Abstract
Bacteriophage (phages) are viruses that exclusively use bacterial cells for propagation, killing the bacterial host in the process. In phage therapy, phages are used to reduce bacterial numbers, thereby curing bacterial infections. Although this principle is conceptually straightforward, its practical application faces several hurdles. In this Primer, the practical aspects of phage therapy are outlined. We introduce the microbiological methods used to prepare and characterize phages and elucidate their interactions with bacteria. The discussion covers how the information in complete phage genome sequences is used, along with how RNA sequencing can enhance our understanding of phage biology. Selection parameters for therapeutic phages for clinical applications and key elements in industrial-scale phage production are provided. A summary of clinical trials both past and present, phage administration and dosing issues is analysed, as well as limitations associated with phage therapy and mitigation strategies. Finally, we speculate on the future of phage therapy.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
MacNair, C. R., Rutherford, S. T. & Tan, M. W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat. Rev. Microbiol. 22, 262–275 (2024).
Souque, C., Gonzalez Ojeda, I. & Baym, M. From Petri dishes to patients to populations: scales and evolutionary mechanisms driving antibiotic resistance. Ann. Rev. Microbiol. 78, 361–382 (2024).
Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).
Bowater, L. The Microbes Fight Back: Antibiotic Resistance (The Royal Society of Chemistry, 2016).
Brady, A. et al. Molecular basis of lysis-lysogeny decisions in Gram-positive phages. Ann. Rev. Microbiol. 75, 563–581 (2021).
Thiel, K. Old dogma, new tricks — 21st century phage therapy. Nat. Biotechnol. 22, 31–36 (2004).
Pirnay, J. P. et al. The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm. Res. 28, 934–937 (2011).
Poxleitner, M., Pope, W., Jacobs-Sera, D., Sivanathan, V. & Hatfull, G. Phage Discovery Guide (Howard Hughes Medical Institute, 2018).
Hyman, P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals https://doi.org/10.3390/ph12010035 (2019).
Van Twest, R. & Kropinski, A. M. Bacteriophage enrichment from water and soil. Methods Mol. Biol. 501, 15–21 (2009).
Gratia, A. Des relations numériques entre bactéries lysogènes et particules de bactériophages. Annales l’Institut Pasteur 57, 652–676 (1936).
Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).
Matsuzaki, S., Uchiyama, J., Takemura-Uchiyama, I., Ujihara, T. & Daibata, M. Isolation of bacteriophages for fastidious bacteria. Methods Mol. Biol. 1693, 3–10 (2018).
Gencay, Y. E., Birk, T., Sorensen, M. C. & Brondsted, L. Methods for isolation, purification, and propagation of bacteriophages of Campylobacter jejuni. Methods Mol. Biol. 1512, 19–28 (2017).
Abedon, S. T. & Yin, J. Bacteriophage plaques: theory and analysis. Methods Mol. Biol. 501, 161–174 (2009).
Vukotic, G. et al. Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Front. Med. 7, 426 (2020).
Iyer, L. M., Anantharaman, V., Krishnan, A., Burroughs, A. M. & Aravind, L. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts. Viruses https://doi.org/10.3390/v13010063 (2021).
Ranta, K., Skurnik, M. & Kiljunen, S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol. 24, 234 (2024).
Shymialevich, D., Wojcicki, M., Swider, O., Srednicka, P. & Sokolowska, B. Characterization and genome study of a newly isolated temperate phage belonging to a new genus targeting Alicyclobacillus acidoterrestris. Genes https://doi.org/10.3390/genes14061303 (2023).
Dedrick, R. M. et al. Mycobacterium abscessus strain morphotype determines phage susceptibility, the repertoire of therapeutically useful phages, and phage resistance. mBio https://doi.org/10.1128/mBio.03431-20 (2021).
Dedrick, R. M. et al. The prophage and plasmid mobilome as a likely driver of mycobacterium abscessus diversity. mBio https://doi.org/10.1128/mBio.03441-20 (2021).
Mavrich, T. N. et al. Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci. Rep. 8, 12772 (2018).
Łobocka, M. et al. in Phage Therapy: Current Research and Applications (eds Borysowski, J., Międzybrodzki, R. & Górski, A.) (Caister Academic Press, 2014).
Hobbs, S. J. & Kranzusch, P. J. Nucleotide immune signaling in CBASS, Pycsar, Thoeris, and CRISPR antiphage defense. Ann. Rev. Microbiol. 78, 255–276 (2024).
Patel, P. H. & Maxwell, K. L. Prophages provide a rich source of antiphage defense systems. Curr. Opin. Microbiol. 73, 102321 (2023).
Gaborieau, B. et al. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information. Nat. Microbiol. 9, 2847–2861 (2024).
Nie, W. et al. Advances in phage–host interaction prediction: in silico method enhances the development of phage therapies. Brief. Bioinform. https://doi.org/10.1093/bib/bbae117 (2024).
Gutnik, D., Evseev, P., Miroshnikov, K. & Shneider, M. Using AlphaFold predictions in viral research. Curr. Issues Mol. Biol. 45, 3705–3732 (2023).
Hasselgren, C. & Oprea, T. I. Artificial intelligence for drug discovery: are we there yet? Annu. Rev. Pharmacol. 64, 527–550 (2024).
Weatherall, J. & Buchan, I. Connected medicines through innovation in data science & AI. Astra Zeneca https://www.astrazeneca.com/what-science-can-do/topics/data-science-ai/connected-medicines-innovations-data-science-ai.html (2023).
Sattar, S. et al. Characterization of two novel lytic bacteriophages having lysis potential against MDR avian pathogenic Escherichia coli strains of zoonotic potential. Sci. Rep. 13, 10043 (2023).
