  Google Scholar 

  97. Ao, Y. F. et al. Data‐driven protein engineering for improving catalytic activity and selectivity. ChemBioChem 25, e202300754 (2024).

    Article  Google Scholar 

  98. Wittmann, B. J., Johnston, K. E., Almhjell, P. J. & Arnold, F. H. evSeq: cost-effective amplicon sequencing of every variant in a protein library. ACS Synth. Biol. 11, 1313–1324 (2022).

    Article  Google Scholar 

  99. Wu, Z., Kan, S. B. J., Lewis, R. D., Wittmann, B. J. & Arnold, F. H. Machine learning-assisted directed protein evolution with combinatorial libraries. Proc. Natl Acad. Sci. USA 116, 8852–8858 (2019).

    Article  ADS  Google Scholar 

  100. Eisenthal, R., Danson, M. J. & Hough, D. W. Catalytic efficiency and kcat/KM: a useful comparator? Trends Biotechnol. 25, 247–249 (2007).

    Article  Google Scholar 

  101. Hanson, A. D. et al. The number of catalytic cycles in an enzyme’s lifetime and why it matters to metabolic engineering. Proc. Natl Acad. Sci. USA 118, e2023348118 (2021).

    Article  Google Scholar 

  102. Blanco, C. O. & Fogg, D. E. Water-accelerated decomposition of olefin metathesis catalysts. ACS Catal. 13, 1097–1102 (2023).

    Article  Google Scholar 

  103. Chang, T.-C., Vong, K., Yamamoto, T. & Tanaka, K. Prodrug activation by gold artificial metalloenzyme‐catalyzed synthesis of phenanthridinium derivatives via hydroamination. Angew. Chem. Int. Ed. 60, 12446–12454 (2021).

    Article  Google Scholar 

  104. Eda, S. et al. Biocompatibility and therapeutic potential of glycosylated albumin artificial metalloenzymes. Nat. Catal. 2, 780–792 (2019). This study demonstrates that glycosylated ArMs can protect noble metal catalysts from inactivation.

    Article  Google Scholar 

  105. Mukherjee, M. et al. An artificial peroxidase based on the biotin-streptavidin technology that rivals the efficiency of natural peroxidases. Preprint at https://doi.org/10.26434/chemrxiv-2023-s830k (2023).

  106. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  Google Scholar 

  107. Köhler, V. et al. Synthetic cascades are enabled by combining biocatalysts with artificial metalloenzymes. Nat. Chem. 5, 93–99 (2013).

    Article  Google Scholar 

  108. Harnden, K. A., Roy, A. & Hosseinzadeh, P. Overview of methods for purification and characterization of metalloproteins. Curr. Protocol. 1, e234 (2021).

    Article  Google Scholar 

  109. Zetzsche, L. E. & Narayan, A. R. H. Broadening the scope of biocatalytic C-C bond formation. Nat. Rev. Chem. 4, 334–346 (2020).

    Article  Google Scholar 

  110. Grimm, A. R. et al. Cavity size engineering of a β-barrel protein generates efficient biohybrid catalysts for olefin metathesis. ACS Catal. 8, 3358–3364 (2018).

    Article  Google Scholar 

  111. Mayer, C., Gillingham, D. G., Ward, T. R. & Hilvert, D. An artificial metalloenzyme for olefin metathesis. Chem. Commun. 47, 12068–12070 (2011).

    Article  Google Scholar 

  112. Chatterjee, A. et al. An enantioselective artificial Suzukiase based on the biotin-streptavidin technology. Chem. Sci. 7, 673–677 (2016).

    Article  Google Scholar 

  113. Villarino, L. et al. An artificial heme enzyme for cyclopropanation reactions. Angew. Chem. Int. Ed. 57, 7785–7789 (2018).

    Article  Google Scholar 

  114. Bornscheuer, U. T. The fourth wave of biocatalysis is approaching. Philos. Trans. R. Soc. A 376, 20170063 (2018).

    Article  ADS  Google Scholar 

  115. Maghraby, Y. R., El-Shabasy, R. M., Ibrahim, A. H. & Azzazy, H. M. E. Enzyme immobilization technologies and industrial applications. ACS Omega 8, 5184–5196 (2023).

    Article  Google Scholar 

  116. Hestericova, M. et al. Immobilization of an artificial imine reductase within silica nanoparticles improves its performance. Chem. Commun. 52, 9462–9465 (2016).