Hyman, P. & Abedon, S. T. Practical methods for determining phage growth parameters. Methods Mol. Biol. 501, 175–202 (2009).
Heineman, R. H. & Bull, J. J. Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution 61, 1695–1709 (2007).
Kannoly, S. et al. Single-cell approach reveals intercellular heterogeneity in phage-producing capacities. Microbiol. Spectr. 11, e0266321 (2023).
Abedon, S. T. & Katsaounis, T. I. Basic phage mathematics. Methods Mol. Biol. 1681, 3–30 (2018).
Shao, Y. & Wang, I. N. Bacteriophage adsorption rate and optimal lysis time. Genetics 180, 471–482 (2008).
Ackermann, H. W. Basic phage electron microscopy. Methods Mol. Biol. 501, 113–126 (2009).
Ackermann, H. W. Sad state of phage electron microscopy. Please shoot the messenger. Microorganisms 2, 1–10 (2013).
Cuervo, A., Losana, P. & Carrascosa, J. L. Observation of bacteriophage ultrastructure by cryo-electron microscopy. Methods Mol. Biol. 2734, 13–25 (2024).
Gomez-Raya-Vilanova, M. V. et al. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Res. 50, 3985–3997 (2022).
Harding, K. R., Kyte, N. & Fineran, P. C. Jumbo phages. Curr. Biol. 33, R750–R751 (2023).
Russell, D. A. Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol. Biol. 1681, 109–125 (2018).
Willenbucher, K. et al. Phage genome diversity in a biogas-producing microbiome analyzed by illumina and nanopore GridION sequencing. Microorganisms https://doi.org/10.3390/microorganisms10020368 (2022).
Wolput, S. et al. Phage–host co-evolution has led to distinct generalized transduction strategies. Nucleic Acids Res. 52, 7780–7791 (2024).
Garneau, J. R., Depardieu, F., Fortier, L. C., Bikard, D. & Monot, M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 7, 8292 (2017).
Turner, D., Adriaenssens, E. M., Tolstoy, I. & Kropinski, A. M. Phage annotation guide: guidelines for assembly and high-quality annotation. Phage 2, 170–182 (2021).
Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen, G. B. Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982).
Gauthier, C. H. & Hatfull, G. F. A bioinformatic ecosystem for bacteriophage genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 16, 1278 (2024).
Fremin, B. J., Bhatt, A. S., Kyrpides, N. C. & Global Phage Small Open Reading Frame Consortium. Thousands of small, novel genes predicted in global phage genomes. Cell Rep. 39, 110984 (2022).
Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).
Wei, X., Zhang, C., Freddolino, P. L. & Zhang, Y. Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons. Bioinformatics 36, 4383–4388 (2020).
Gauthier, C. H. et al. DEPhT: a novel approach for efficient prophage discovery and precise extraction. Nucleic Acids Res. 50, e75 (2022).
Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).
Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).
Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).
Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).
Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).
Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).
Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).
Hatfull, G. F. Actinobacteriophages: genomics, dynamics, and applications. Annu. Rev. Virol. 7, 37–61 (2020).
Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4, e06416 (2015).
Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC — a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses https://doi.org/10.3390/v12111268 (2020).
Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).
Rohwer, F. & Edwards, R. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002).
Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).
Gauthier, C. H. & Hatfull, G. F. PhamClust: a phage genome clustering tool using proteomic equivalence. mSystems https://doi.org/10.1128/msystems.00443-23 (2023).
Grose, J. H. & Casjens, S. R. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470, 421–443 (2014).
Blasdel, B. G., Chevallereau, A., Monot, M., Lavigne, R. & Debarbieux, L. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J. 11, 1988–1996 (2017).
Ceyssens, P. J. et al. Development of giant bacteriophage fKZ is independent of the host transcription apparatus. J. Virol. 88, 10501–10510 (2014).
Wagemans, J. et al. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa. Cell. Microbiol. 16, 1822–1835 (2014).
Yang, Z. et al. Global transcriptomic analysis of the interactions between phage phiAbp1 and extensively drug-resistant Acinetobacter baumannii. mSystems https://doi.org/10.1128/mSystems.00068-19 (2019).
Lood, C. et al. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ. Microbiol. 22, 2165–2181 (2020).
Finstrlova, A. et al. Global transcriptomic analysis of bacteriophage–host interactions between a Kayvirus therapeutic phage and Staphylococcus aureus. Microbiol. Spectr. 10, e0012322 (2022).
Li, X. et al. Temporal transcriptional responses of a vibrio alginolyticus strain to podoviridae phage HH109 revealed by RNA-Seq. mSystems 7, e0010622 (2022).
Arroyo-Moreno, S. et al. Insights into gene transcriptional regulation of Kayvirus bacteriophages obtained from therapeutic mixtures. Viruses https://doi.org/10.3390/v14030626 (2022).
Brandao, A. C. et al. Impact of phage predation on P. aeruginosa adhered to human airway epithelium: major transcriptomic changes in metabolism and virulence-associated genes. RNA Biol. 20, 235–247 (2023).
Leskinen, K., Blasdel, B. G., Lavigne, R. & Skurnik, M. RNA-sequencing reveals the progression of phage–host interactions between phiR1-37 and Yersinia enterocolitica. Viruses 8, 111 (2016).
Zhong, Q. et al. Transcriptomic analysis reveals the dependency of Pseudomonas aeruginosa genes for double-stranded RNA bacteriophage phiYY infection cycle. iScience 23, 101437 (2020).
Wolfram-Schauerte, M., Pozhydaieva, N., Viering, M., Glatter, T. & Hofer, K. Integrated omics reveal time-resolved insights into T4 phage infection of E. coli on proteome and transcriptome levels. Viruses https://doi.org/10.3390/v14112502 (2022).
Lavigne, R. et al. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. mBio 4, e00061-00013 (2013).
Brandao, A. et al. Differential transcription profiling of the phage LUZ19 infection process in different growth media. RNA Biol. 18, 1778–1790 (2021).
Blasdel, B., Ceyssens, P. J. & Lavigne, R. Preparing cDNA libraries from lytic phage-infected cells for whole transcriptome analysis by RNA-Seq. Methods Mol. Biol. 1681, 185–194 (2018).
Blasdel, B. G., Ceyssens, P.-J., Chevallereau, A., Debarbieux, L. & Lavigne, R. Comparative transcriptomics reveals a conserved bacterial adaptive phage response (BAPR) to viral predation. Preprint at bioRxiv https://doi.org/10.1101/248849 (2018).
Wicke, L. et al. Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage ɸKZ. RNA Biol. 18, 1099–1110 (2021).
Putzeys, L. et al. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. Microlife 5, uqae002 (2024).
Putzeys, L. et al. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput. Struct. Biotechnol. J. 20, 2624–2638 (2022).
Bourdin, G. et al. Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl. Environ. Microb. 80, 1469–1476 (2014).
Malik, D. J. Approaches for manufacture, formulation, targeted delivery and controlled release of phage-based therapeutics. Curr. Opin. Biotechnol. 68, 262–271 (2021).
Malik, D. J. et al. Advanced manufacturing, formulation and microencapsulation of therapeutic phages. Clin. Infect. Dis. 77, S370–S383 (2023).
Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00954-17 (2017).
Rebula, L., Raspor, A., Bavcar, M., Strancar, A. & Leskovec, M. CIM monolithic chromatography as a useful tool for endotoxin reduction and purification of bacteriophage particles supported with PAT analytics. J. Chromatogr. B 1217, 123606 (2023).
Carroll-Portillo, A. et al. Standard bacteriophage purification procedures cause loss in numbers and activity. Viruses https://doi.org/10.3390/v13020328 (2021).
Stverakova, D. et al. Rapid identification of intact Staphylococcal bacteriophages using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Viruses https://doi.org/10.3390/v10040176 (2018).
Van Belleghem, J. D., Clement, F., Merabishvili, M., Lavigne, R. & Vaneechoutte, M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 7, 8004 (2017).
Cirefice, G. et al. The future of pyrogenicity testing: phasing out the rabbit pyrogen test. A meeting report. Biologicals 84, 101702 (2023).
Speck, P. & Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnv242 (2016).
Hietala, V., Horsma-Heikkinen, J., Carron, A., Skurnik, M. & Kiljunen, S. The removal of endo- and enterotoxins from bacteriophage preparations. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01674 (2019).
Poma, H. R. et al. Evaluation of concentration efficiency of the Pseudomonas aeruginosa phage PP7 in various water matrixes by different methods. Environ. Monit. Assess. 185, 2565–2576 (2013).
Bonilla, N. et al. Phage on tap — a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ https://doi.org/10.7717/peerj.2261 (2016).
Duan, S. et al. One-step salting-out extraction of bacteriophage from its infection broth of Acinetobacter baumannii. J. Chromatogr. A 1679, 463407 (2022).
Szermer-Olearnik, B. & Boratynski, J. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS ONE 10, e0122672 (2015).
Boratynski, J. et al. Preparation of endotoxin-free bacteriophages. Cell. Mol. Biol. Lett. 9, 253–259 (2004).
Adriaenssens, E. M. et al. CIM((R)) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology 434, 265–270 (2012).
Smrekar, F., Ciringer, M., Strancar, A. & Podgornik, A. Characterisation of methacrylate monoliths for bacteriophage purification. J. Chromatogr. A 1218, 2438–2444 (2011).
Smrekar, F., Ciringer, M., Peterka, M., Podgornik, A. & Strancar, A. Purification and concentration of bacteriophage T4 using monolithic chromatographic supports. J. Chromatogr. B 861, 177–180 (2008).
Wdowiak, M., Paczesny, J. & Raza, S. Enhancing the stability of bacteriophages using physical, chemical, and nano-based approaches: a review. Pharmaceutics https://doi.org/10.3390/pharmaceutics14091936 (2022).
Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).
Richter, L. et al. Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. Sci. Rep. 11, 7387 (2021).
Duyvejonck, H. et al. Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium. Viruses https://doi.org/10.3390/v13050865 (2021).
Tabare, E. et al. A design of experiment approach to optimize spray-dried powders containing Pseudomonas aeruginosa podoviridae and myoviridae bacteriophages. Viruses https://doi.org/10.3390/v13101926 (2021).
Manohar, P. & Ramesh, N. Improved lyophilization conditions for long-term storage of bacteriophages. Sci. Rep. 9, 15242 (2019).
Pathak, V., Chan, H.-K. & Zhou, Q. T. Formulation of bacteriophage for inhalation to treat multidrug-resistant pulmonary infections. KONA Powder Part J. https://doi.org/10.14356/kona.2025016 (2024).
Liang, L. et al. Development of a lyophilization process for Campylobacter bacteriophage storage and transport. Microorganisms https://doi.org/10.3390/microorganisms8020282 (2020).
Leung, S. S. et al. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm. Res. 33, 1486–1496 (2016).
Grasmeijer, N., Stankovic, M., de Waard, H., Frijlink, H. W. & Hinrichs, W. L. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system. Biochim. Biophys. Acta 1834, 763–769 (2013).
Malik, D. J. Bacteriophage encapsulation using spray drying for phage therapy. Curr. Issues Mol. Biol. 40, 303–316 (2021).
Chen, B. et al. Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections. J. Control. Rel. 364, 159–173 (2023).
Chang, R. Y. K., Chow, M. Y. T., Khanal, D., Chen, D. & Chan, H. K. Dry powder pharmaceutical biologics for inhalation therapy. Adv. Drug Deliv. Rev. 172, 64–79 (2021).
Mukhopadhyay, S., To, K. K. W., Liu, Y., Bai, C. & Leung, S. S. Y. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater. Sci. 12, 151–163 (2023).
Yang, Y. et al. Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: a review. J. Control. Rel. 353, 634–649 (2023).
Popescu, M., Van Belleghem, J. D., Khosravi, A. & Bollyky, P. L. Bacteriophages and the immune system. Annu. Rev. Virol. 8, 415–435 (2021).
Dabrowska, K. & Abedon, S. T. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00012-19 (2019).
Hodyra-Stefaniak, K. et al. Bacteriophages engineered to display foreign peptides may become short-circulating phages. Microb. Biotechnol. 12, 730–741 (2019).
Dabrowska, K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).
Echterhof, A. et al. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. JCI Insight https://doi.org/10.1172/jci.insight.181309 (2024).
Nelstrop, A. E., Taylor, G. & Collard, P. Studies on phagocytosis. I. Antigen clearance studies in rabbits. Immunology 14, 325–337 (1968).
Bichet, M. C. et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 24, 102287 (2021).
Kan, L. & Barr, J. J. A mammalian cell’s guide on how to process a bacteriophage. Annu. Rev. Virol. 10, 183–198 (2023).
Gembara, K. & Dabrowska, K. Phage-specific antibodies. Curr. Opin. Biotechnol. 68, 186–192 (2021).
Podlacha, M. et al. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat. Commun. 15, 2274 (2024).
Egido, J. E. et al. Human complement inhibits myophages against Pseudomonas aeruginosa. Viruses https://doi.org/10.3390/v15112211 (2023).
Majewska, J. et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7, 4783–4799 (2015).
Nguyen, S. et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio https://doi.org/10.1128/mBio.01874-17 (2017).
Kurochkina, L. P. et al. Structure, stability, and biological activity of bacteriophage T4 gene product 9 probed with mutagenesis and monoclonal antibodies. J. Struct. Biol. 154, 122–129 (2006).
Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e34 (2017).
Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M. & Donoghue, A. M. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci. 81, 1486–1491 (2002).
Hodyra-Stefaniak, K. et al. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep. 5, 14802 (2015).
Klopot, A. et al. Real-time qPCR as a method for detection of antibody-neutralized phage particles. Front. Microbiol. 8, 2170 (2017).
Oie, C. I. et al. Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci. Rep. 10, 898 (2020).
Kazmierczak, Z. et al. Immune response to therapeutic Staphylococcal bacteriophages in mammals: kinetics of induction, immunogenic structural proteins, natural and induced antibodies. Front. Immunol. 12, 639570 (2021).
Nagafuchi, Y., Yanaoka, H. & Fujio, K. Lessons from transcriptome analysis of autoimmune diseases. Front. Immunol. 13, 857269 (2022).
Novoselov, V. V., Sazonova, M. A., Ivanova, E. A. & Orekhov, A. N. Study of the activated macrophage transcriptome. Exp. Mol. Pathol. 99, 575–580 (2015).
Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).
Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science https://doi.org/10.1126/science.aat9691 (2019).
Miernikiewicz, P. et al. T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS ONE 8, e71036 (2013).
Anonymous. Instructions for the Application of a Liquid Staphylococcal Phage Preparation for Injection (in Russian) (Ministry of Health of the USSR, 1986).
Suh, G. A. et al. Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 66, e0207121 (2022).
Pirnay, J. P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat. Microbiol. 9, 1434–1453 (2024).
Dedrick, R. M. et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27, 1357–1361 (2021).
Storms, Z. J., Teel, M. R., Mercurio, K. & Sauvageau, D. The virulence index: a metric for quantitative analysis of phage virulence. Phage 1, 27–36 (2020).
Attwood, M. et al. Development of antibacterial drug + bacteriophage combination assays. JAC-AMR https://doi.org/10.1093/jacamr/dlae104 (2024).
Gordillo Altamirano, F. L. & Barr, J. J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00066-18 (2019).
Clokie, M. R. J., Blasdel, B. G., Demars, B. O. L. & Sicheritz-Ponten, T. Rethinking phage ecology by rooting it within an established plant framework. Phage 1, 121–136 (2020).
Yukgehnaish, K. et al. PhageLeads: rapid assessment of phage therapeutic suitability using an ensemble machine learning approach. Viruses https://doi.org/10.3390/v14020342 (2022).
Kaneko, T., Osaka, T. & Tsuneda, S. Tailoring effective phage cocktails for long-term lysis of Escherichia coli based on physiological properties of constituent phages. Phage 4, 128–135 (2023).
Haines, M. E. K. et al. Analysis of selection methods to develop novel phage therapy cocktails against antimicrobial resistant clinical isolates of bacteria. Front. Microbiol. 12, 613529 (2021).
Thanki, A. M. et al. Development of a phage cocktail to target Salmonella strains associated with swine. Pharmaceuticals https://doi.org/10.3390/ph15010058 (2022).
Kifelew, L. G. et al. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol. 20, 204 (2020).
Shan, J. et al. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci. Rep. 8, 5091 (2018).
Zaldastanishvili, E. et al. Phage therapy experience at the Eliava phage therapy center: three cases of bacterial persistence. Viruses https://doi.org/10.3390/v13101901 (2021).
Nadareishvili, L. et al. Bacteriophage therapy as a potential management option for surgical wound infections. Phage 1, 158–165 (2020).
Burrowes, B. H., Molineux, I. J. & Fralick, J. A. Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses https://doi.org/10.3390/v11030241 (2019).
Merabishvili, M., Pirnay, J. P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. Methods Mol. Biol. 2734, 49–66 (2024).
Nagel, T. et al. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Curr. Opin. Virol. 53, 101208 (2022).
Pirnay, J. P. & Kutter, E. Bacteriophages: it’s a medicine, Jim, but not as we know it. Lancet Infect. Dis. 21, 309–311 (2021).
Cook, R. et al. Infrastructure for a Phage Reference Database: identification of large-scale biases in the current collection of cultured phage genomes. Phage 2, 214–223 (2021).
Djebara, S. et al. Processing phage therapy requests in a Brussels Military Hospital: lessons identified. Viruses https://doi.org/10.3390/v11030265 (2019).
Aslam, S. et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect. Dis. 7, ofaa389 (2020).
Onallah, H., Hazan, R., Nir-Paz, R. & The Israeli Phage Therapy Center Study Compassionate use of bacteriophages for failed persistent infections during the first 5 years of the Israeli Phage Therapy Center. Open Forum Infect. Dis. 10, ofad221 (2023).
Dedrick, R. M. et al. Phage therapy of mycobacterium infections: compassionate-use of phages in twenty patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac453 (2022).
Pirnay, J. P. et al. The magistral phage. Viruses https://doi.org/10.3390/v10020064 (2018).
Pirnay, J. P. & Verbeken, G. Magistral phage preparations: is this the model for everyone? Clin. Infect. Dis. 77, S360–S369 (2023).
Pirnay, J. P. et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 32, 2173–2179 (2015).
Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(21)00612-5 (2022).
Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).
Torres-Barcelo, C. Phage therapy faces evolutionary challenges. Viruses https://doi.org/10.3390/v10060323 (2018).
McCallin, S. et al. Phages and phage-borne enzymes as new antibacterial agents. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2023.10.018 (2023).
Myelnikov, D. An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922–1955. J. History Med. Allied Sci. 73, 385–411 (2018).
Chanishvili, N. Phage therapy — history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res. 83, 3–40 (2012).
República Portuguesa & lnfarmed. Deliberação N.0 112/CD/2024. lnfarmed https://www.infarmed.pt/documents/15786/9697484/2024-11-15_Delibera%C3%A7%C3%A3o_112_CD_2024/d0424242-a103-1256-cd7d-526aaf12dfac (2024).
Khatami, A. et al. Standardised treatment and monitoring protocol to assess safety and tolerability of bacteriophage therapy for adult and paediatric patients (STAMP study): protocol for an open-label, single-arm trial. BMJ Open 12, e065401 (2022).
Bosco, K., Lynch, S., Sandaradura, I. & Khatami, A. Therapeutic phage monitoring: a review. Clin. Infect. Dis. 77, S384–S394 (2023).
Miedzybrodzki, R. et al. Pharmacokinetic and pharmacodynamic obstacles for phage therapy from the perspective of clinical practice. Clin. Infect. Dis. 77, S395–S400 (2023).
Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR–Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00424-9 (2024).
Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2021).
Miedzybrodzki, R. et al. Clinical aspects of phage therapy. Adv. Virus Res. 83, 73–121 (2012).
Onsea, J. et al. Bacteriophage therapy for difficult-to-treat infections: the implementation of a Multidisciplinary Phage Task Force (The PHAGEFORCE Study Protocol). Viruses https://doi.org/10.3390/v13081543 (2021).
Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. eBioMedicine 4, 124–137 (2016).
Wright, A., Hawkins, C. H., Anggard, E. E. & Harper, D. R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 34, 349–357 (2009).
Fowler, V. G. Jr et al. Exebacase in addition to standard-of-care antibiotics for Staphylococcus aureus bloodstream infections and right-sided infective endocarditis: a phase 3, superiority-design, placebo-controlled, randomized clinical trial (DISRUPT). Clin. Infect. Dis. https://doi.org/10.1093/cid/ciae043 (2024).
Zheng, T. & Zhang, C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb. Biotechnol. 17, e14465 (2024).
Ferry, T. et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 13, 4239 (2022).
McCallin, S., Sacher, J. C., Zheng, J. & Chan, B. K. Current state of compassionate phage therapy. Viruses https://doi.org/10.3390/v11040343 (2019).
Advocating for phage therapy. Nat. Microbiol. 9, 1397–1398 (2024).
Nagel, T. E. et al. The developing world urgently needs phages to combat pathogenic bacteria. Front. Microbiol. 7, 882 (2016).
Tay, A. How building a phage directory can mean life or death for patients. Nature https://doi.org/10.1038/d41586-023-02209-0 (2023).
Bouras, G. et al. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics https://doi.org/10.1093/bioinformatics/btac776 (2023).
Coppens, L., Wicke, L. & Lavigne, R. SAPPHIRE.CNN: implementation of dRNA-seq-driven, species-specific promoter prediction using convolutional neural networks. Comput. Struct. Biotechnol. J. 20, 4969–4974 (2022).
Sampaio, M., Rocha, M., Oliveira, H. & Dias, O. Predicting promoters in phage genomes using PhagePromoter. Bioinformatics 35, 5301–5302 (2019).
Putzeys, L. et al. Exploring the transcriptional landscape of phage–host interactions using novel high-throughput approaches. Curr. Opin. Microbiol. 77, 102419 (2024).
Fortier, L. C. & Moineau, S. Phage production and maintenance of stocks, including expected stock lifetimes. Methods Mol. Biol. 501, 203–219 (2009).
Malik, D. J. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 249, 100–133 (2017).
Ferran, A. A. et al. The selection of antibiotic- and bacteriophage-resistant Pseudomonas aeruginosa is prevented by their combination. Microbiol. Spectr. 10, e0287422 (2022).
Orndorff, P. E. Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Curr. Genet. 62, 753–757 (2016).
Oromi-Bosch, A., Antani, J. D. & Turner, P. E. Developing phage therapy that overcomes the evolution of bacterial resistance. Annu. Rev. Virol. 10, 503–524 (2023).
Chan, B. K. et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 26717 (2016).
Kortright, K. E., Chan, B. K., Evans, B. R. & Turner, P. E. Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. J. Evol. Biol. 35, 1475–1487 (2022).
Gordillo Altamirano, F. L. et al. Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. eBioMedicine 80, 104045 (2022).
Cumby, N., Edwards, A. M., Davidson, A. R. & Maxwell, K. L. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J. Bacteriol. 194, 5012–5019 (2012).
Gaborieau, B. et al. Variable fitness effects of bacteriophage resistance mutations in Escherichia coli: implications for phage therapy. J. Virol. 98, e0111324 (2024).
Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science https://doi.org/10.1126/science.aar4120 (2018).
Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).
Mayo-Munoz, D., Pinilla-Redondo, R., Birkholz, N. & Fineran, P. C. A host of armor: prokaryotic immune strategies against mobile genetic elements. Cell Rep. 42, 112672 (2023).
Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).
Suh, G. A. & Patel, R. Clinical phage microbiology: a narrative summary. Clin. Microbiol. Infect. 29, 710–713 (2023).
Guerrero-Bustamante, C. A., Dedrick, R. M., Garlena, R. A., Russell, D. A. & Hatfull, G. F. Toward a phage cocktail for tuberculosis: susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains. mBio https://doi.org/10.1128/mBio.00973-21 (2021).
Bono, L. M. et al. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv. Virus Res. 111, 63–110 (2021).
Van Nieuwenhuyse, B. et al. Bacteriophage–antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat. Commun. 13, 5725 (2022).
Nir-Paz, R. et al. Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin. Infect. Dis. 69, 2015–2018 (2019).
Lusiak-Szelachowska, M. et al. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J. Biomed. Sci. 29, 23 (2022).
Gu Liu, C. et al. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio https://doi.org/10.1128/mBio.01462-20 (2020).
Gelman, D. et al. Clinical phage microbiology: a suggested framework and recommendations for the in-vitro matching steps of phage therapy. Lancet Microbe 2, e555–e563 (2021).
Yerushalmy, O. et al. Towards standardization of phage susceptibility testing: the Israeli Phage Therapy Center ‘Clinical Phage Microbiology’ — a pipeline proposal. Clin. Infect. Dis. 77, S337–S351 (2023).
Pirnay, J. P. Phage therapy in the year 2035. Front. Microbiol. 11, 1171 (2020).
Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68, 151–159 (2021).
Costa, A. R., Azeredo, J. & Pires, D. P. Synthetic biology to engineer bacteriophage genomes. Methods Mol. Biol. 2734, 261–277 (2024).
Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).
Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).
Briers, Y. et al. Engineered endolysin-based ‘Artilysins’ to combat multidrug-resistant Gram-negative pathogens. mBio 5, e01379-01314 (2014).
Schmelcher, M. & Loessner, M. J. Bacteriophage endolysins — extending their application to tissues and the bloodstream. Curr. Opin. Biotechnol. 68, 51–59 (2021).
Loeffler, J. M., Nelson, D. & Fischetti, V. A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294, 2170–2172 (2001).
Pires, D. P., Oliveira, H., Melo, L. D., Sillankorva, S. & Azeredo, J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 100, 2141–2151 (2016).
Wan, X., Hendrix, H., Skurnik, M. & Lavigne, R. Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr. Opin. Biotechnol. 68, 1–7 (2021).
Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. & Lu, T. K. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80, 523–543 (2016).
Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).
Lood, C. et al. Digital phagograms: predicting phage infectivity through a multilayer machine learning approach. Curr. Opin. Virol. 52, 174–181 (2022).
Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).
Rustad, M., Eastlund, A., Jardine, P. & Noireaux, V. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth. Biol. 3, ysy002 (2018).
Emslander, Q. et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 29, 1434–1445.e7 (2022).
Muniesa, M., Hammerl, J. A., Hertwig, S., Appel, B. & Brussow, H. Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl. Environ. Microb. 78, 4065–4073 (2012).
Jonczyk-Matysiak, E., Klak, M., Weber-Dabrowska, B., Borysowski, J. & Gorski, A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. Biomed. Res. Int. 2014, 735413 (2014).
Taylor, P. W. & Sommer, A. P. Towards rational treatment of bacterial infections during extended space travel. Int. J. Antimicrob. Agents 26, 183–187 (2005).
De Maesschalck, V., Gutierrez, D., Paeshuyse, J., Lavigne, R. & Briers, Y. Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Crit. Rev. Microbiol. 46, 548–564 (2020).
Liu, J. et al. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22, 185–191 (2004).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).
Skurnik, M. & Kiljunen, S. Bakteriofagihoidon mahdollisuudet [Possibilities of bacteriophage therapy]. DUODECIM 132, 712–719 (2016).
Kiljunen, S., Wicklund, A. & Skurnik, M. Complete genome sequences of two Escherichia phages isolated from wastewater in Finland. Genome Announc. https://doi.org/10.1128/genomeA.00401-18 (2018).
Patpatia, S. et al. Rapid hydrogel-based phage susceptibility test for pathogenic bacteria. Front. Cell. Infect. Microbiol. 12, 1032052 (2022).
Leskinen, K. et al. Characterization of vB_SauM-fRuSau02, a twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses https://doi.org/10.3390/v9090258 (2017).
Kolsi, A. et al. Isolation and characterization of three novel Acinetobacter baumannii phages from Beninese hospital wastewater. Arch. Virol. 168, 228 (2023).
Tuomala, H. et al. Phage treatment trial to eradicate LA-MRSA from healthy carrier pigs. Viruses https://doi.org/10.3390/v13101888 (2021).
Marinelli, L. J., Piuri, M. & Hatfull, G. F. Genetic manipulation of lytic bacteriophages with BRED: bacteriophage recombineering of electroporated DNA. Methods Mol. Biol. 1898, 69–80 (2019).
Boeckaerts, D., Stock, M., De Baets, B. & Briers, Y. Identification of phage receptor-binding protein sequences with hidden Markov models and an extreme gradient boosting classifier. Viruses https://doi.org/10.3390/v14061329 (2022).
Hu, B., Margolin, W., Molineux, I. J. & Liu, J. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc. Natl Acad. Sci. USA 112, E4919–E4928 (2015).
Leon-Velarde, C. G. et al. Yersinia enterocolitica-specific infection by bacteriophages TG1 and fR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl. Environ. Microb. 82, 5340–5353 (2016).
Murtazalieva, K., Mu, A., Petrovskaya, A. & Finn, R. D. The growing repertoire of phage anti-defence systems. Trends Microbiol. https://doi.org/10.1016/j.tim.2024.05.005 (2024).
Leon-Felix, J. & Villicana, C. The impact of quorum sensing on the modulation of phage–host interactions. J. Bacteriol. https://doi.org/10.1128/JB.00687-20 (2021).
Khan Mirzaei, M. & Nilsson, A. S. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10, e0118557 (2015).
Clokie, M. R. J., Kropinski, A. M. & Lavigne, R. Bacteriophages: Methods and Protocols (Humana Press, 2017).
Daubie, V. et al. Determination of phage susceptibility as a clinical diagnostic tool: a routine perspective. Front. Cell. Infect. Microbiol. 12, 1000721 (2022).
Glonti, T. & Pirnay, J. P. In vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses https://doi.org/10.3390/v14071490 (2022).
Mattila, S., Ruotsalainen, P. & Jalasvuori, M. On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front. Microbiol. 6, 1271 (2015).
Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).
Kutter, E. Phage host range and efficiency of plating. Methods Mol. Biol. 501, 141–149 (2009).
Xie, Y., Wahab, L. & Gill, J. J. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses https://doi.org/10.3390/v10040189 (2018).
Li, X. et al. Rapid bacteriophage quantification by digital biosensing on a SlipChip microfluidic device. Anal. Chem. 95, 8632–8639 (2023).
Sidi Mabrouk, A., Ongenae, V., Claessen, D., Brenzinger, S. & Briegel, A. A flexible and efficient microfluidics platform for the characterization and isolation of novel bacteriophages. Appl. Environ. Microb. 89, e0159622 (2023).
Nami, Y., Imeni, N. & Panahi, B. Application of machine learning in bacteriophage research. BMC Microbiol. 21, 193 (2021).
Nale, J. Y., Redgwell, T. A., Millard, A. & Clokie, M. R. J. Efficacy of an optimised bacteriophage cocktail to clear Clostridium difficile in a batch fermentation model. Antibiotics https://doi.org/10.3390/antibiotics7010013 (2018).
Salem, M., Pajunen, M. I., Jun, J. W. & Skurnik, M. T4-like bacteriophages isolated from pig stools infect Yersinia pseudotuberculosis and Yersinia pestis using LPS and OmpF as receptors. Viruses https://doi.org/10.3390/v13020296 (2021).
Happonen, L. J., Pajunen, M. I., Jun, J. W. & Skurnik, M. BtuB-dependent infection of the T5-like Yersinia phage fR2-01. Viruses https://doi.org/10.3390/v13112171 (2021).
Kiljunen, S. et al. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage fA1122. J. Bacteriol. 193, 4963–4972 (2011).
Kiljunen, S. et al. Yersiniophage fR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology 151, 4093–4102 (2005).
Grygorcewicz, B. et al. PhageScore-based analysis of Acinetobacter baumannii infecting phages antibiotic interaction in liquid medium. Arch. Microbiol. 204, 421 (2022).
Author information
Authors and Affiliations
Contributions
Introduction (M.S., M.C., G.F.H., R.H., M.J., S.K., R.L., R.N.-P. and J.-P.P.); Experimentation (M.S., S.A.-O., M.B., M.C., T.S.-P., K.D., G.F.H., R.H., M.J., S.K., R.L., D.J.M., R.N.-P. and J.-P.P.); Results (M.S., M.C., T.S.-P., K.D., G.F.H., R.H., R.L., D.J.M. and J.-P.P.); Applications (M.S., M.C., T.S.-P., K.D., G.F.H., R.H., M.J., R.L., D.J.M., R.N.-P. and J.-P.P.); Reproducibility and data deposition (M.S., G.F.H., R.L., D.J.M. and J.-P.P.); Limitations and optimizations (M.S., M.C., T.S.-P., K.D., G.F.H., R.H., M.J., R.L., R.N.-P. and J.-P.P.); Outlook (M.S., G.F.H., R.L., M.J., R.N.-P. and J.-P.P.); overview of the Primer (M.S., G.F.H., R.L. and J.-P.P.).
Corresponding author
Ethics declarations
Competing interests
S.K. and M.J. are shareholders and board members in PrecisionPhage Ltd, Jyväskylä, Finland. The other authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Pranita Tamma, Paul Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
Actinetobacteriophage Database: https://phagesdb.org/
CLSI: https://clsi.org/
DSMZ collection: https://www.dsmz.de/
EUCAST: https://www.eucast.org/clinical_breakpoints
EUCAST and EDQM workgroups: https://www.eucast.org/organization/subcommittees/phage-subcommittee
Felix d’Herrelle Reference Center for Bacterial Viruses: https://www.phage.ulaval.ca/en/home/
Phage Directory: https://phage.directory/
Phages for Global Health: https://www.phagesforglobalhealth.org/
The Phagistry network: https://www.phagistry.org/
Supplementary information
Glossary
- Adsorption rate
-
The rate at which phage binds to host bacterial cells.
- Antiphage defence systems
-
The various approaches bacteria use to limit phage infections.
- Appelmans protocol
-
Iterative co-cultivation of phage(s) with bacteria to select adapted phages with enhanced (therapeutic) characteristics (for example, increased pathogen clearance or delayed emergence of bacterial phage resistance).
- Capsid sequencing
-
Deep sequencing of individual DNA strands, as packaged into phage capsids, enabling determination of the exact DNA molecule contained and identification of sequences of host origin of transduction events.
- Circular permutations
-
Genomic arrangements in which the linear genome of a phage is organized such that the starting point of the sequence appears to vary between different genomic copies.
- Cohesive ends
-
DNA termini that carry short single-stranded DNA overhangs, allowing genome circularization within the bacterial cell.
- Complement system
-
A part of the innate immune system, which enhances the ability of antibodies and phagocytic cells to clear microorganisms and damaged cells from an organism, promote inflammation and attack the cell membrane of the pathogen.
- Co-resistance
-
A situation in which a bacterial mutant that is selected as resistant to a phage is also resistant to another phage owing to the phages sharing, for example, the same phage receptor.
- Double agar overlay method
-
A method to detect and quantify phages by mixing them with host bacteria in soft agar, overlaying it on a solid agar base and observing plaque formation.
- Excipients
-
Inactive substances formulated alongside the active ingredient of a medication to aid in its manufacturing, stability, delivery or absorption without contributing to its therapeutic effect.
- Fill-and-finish process
-
The end of the manufacturing process. Liquid products are filled in vials using a sterile liquid handling process.
- Generalized transduction risk
-
Phages may package bacterial DNA instead of their own DNA during phage assembly, resulting in an infectious virus particle containing bacterial DNA: the packaged host DNA may contain genes encoding virulence factors, antibiotic resistance or toxins, and there is a risk that these may get established in the target bacterial cell infected by such a transducing phage.
- Host range
-
The diversity of bacterial strains that a given phage is able to infect and replicate in.
- Innate immune response
-
The body’s first line of defence against infections, providing a rapid, non-specific response through physical barriers, immune cells and soluble factors to detect and eliminate pathogens.
- Major tailed phage morphotypes
-
Morphotypes of myoviruses (with long contractile tails), podoviruses (with short tail stubs) and siphoviruses (with long non-contractile flexible tails).
- Multiplicities of infection
-
The ratio of the number of viable phage particles to the number of bacterial hosts when a bacterial culture is infected with a phage.
- Oxygen uptake rate
-
The rate at which oxygen is used by cells for respiration.
- Phage bioavailability
-
The extent and rate at which phages are able to reach and effectively interact with their target bacterial cells in a given environment, such as within the body or in a treatment setting.
- Phage cocktails
-
A mixture of phages combined to increase host range and to maximize effective bactericide while minimizing resistance.
- Phage lysates
-
A culture in which phages are co-cultured with bacteria and grown until most bacteria are lysed and have released propagated phages into the growth medium.
- Phage selectivity
-
The ability of a phage to specifically infect and replicate within certain bacterial strains or species while leaving others unaffected.
- Pharmacodynamics
-
Study of pharmacological actions on living systems, including reaction with and binding to cell constituents and the biochemical and physiological consequences of these actions.
- Pharmacokinetics
-
Process of drug uptake by the body, their resulting biotransformation, distribution of both the drugs and their metabolites in tissues and the elimination of drugs and their metabolites from the body over time.
- Plaques
-
Clear zones formed on a bacterial lawn where phages have infected, replicated and lysed bacterial cells, indicating phage activity.
- Single-step growth curve
-
Enables monitoring of the phage life cycle in vitro, in which a bacterial culture is infected with phage such that each infected bacterium is infected by a single phage. The proliferation of the phages in the bacterial culture is monitored by titrating the phage in samples withdrawn from the culture over time.
- Strictly lytic phages
-
Phages that always enter lytic life cycle upon infection of the bacterial host, leading to eventual lysis of the host cell to release the phage progeny.
- Temperate phages
-
Phages whose genomes reside as a prophage integrated into the host genome or as a plasmid. These phages may enter a lytic cycle spontaneously or via stressors.
- Transduction
-
Transfer of non-phage genetic material from a bacterial cell to another by mis-packaged phage particles.
- Virulence
-
Measure of severity of phage infection on a pathogen. The higher the value, the more effective the phage.
- Virulence index
-
Estimate of the ability of a phage to kill or damage a bacterial host population.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Skurnik, M., Alkalay-Oren, S., Boon, M. et al. Phage therapy. Nat Rev Methods Primers 5, 9 (2025). https://doi.org/10.1038/s43586-024-00377-5
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43586-024-00377-5
This article is cited by
-
Gut dysbiosis in a murine model of cutaneous lupus erythematosus correlates with antigen-specific T cells and antigen-presenting cells in skin
Scientific Reports (2026)
-
Phages and quorum sensing: findings to consider in phage therapy
European Journal of Clinical Microbiology & Infectious Diseases (2025)