    Article  Google Scholar 

  117. Poizat, M., Arends, I. W. C. E. & Hollmann, F. On the nature of mutual inactivation between [Cp*Rh(bpy)(H2O)]2+ and enzymes — analysis and potential remedies. J. Mol. Catal. B Enzym. 63, 149–156 (2010).

    Article  Google Scholar 

  118. Mertens, M. A. S. et al. Chemoenzymatic cascade for stilbene production from cinnamic acid catalyzed by ferulic acid decarboxylase and an artificial metathease. Catal. Sci. Technol. 9, 5572–5576 (2019).

    Article  Google Scholar 

  119. Wilson, Y. M., Dürrenberger, M., Nogueira, E. S. & Ward, T. R. Neutralizing the detrimental effect of glutathione on precious metal catalysts. J. Am. Chem. Soc. 136, 8928–8932 (2014).

    Article  Google Scholar 

  120. Chordia, S., Narasimhan, S., Lucini Paioni, A., Baldus, M. & Roelfes, G. In vivo assembly of artificial metalloenzymes and application in whole‐cell biocatalysis. Angew. Chem. Int. Ed. 60, 5913–5920 (2021). This study demonstrates the assembly of an ArM consisting of LmrR and a copper(II) complex in the cytoplasm of E. coli.

    Article  Google Scholar 

  121. Huang, J. et al. Unnatural biosynthesis by an engineered microorganism with heterologously expressed natural enzymes and an artificial metalloenzyme. Nat. Chem. 13, 1186–1191 (2021). This study demonstrates that ArMs can be used alongside natural enzymes to create new metabolic pathways.

    Article  Google Scholar 

  122. Gu, Y. et al. Directed evolution of artificial metalloenzymes in whole cells. Angew. Chem. Int. Ed. 61, e202110519 (2022).

    Article  Google Scholar 

  123. Delcour, A. H. Outer membrane permeability and antibiotic resistance. Biochim. Biophys. Acta 1794, 808–816 (2009).

    Article  Google Scholar 

  124. Kleiner-Grote, G. R. M., Risse, J. M. & Friehs, K. Secretion of recombinant proteins from E. coli. Eng. Life Sci. 18, 532–550 (2018).

    Article  Google Scholar 

  125. Rebelein, J. G., Cotelle, Y., Garabedian, B. & Ward, T. R. Chemical optimization of whole-cell transfer hydrogenation using carbonic anhydrase as host protein. ACS Catal. 9, 4173–4178 (2019).

    Article  Google Scholar 

  126. Heinisch, T. et al. E. coli surface display of streptavidin for directed evolution of an allylic deallylase. Chem. Sci. 9, 5383–5388 (2018).

    Article  Google Scholar 

  127. Grimm, A. R. et al. A whole cell E. coli display platform for artificial metalloenzymes: poly(phenylacetylene) production with a rhodium-nitrobindin metalloprotein. ACS Catal. 8, 2611–2614 (2018).

    Article  Google Scholar 

  128. Ghattas, W. et al. Receptor-based artificial metalloenzymes on living human cells. J. Am. Chem. Soc. 140, 8756–8762 (2018).

    Article  Google Scholar 

  129. Nielsen, M. M. & Pedersen, C. M. Vessel effects in organic chemical reactions; a century-old, overlooked phenomenon. Chem. Sci. 13, 6181–6196 (2022).

    Article  Google Scholar 

  130. Santos-Aberturas, J., Dörr, M. & Bornscheuer, U. T. Normalized screening of protein engineering libraries by split-GFP crude cell extract quantification. Methods Mol. Biol. 1685, 157–170 (2018).

    Article  Google Scholar 

  131. Tipton, K. F. et al. Standards for Reporting Enzyme Data: the STRENDA Consortium: what it aims to do and why it should be helpful. Perspect. Sci. 1, 131–137 (2014).

    Article  Google Scholar 

  132. Finnigan, W., Hepworth, L. J., Flitsch, S. L. & Turner, N. J. RetroBioCat as a computer-aided synthesis planning tool for biocatalytic reactions and cascades. Nat. Catal. 4, 98–104 (2021).

    Article  Google Scholar 

  133. Stanek, J., Hoffmann, A. & Herres-Pawlis, S. Renaissance of the entatic state principle. Coord. Chem. Rev. 365, 103–121 (2018).

    Article  Google Scholar 

  134. Davis, H. J. & Ward, T. R. Artificial metalloenzymes: challenges and opportunities. ACS Cent. Sci. 5, 1120–1136 (2019).

    Article  Google Scholar 

  135. Alonso-Cotchico, L., Rodríguez-Guerra, J., Lledós, A. & Maréchal, J.-D. Molecular modeling for artificial metalloenzyme design and optimization. Acc. Chem. Res. 53, 896–905 (2020).

    Article  Google Scholar 

  136. Kortemme, T. De novo protein design — from new structures to programmable functions. Cell 187, 526–544 (2024).

    Article  Google Scholar 

  137. Jeschek, M., Panke, S. & Ward, T. R. Artificial metalloenzymes on the verge of new-to-nature metabolism. Trends Biotechnol. 36, 60–72 (2018).

    Article  Google Scholar 

  138. Jeschek, M., Gerngross, D. & Panke, S. Rationally reduced libraries for combinatorial pathway optimization minimizing experimental effort. Nat. Commun. 7, 11163 (2016).

    Article  ADS  Google Scholar 

  139. Baek, M. et al. Efficient and accurate prediction of protein structure using RoseTTAFold2. Preprint at bioRxiv https://doi.org/10.1101/2023.05.24.542179 (2023).

  140. Yeh, A. H.-W. et al. De novo design of luciferases using deep learning. Nature 614, 774–780 (2023).

    Article  ADS  Google Scholar 

  141. Wang, J. et al. Scaffolding protein functional sites using deep learning. Science 377, 387–394 (2022).

    Article  ADS  Google Scholar 

  142. Dauparas, J. et al. Atomic context-conditioned protein sequence design using LigandMPNN. Preprint at bioRxiv https://doi.org/10.1101/2023.12.22.573103 (2023).

  143. Tian, R. et al. Establishing a synthetic orthogonal replication system enables accelerated evolution in E. coli. Science 383, 421–426 (2024).

    Article  ADS  Google Scholar 

  144. Rodriguez-Robles, E. et al. Rational design of a bacterial import system for new-to-nature molecules. Metab. Eng. 85, 26–34 (2024).

    Article  Google Scholar 

  145. Ho, T.-L. Hard soft acids bases (HSAB) principle and organic chemistry. Chem. Rev. 75, 1–20 (1975).

    Article  Google Scholar 

  146. Dürrenberger, M. et al. Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines. Angew. Chem. Int. Ed. 50, 3026–3029 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Cathleen Zeymer, Woon Ju Song, Gerard Roelfes or Thomas R. Ward.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Anca Pordea, Brandon Bloomer and Agathe Urvoas for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Manually curated collection of publications: https://amp.ward-lab.ch/

Glossary

Artificial metalloenzyme

A man-made assembly of a protein and a non-native metal cofactor (a metal ion or metal complex).

Cofactor

In the context of artificial metalloenzymes, the cofactor is a metal ion or metal complex that can bind to the protein scaffold and is required for catalysis.

Coiled coil

A structural motif in which several α-helices are coiled together like the strands of a rope.

Density functional theory

(DFT). A quantum-chemical method to calculate the electronic structure and optimized geometry of molecules and transition states.

Directed evolution

Directed evolution mimics natural evolution in the laboratory using cycles of mutagenesis and screening or selection.

Epistasis

The phenomenon that the effect of one mutation is dependent on the presence or absence of a second mutation.

Irving–Williams series

Describes trends in the stability of metal complexes containing divalent first-row transition metal ions, with Cu(II) typically forming the most stable complexes.

Metalloenzyme

An enzyme that requires one or more metal ions for its catalytic activity.

Metalloenzyme repurposing

When natural metalloenzymes are used to catalyse unnatural reactions.

Protein scaffold

In the context of artificial metalloenzymes (ArMs), the protein scaffold refers to a protein that in its apo-form does not have catalytic activity for the desired reaction but can bind a metal cofactor. Following assembly of the ArM, the protein scaffold can influence the metal-catalysed reaction in various ways.

Rosetta

The Rosetta software suite facilitates ab initio protein structure prediction and protein design in a physics-based approach.

Suicide inhibition

An irreversible form of enzyme inhibition wherein a substrate analogue forms a covalent bond with the enzyme.

Theozyme

A theoretical model of a minimal active site comprising the computed transition state and catalytic metal ions or amino acid residues.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vornholt, T., Leiss-Maier, F., Jeong, W.J. et al. Artificial metalloenzymes. Nat Rev Methods Primers 4, 78 (2024). https://doi.org/10.1038/s43586-024-00356-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-024-00356-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing