Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Phage therapy

Abstract

Bacteriophage (phages) are viruses that exclusively use bacterial cells for propagation, killing the bacterial host in the process. In phage therapy, phages are used to reduce bacterial numbers, thereby curing bacterial infections. Although this principle is conceptually straightforward, its practical application faces several hurdles. In this Primer, the practical aspects of phage therapy are outlined. We introduce the microbiological methods used to prepare and characterize phages and elucidate their interactions with bacteria. The discussion covers how the information in complete phage genome sequences is used, along with how RNA sequencing can enhance our understanding of phage biology. Selection parameters for therapeutic phages for clinical applications and key elements in industrial-scale phage production are provided. A summary of clinical trials both past and present, phage administration and dosing issues is analysed, as well as limitations associated with phage therapy and mitigation strategies. Finally, we speculate on the future of phage therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Mechanism of phage therapy in the human body.
Fig. 2: Phage therapy development in practice.
Fig. 3: Diversity of plaque morphology.
Fig. 4: Typical batch production processes used to make industrial and clinical grade phage products.
Fig. 5: Schematic overview of the production processes for different types of phage-based therapeutics.
Fig. 6: Conceptual schematic of a device for the synthetic production of therapeutic phages.

Similar content being viewed by others

References

  1. MacNair, C. R., Rutherford, S. T. & Tan, M. W. Alternative therapeutic strategies to treat antibiotic-resistant pathogens. Nat. Rev. Microbiol. 22, 262–275 (2024).

    Google Scholar 

  2. Souque, C., Gonzalez Ojeda, I. & Baym, M. From Petri dishes to patients to populations: scales and evolutionary mechanisms driving antibiotic resistance. Ann. Rev. Microbiol. 78, 361–382 (2024).

    Google Scholar 

  3. Strathdee, S. A., Hatfull, G. F., Mutalik, V. K. & Schooley, R. T. Phage therapy: from biological mechanisms to future directions. Cell 186, 17–31 (2023).

    Google Scholar 

  4. Bowater, L. The Microbes Fight Back: Antibiotic Resistance (The Royal Society of Chemistry, 2016).

  5. Brady, A. et al. Molecular basis of lysis-lysogeny decisions in Gram-positive phages. Ann. Rev. Microbiol. 75, 563–581 (2021).

    MATH  Google Scholar 

  6. Thiel, K. Old dogma, new tricks — 21st century phage therapy. Nat. Biotechnol. 22, 31–36 (2004).

    MATH  Google Scholar 

  7. Pirnay, J. P. et al. The phage therapy paradigm: pret-a-porter or sur-mesure? Pharm. Res. 28, 934–937 (2011).

    MATH  Google Scholar 

  8. Poxleitner, M., Pope, W., Jacobs-Sera, D., Sivanathan, V. & Hatfull, G. Phage Discovery Guide (Howard Hughes Medical Institute, 2018).

  9. Hyman, P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals https://doi.org/10.3390/ph12010035 (2019).

  10. Van Twest, R. & Kropinski, A. M. Bacteriophage enrichment from water and soil. Methods Mol. Biol. 501, 15–21 (2009).

    Google Scholar 

  11. Gratia, A. Des relations numériques entre bactéries lysogènes et particules de bactériophages. Annales l’Institut Pasteur 57, 652–676 (1936).

    MATH  Google Scholar 

  12. Kropinski, A. M., Mazzocco, A., Waddell, T. E., Lingohr, E. & Johnson, R. P. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol. Biol. 501, 69–76 (2009).

    Google Scholar 

  13. Matsuzaki, S., Uchiyama, J., Takemura-Uchiyama, I., Ujihara, T. & Daibata, M. Isolation of bacteriophages for fastidious bacteria. Methods Mol. Biol. 1693, 3–10 (2018).

    MATH  Google Scholar 

  14. Gencay, Y. E., Birk, T., Sorensen, M. C. & Brondsted, L. Methods for isolation, purification, and propagation of bacteriophages of Campylobacter jejuni. Methods Mol. Biol. 1512, 19–28 (2017).

    Google Scholar 

  15. Abedon, S. T. & Yin, J. Bacteriophage plaques: theory and analysis. Methods Mol. Biol. 501, 161–174 (2009).

    MATH  Google Scholar 

  16. Vukotic, G. et al. Characterization, antibiofilm, and depolymerizing activity of two phages active on carbapenem-resistant Acinetobacter baumannii. Front. Med. 7, 426 (2020).

    MATH  Google Scholar 

  17. Iyer, L. M., Anantharaman, V., Krishnan, A., Burroughs, A. M. & Aravind, L. Jumbo phages: a comparative genomic overview of core functions and adaptions for biological conflicts. Viruses https://doi.org/10.3390/v13010063 (2021).

  18. Ranta, K., Skurnik, M. & Kiljunen, S. fENko-Kae01 is a flagellum-specific jumbo phage infecting Klebsiella aerogenes. BMC Microbiol. 24, 234 (2024).

    Google Scholar 

  19. Shymialevich, D., Wojcicki, M., Swider, O., Srednicka, P. & Sokolowska, B. Characterization and genome study of a newly isolated temperate phage belonging to a new genus targeting Alicyclobacillus acidoterrestris. Genes https://doi.org/10.3390/genes14061303 (2023).

  20. Dedrick, R. M. et al. Mycobacterium abscessus strain morphotype determines phage susceptibility, the repertoire of therapeutically useful phages, and phage resistance. mBio https://doi.org/10.1128/mBio.03431-20 (2021).

  21. Dedrick, R. M. et al. The prophage and plasmid mobilome as a likely driver of mycobacterium abscessus diversity. mBio https://doi.org/10.1128/mBio.03441-20 (2021).

  22. Mavrich, T. N. et al. Characterization and induction of prophages in human gut-associated Bifidobacterium hosts. Sci. Rep. 8, 12772 (2018).

    ADS  MATH  Google Scholar 

  23. Łobocka, M. et al. in Phage Therapy: Current Research and Applications (eds Borysowski, J., Międzybrodzki, R. & Górski, A.) (Caister Academic Press, 2014).

  24. Hobbs, S. J. & Kranzusch, P. J. Nucleotide immune signaling in CBASS, Pycsar, Thoeris, and CRISPR antiphage defense. Ann. Rev. Microbiol. 78, 255–276 (2024).

    Google Scholar 

  25. Patel, P. H. & Maxwell, K. L. Prophages provide a rich source of antiphage defense systems. Curr. Opin. Microbiol. 73, 102321 (2023).

    MATH  Google Scholar 

  26. Gaborieau, B. et al. Prediction of strain level phage–host interactions across the Escherichia genus using only genomic information. Nat. Microbiol. 9, 2847–2861 (2024).

    MATH  Google Scholar 

  27. Nie, W. et al. Advances in phage–host interaction prediction: in silico method enhances the development of phage therapies. Brief. Bioinform. https://doi.org/10.1093/bib/bbae117 (2024).

  28. Gutnik, D., Evseev, P., Miroshnikov, K. & Shneider, M. Using AlphaFold predictions in viral research. Curr. Issues Mol. Biol. 45, 3705–3732 (2023).

    MATH  Google Scholar 

  29. Hasselgren, C. & Oprea, T. I. Artificial intelligence for drug discovery: are we there yet? Annu. Rev. Pharmacol. 64, 527–550 (2024).

    Google Scholar 

  30. Weatherall, J. & Buchan, I. Connected medicines through innovation in data science & AI. Astra Zeneca https://www.astrazeneca.com/what-science-can-do/topics/data-science-ai/connected-medicines-innovations-data-science-ai.html (2023).

  31. Sattar, S. et al. Characterization of two novel lytic bacteriophages having lysis potential against MDR avian pathogenic Escherichia coli strains of zoonotic potential. Sci. Rep. 13, 10043 (2023).

    ADS  MATH  Google Scholar 

  32. Hyman, P. & Abedon, S. T. Practical methods for determining phage growth parameters. Methods Mol. Biol. 501, 175–202 (2009).

    MATH  Google Scholar 

  33. Heineman, R. H. & Bull, J. J. Testing optimality with experimental evolution: lysis time in a bacteriophage. Evolution 61, 1695–1709 (2007).

    MATH  Google Scholar 

  34. Kannoly, S. et al. Single-cell approach reveals intercellular heterogeneity in phage-producing capacities. Microbiol. Spectr. 11, e0266321 (2023).

    Google Scholar 

  35. Abedon, S. T. & Katsaounis, T. I. Basic phage mathematics. Methods Mol. Biol. 1681, 3–30 (2018).

    Google Scholar 

  36. Shao, Y. & Wang, I. N. Bacteriophage adsorption rate and optimal lysis time. Genetics 180, 471–482 (2008).

    MATH  Google Scholar 

  37. Ackermann, H. W. Basic phage electron microscopy. Methods Mol. Biol. 501, 113–126 (2009).

    MATH  Google Scholar 

  38. Ackermann, H. W. Sad state of phage electron microscopy. Please shoot the messenger. Microorganisms 2, 1–10 (2013).

    MATH  Google Scholar 

  39. Cuervo, A., Losana, P. & Carrascosa, J. L. Observation of bacteriophage ultrastructure by cryo-electron microscopy. Methods Mol. Biol. 2734, 13–25 (2024).

    Google Scholar 

  40. Gomez-Raya-Vilanova, M. V. et al. The DNA polymerase of bacteriophage YerA41 replicates its T-modified DNA in a primer-independent manner. Nucleic Acids Res. 50, 3985–3997 (2022).

    MATH  Google Scholar 

  41. Harding, K. R., Kyte, N. & Fineran, P. C. Jumbo phages. Curr. Biol. 33, R750–R751 (2023).

    Google Scholar 

  42. Russell, D. A. Sequencing, assembling, and finishing complete bacteriophage genomes. Methods Mol. Biol. 1681, 109–125 (2018).

    MATH  Google Scholar 

  43. Willenbucher, K. et al. Phage genome diversity in a biogas-producing microbiome analyzed by illumina and nanopore GridION sequencing. Microorganisms https://doi.org/10.3390/microorganisms10020368 (2022).

  44. Wolput, S. et al. Phage–host co-evolution has led to distinct generalized transduction strategies. Nucleic Acids Res. 52, 7780–7791 (2024).

    MATH  Google Scholar 

  45. Garneau, J. R., Depardieu, F., Fortier, L. C., Bikard, D. & Monot, M. PhageTerm: a tool for fast and accurate determination of phage termini and packaging mechanism using next-generation sequencing data. Sci. Rep. 7, 8292 (2017).

    ADS  Google Scholar 

  46. Turner, D., Adriaenssens, E. M., Tolstoy, I. & Kropinski, A. M. Phage annotation guide: guidelines for assembly and high-quality annotation. Phage 2, 170–182 (2021).

    MATH  Google Scholar 

  47. Sanger, F., Coulson, A. R., Hong, G. F., Hill, D. F. & Petersen, G. B. Nucleotide sequence of bacteriophage lambda DNA. J. Mol. Biol. 162, 729–773 (1982).

    Google Scholar 

  48. Gauthier, C. H. & Hatfull, G. F. A bioinformatic ecosystem for bacteriophage genomics: PhaMMSeqs, Phamerator, pdm_utils, PhagesDB, DEPhT, and PhamClust. Viruses 16, 1278 (2024).

    Google Scholar 

  49. Fremin, B. J., Bhatt, A. S., Kyrpides, N. C. & Global Phage Small Open Reading Frame Consortium. Thousands of small, novel genes predicted in global phage genomes. Cell Rep. 39, 110984 (2022).

    Google Scholar 

  50. Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).

    ADS  MATH  Google Scholar 

  51. Wei, X., Zhang, C., Freddolino, P. L. & Zhang, Y. Detecting Gene Ontology misannotations using taxon-specific rate ratio comparisons. Bioinformatics 36, 4383–4388 (2020).

    Google Scholar 

  52. Gauthier, C. H. et al. DEPhT: a novel approach for efficient prophage discovery and precise extraction. Nucleic Acids Res. 50, e75 (2022).

    MATH  Google Scholar 

  53. Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

    MATH  Google Scholar 

  54. Delcher, A. L., Harmon, D., Kasif, S., White, O. & Salzberg, S. L. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

    MATH  Google Scholar 

  55. Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucleic Acids Res. 29, 2607–2618 (2001).

    MATH  Google Scholar 

  56. Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).

    Google Scholar 

  57. Chan, P. P., Lin, B. Y., Mak, A. J. & Lowe, T. M. tRNAscan-SE 2.0: improved detection and functional classification of transfer RNA genes. Nucleic Acids Res. 49, 9077–9096 (2021).

    MATH  Google Scholar 

  58. Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world’s a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    ADS  Google Scholar 

  59. Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).

    MATH  Google Scholar 

  60. Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).

    MATH  Google Scholar 

  61. Hatfull, G. F. Actinobacteriophages: genomics, dynamics, and applications. Annu. Rev. Virol. 7, 37–61 (2020).

    Google Scholar 

  62. Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. eLife 4, e06416 (2015).

    Google Scholar 

  63. Moraru, C., Varsani, A. & Kropinski, A. M. VIRIDIC — a novel tool to calculate the intergenomic similarities of prokaryote-infecting viruses. Viruses https://doi.org/10.3390/v12111268 (2020).

  64. Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).

    Google Scholar 

  65. Rohwer, F. & Edwards, R. The Phage Proteomic Tree: a genome-based taxonomy for phage. J. Bacteriol. 184, 4529–4535 (2002).

    MATH  Google Scholar 

  66. Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).

    MATH  Google Scholar 

  67. Gauthier, C. H. & Hatfull, G. F. PhamClust: a phage genome clustering tool using proteomic equivalence. mSystems https://doi.org/10.1128/msystems.00443-23 (2023).

  68. Grose, J. H. & Casjens, S. R. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468470, 421–443 (2014).

    Google Scholar 

  69. Blasdel, B. G., Chevallereau, A., Monot, M., Lavigne, R. & Debarbieux, L. Comparative transcriptomics analyses reveal the conservation of an ancestral infectious strategy in two bacteriophage genera. ISME J. 11, 1988–1996 (2017).

    Google Scholar 

  70. Ceyssens, P. J. et al. Development of giant bacteriophage fKZ is independent of the host transcription apparatus. J. Virol. 88, 10501–10510 (2014).

    MATH  Google Scholar 

  71. Wagemans, J. et al. Functional elucidation of antibacterial phage ORFans targeting Pseudomonas aeruginosa. Cell. Microbiol. 16, 1822–1835 (2014).

    MATH  Google Scholar 

  72. Yang, Z. et al. Global transcriptomic analysis of the interactions between phage phiAbp1 and extensively drug-resistant Acinetobacter baumannii. mSystems https://doi.org/10.1128/mSystems.00068-19 (2019).

  73. Lood, C. et al. Integrative omics analysis of Pseudomonas aeruginosa virus PA5oct highlights the molecular complexity of jumbo phages. Environ. Microbiol. 22, 2165–2181 (2020).

    MATH  Google Scholar 

  74. Finstrlova, A. et al. Global transcriptomic analysis of bacteriophage–host interactions between a Kayvirus therapeutic phage and Staphylococcus aureus. Microbiol. Spectr. 10, e0012322 (2022).

    Google Scholar 

  75. Li, X. et al. Temporal transcriptional responses of a vibrio alginolyticus strain to podoviridae phage HH109 revealed by RNA-Seq. mSystems 7, e0010622 (2022).

    Google Scholar 

  76. Arroyo-Moreno, S. et al. Insights into gene transcriptional regulation of Kayvirus bacteriophages obtained from therapeutic mixtures. Viruses https://doi.org/10.3390/v14030626 (2022).

  77. Brandao, A. C. et al. Impact of phage predation on P. aeruginosa adhered to human airway epithelium: major transcriptomic changes in metabolism and virulence-associated genes. RNA Biol. 20, 235–247 (2023).

    MATH  Google Scholar 

  78. Leskinen, K., Blasdel, B. G., Lavigne, R. & Skurnik, M. RNA-sequencing reveals the progression of phage–host interactions between phiR1-37 and Yersinia enterocolitica. Viruses 8, 111 (2016).

    Google Scholar 

  79. Zhong, Q. et al. Transcriptomic analysis reveals the dependency of Pseudomonas aeruginosa genes for double-stranded RNA bacteriophage phiYY infection cycle. iScience 23, 101437 (2020).

    ADS  MATH  Google Scholar 

  80. Wolfram-Schauerte, M., Pozhydaieva, N., Viering, M., Glatter, T. & Hofer, K. Integrated omics reveal time-resolved insights into T4 phage infection of E. coli on proteome and transcriptome levels. Viruses https://doi.org/10.3390/v14112502 (2022).

  81. Lavigne, R. et al. A multifaceted study of Pseudomonas aeruginosa shutdown by virulent podovirus LUZ19. mBio 4, e00061-00013 (2013).

    Google Scholar 

  82. Brandao, A. et al. Differential transcription profiling of the phage LUZ19 infection process in different growth media. RNA Biol. 18, 1778–1790 (2021).

    MATH  Google Scholar 

  83. Blasdel, B., Ceyssens, P. J. & Lavigne, R. Preparing cDNA libraries from lytic phage-infected cells for whole transcriptome analysis by RNA-Seq. Methods Mol. Biol. 1681, 185–194 (2018).

    MATH  Google Scholar 

  84. Blasdel, B. G., Ceyssens, P.-J., Chevallereau, A., Debarbieux, L. & Lavigne, R. Comparative transcriptomics reveals a conserved bacterial adaptive phage response (BAPR) to viral predation. Preprint at bioRxiv https://doi.org/10.1101/248849 (2018).

  85. Wicke, L. et al. Introducing differential RNA-seq mapping to track the early infection phase for Pseudomonas phage ɸKZ. RNA Biol. 18, 1099–1110 (2021).

    MATH  Google Scholar 

  86. Putzeys, L. et al. Refining the transcriptional landscapes for distinct clades of virulent phages infecting Pseudomonas aeruginosa. Microlife 5, uqae002 (2024).

    Google Scholar 

  87. Putzeys, L. et al. Development of ONT-cappable-seq to unravel the transcriptional landscape of Pseudomonas phages. Comput. Struct. Biotechnol. J. 20, 2624–2638 (2022).

    MATH  Google Scholar 

  88. Bourdin, G. et al. Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl. Environ. Microb. 80, 1469–1476 (2014).

    ADS  MATH  Google Scholar 

  89. Malik, D. J. Approaches for manufacture, formulation, targeted delivery and controlled release of phage-based therapeutics. Curr. Opin. Biotechnol. 68, 262–271 (2021).

    MATH  Google Scholar 

  90. Malik, D. J. et al. Advanced manufacturing, formulation and microencapsulation of therapeutic phages. Clin. Infect. Dis. 77, S370–S383 (2023).

    MATH  Google Scholar 

  91. Schooley, R. T. et al. Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob. Agents Chemother. https://doi.org/10.1128/AAC.00954-17 (2017).

  92. Rebula, L., Raspor, A., Bavcar, M., Strancar, A. & Leskovec, M. CIM monolithic chromatography as a useful tool for endotoxin reduction and purification of bacteriophage particles supported with PAT analytics. J. Chromatogr. B 1217, 123606 (2023).

    Google Scholar 

  93. Carroll-Portillo, A. et al. Standard bacteriophage purification procedures cause loss in numbers and activity. Viruses https://doi.org/10.3390/v13020328 (2021).

  94. Stverakova, D. et al. Rapid identification of intact Staphylococcal bacteriophages using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Viruses https://doi.org/10.3390/v10040176 (2018).

  95. Van Belleghem, J. D., Clement, F., Merabishvili, M., Lavigne, R. & Vaneechoutte, M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci. Rep. 7, 8004 (2017).

    ADS  Google Scholar 

  96. Cirefice, G. et al. The future of pyrogenicity testing: phasing out the rabbit pyrogen test. A meeting report. Biologicals 84, 101702 (2023).

    MATH  Google Scholar 

  97. Speck, P. & Smithyman, A. Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol. Lett. https://doi.org/10.1093/femsle/fnv242 (2016).

  98. Hietala, V., Horsma-Heikkinen, J., Carron, A., Skurnik, M. & Kiljunen, S. The removal of endo- and enterotoxins from bacteriophage preparations. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01674 (2019).

  99. Poma, H. R. et al. Evaluation of concentration efficiency of the Pseudomonas aeruginosa phage PP7 in various water matrixes by different methods. Environ. Monit. Assess. 185, 2565–2576 (2013).

    MATH  Google Scholar 

  100. Bonilla, N. et al. Phage on tap — a quick and efficient protocol for the preparation of bacteriophage laboratory stocks. PeerJ https://doi.org/10.7717/peerj.2261 (2016).

    Article  MATH  Google Scholar 

  101. Duan, S. et al. One-step salting-out extraction of bacteriophage from its infection broth of Acinetobacter baumannii. J. Chromatogr. A 1679, 463407 (2022).

    Google Scholar 

  102. Szermer-Olearnik, B. & Boratynski, J. Removal of endotoxins from bacteriophage preparations by extraction with organic solvents. PLoS ONE 10, e0122672 (2015).

    Google Scholar 

  103. Boratynski, J. et al. Preparation of endotoxin-free bacteriophages. Cell. Mol. Biol. Lett. 9, 253–259 (2004).

    MATH  Google Scholar 

  104. Adriaenssens, E. M. et al. CIM((R)) monolithic anion-exchange chromatography as a useful alternative to CsCl gradient purification of bacteriophage particles. Virology 434, 265–270 (2012).

    MATH  Google Scholar 

  105. Smrekar, F., Ciringer, M., Strancar, A. & Podgornik, A. Characterisation of methacrylate monoliths for bacteriophage purification. J. Chromatogr. A 1218, 2438–2444 (2011).

    Google Scholar 

  106. Smrekar, F., Ciringer, M., Peterka, M., Podgornik, A. & Strancar, A. Purification and concentration of bacteriophage T4 using monolithic chromatographic supports. J. Chromatogr. B 861, 177–180 (2008).

    Google Scholar 

  107. Wdowiak, M., Paczesny, J. & Raza, S. Enhancing the stability of bacteriophages using physical, chemical, and nano-based approaches: a review. Pharmaceutics https://doi.org/10.3390/pharmaceutics14091936 (2022).

  108. Jault, P. et al. Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect. Dis. 19, 35–45 (2019).

    Google Scholar 

  109. Richter, L. et al. Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. Sci. Rep. 11, 7387 (2021).

    ADS  MATH  Google Scholar 

  110. Duyvejonck, H. et al. Evaluation of the stability of bacteriophages in different solutions suitable for the production of magistral preparations in Belgium. Viruses https://doi.org/10.3390/v13050865 (2021).

  111. Tabare, E. et al. A design of experiment approach to optimize spray-dried powders containing Pseudomonas aeruginosa podoviridae and myoviridae bacteriophages. Viruses https://doi.org/10.3390/v13101926 (2021).

  112. Manohar, P. & Ramesh, N. Improved lyophilization conditions for long-term storage of bacteriophages. Sci. Rep. 9, 15242 (2019).

    ADS  Google Scholar 

  113. Pathak, V., Chan, H.-K. & Zhou, Q. T. Formulation of bacteriophage for inhalation to treat multidrug-resistant pulmonary infections. KONA Powder Part J. https://doi.org/10.14356/kona.2025016 (2024).

    Article  MATH  Google Scholar 

  114. Liang, L. et al. Development of a lyophilization process for Campylobacter bacteriophage storage and transport. Microorganisms https://doi.org/10.3390/microorganisms8020282 (2020).

  115. Leung, S. S. et al. Production of inhalation phage powders using spray freeze drying and spray drying techniques for treatment of respiratory infections. Pharm. Res. 33, 1486–1496 (2016).

    MATH  Google Scholar 

  116. Grasmeijer, N., Stankovic, M., de Waard, H., Frijlink, H. W. & Hinrichs, W. L. Unraveling protein stabilization mechanisms: vitrification and water replacement in a glass transition temperature controlled system. Biochim. Biophys. Acta 1834, 763–769 (2013).

    Google Scholar 

  117. Malik, D. J. Bacteriophage encapsulation using spray drying for phage therapy. Curr. Issues Mol. Biol. 40, 303–316 (2021).

    MATH  Google Scholar 

  118. Chen, B. et al. Alginate microbeads and hydrogels delivering meropenem and bacteriophages to treat Pseudomonas aeruginosa fracture-related infections. J. Control. Rel. 364, 159–173 (2023).

    Google Scholar 

  119. Chang, R. Y. K., Chow, M. Y. T., Khanal, D., Chen, D. & Chan, H. K. Dry powder pharmaceutical biologics for inhalation therapy. Adv. Drug Deliv. Rev. 172, 64–79 (2021).

    Google Scholar 

  120. Mukhopadhyay, S., To, K. K. W., Liu, Y., Bai, C. & Leung, S. S. Y. A thermosensitive hydrogel formulation of phage and colistin combination for the management of multidrug-resistant Acinetobacter baumannii wound infections. Biomater. Sci. 12, 151–163 (2023).

    Google Scholar 

  121. Yang, Y. et al. Encapsulation and delivery of phage as a novel method for gut flora manipulation in situ: a review. J. Control. Rel. 353, 634–649 (2023).

    MATH  Google Scholar 

  122. Popescu, M., Van Belleghem, J. D., Khosravi, A. & Bollyky, P. L. Bacteriophages and the immune system. Annu. Rev. Virol. 8, 415–435 (2021).

    Google Scholar 

  123. Dabrowska, K. & Abedon, S. T. Pharmacologically aware phage therapy: pharmacodynamic and pharmacokinetic obstacles to phage antibacterial action in animal and human bodies. Microbiol. Mol. Biol. Rev. https://doi.org/10.1128/MMBR.00012-19 (2019).

  124. Hodyra-Stefaniak, K. et al. Bacteriophages engineered to display foreign peptides may become short-circulating phages. Microb. Biotechnol. 12, 730–741 (2019).

    Google Scholar 

  125. Dabrowska, K. Phage therapy: what factors shape phage pharmacokinetics and bioavailability? Systematic and critical review. Med. Res. Rev. 39, 2000–2025 (2019).

    MATH  Google Scholar 

  126. Echterhof, A. et al. The contribution of neutrophils to bacteriophage clearance and pharmacokinetics in vivo. JCI Insight https://doi.org/10.1172/jci.insight.181309 (2024).

  127. Nelstrop, A. E., Taylor, G. & Collard, P. Studies on phagocytosis. I. Antigen clearance studies in rabbits. Immunology 14, 325–337 (1968).

    Google Scholar 

  128. Bichet, M. C. et al. Bacteriophage uptake by mammalian cell layers represents a potential sink that may impact phage therapy. iScience 24, 102287 (2021).

    ADS  MATH  Google Scholar 

  129. Kan, L. & Barr, J. J. A mammalian cell’s guide on how to process a bacteriophage. Annu. Rev. Virol. 10, 183–198 (2023).

    MATH  Google Scholar 

  130. Gembara, K. & Dabrowska, K. Phage-specific antibodies. Curr. Opin. Biotechnol. 68, 186–192 (2021).

    Google Scholar 

  131. Podlacha, M. et al. Bacteriophage DNA induces an interrupted immune response during phage therapy in a chicken model. Nat. Commun. 15, 2274 (2024).

    ADS  MATH  Google Scholar 

  132. Egido, J. E. et al. Human complement inhibits myophages against Pseudomonas aeruginosa. Viruses https://doi.org/10.3390/v15112211 (2023).

  133. Majewska, J. et al. Oral application of T4 phage induces weak antibody production in the gut and in the blood. Viruses 7, 4783–4799 (2015).

    MATH  Google Scholar 

  134. Nguyen, S. et al. Bacteriophage transcytosis provides a mechanism to cross epithelial cell layers. mBio https://doi.org/10.1128/mBio.01874-17 (2017).

  135. Kurochkina, L. P. et al. Structure, stability, and biological activity of bacteriophage T4 gene product 9 probed with mutagenesis and monoclonal antibodies. J. Struct. Biol. 154, 122–129 (2006).

    MATH  Google Scholar 

  136. Roach, D. R. et al. Synergy between the host immune system and bacteriophage is essential for successful phage therapy against an acute respiratory pathogen. Cell Host Microbe 22, 38–47.e34 (2017).

    MATH  Google Scholar 

  137. Huff, W. E., Huff, G. R., Rath, N. C., Balog, J. M. & Donoghue, A. M. Prevention of Escherichia coli infection in broiler chickens with a bacteriophage aerosol spray. Poult. Sci. 81, 1486–1491 (2002).

    MATH  Google Scholar 

  138. Hodyra-Stefaniak, K. et al. Mammalian host-versus-phage immune response determines phage fate in vivo. Sci. Rep. 5, 14802 (2015).

    ADS  Google Scholar 

  139. Klopot, A. et al. Real-time qPCR as a method for detection of antibody-neutralized phage particles. Front. Microbiol. 8, 2170 (2017).

    MATH  Google Scholar 

  140. Oie, C. I. et al. Liver sinusoidal endothelial cells contribute to the uptake and degradation of entero bacterial viruses. Sci. Rep. 10, 898 (2020).

    ADS  MATH  Google Scholar 

  141. Kazmierczak, Z. et al. Immune response to therapeutic Staphylococcal bacteriophages in mammals: kinetics of induction, immunogenic structural proteins, natural and induced antibodies. Front. Immunol. 12, 639570 (2021).

    MATH  Google Scholar 

  142. Nagafuchi, Y., Yanaoka, H. & Fujio, K. Lessons from transcriptome analysis of autoimmune diseases. Front. Immunol. 13, 857269 (2022).

    MATH  Google Scholar 

  143. Novoselov, V. V., Sazonova, M. A., Ivanova, E. A. & Orekhov, A. N. Study of the activated macrophage transcriptome. Exp. Mol. Pathol. 99, 575–580 (2015).

    Google Scholar 

  144. Gogokhia, L. et al. Expansion of bacteriophages is linked to aggravated intestinal inflammation and colitis. Cell Host Microbe 25, 285–299.e8 (2019).

    MATH  Google Scholar 

  145. Sweere, J. M. et al. Bacteriophage trigger antiviral immunity and prevent clearance of bacterial infection. Science https://doi.org/10.1126/science.aat9691 (2019).

  146. Miernikiewicz, P. et al. T4 phage and its head surface proteins do not stimulate inflammatory mediator production. PLoS ONE 8, e71036 (2013).

    ADS  Google Scholar 

  147. Anonymous. Instructions for the Application of a Liquid Staphylococcal Phage Preparation for Injection (in Russian) (Ministry of Health of the USSR, 1986).

  148. Suh, G. A. et al. Considerations for the use of phage therapy in clinical practice. Antimicrob. Agents Chemother. 66, e0207121 (2022).

    MATH  Google Scholar 

  149. Pirnay, J. P. et al. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat. Microbiol. 9, 1434–1453 (2024).

    MATH  Google Scholar 

  150. Dedrick, R. M. et al. Potent antibody-mediated neutralization limits bacteriophage treatment of a pulmonary Mycobacterium abscessus infection. Nat. Med. 27, 1357–1361 (2021).

    MATH  Google Scholar 

  151. Storms, Z. J., Teel, M. R., Mercurio, K. & Sauvageau, D. The virulence index: a metric for quantitative analysis of phage virulence. Phage 1, 27–36 (2020).

    MATH  Google Scholar 

  152. Attwood, M. et al. Development of antibacterial drug + bacteriophage combination assays. JAC-AMR https://doi.org/10.1093/jacamr/dlae104 (2024).

  153. Gordillo Altamirano, F. L. & Barr, J. J. Phage therapy in the postantibiotic era. Clin. Microbiol. Rev. https://doi.org/10.1128/CMR.00066-18 (2019).

  154. Clokie, M. R. J., Blasdel, B. G., Demars, B. O. L. & Sicheritz-Ponten, T. Rethinking phage ecology by rooting it within an established plant framework. Phage 1, 121–136 (2020).

    Google Scholar 

  155. Yukgehnaish, K. et al. PhageLeads: rapid assessment of phage therapeutic suitability using an ensemble machine learning approach. Viruses https://doi.org/10.3390/v14020342 (2022).

  156. Kaneko, T., Osaka, T. & Tsuneda, S. Tailoring effective phage cocktails for long-term lysis of Escherichia coli based on physiological properties of constituent phages. Phage 4, 128–135 (2023).

    Google Scholar 

  157. Haines, M. E. K. et al. Analysis of selection methods to develop novel phage therapy cocktails against antimicrobial resistant clinical isolates of bacteria. Front. Microbiol. 12, 613529 (2021).

    Google Scholar 

  158. Thanki, A. M. et al. Development of a phage cocktail to target Salmonella strains associated with swine. Pharmaceuticals https://doi.org/10.3390/ph15010058 (2022).

  159. Kifelew, L. G. et al. Efficacy of phage cocktail AB-SA01 therapy in diabetic mouse wound infections caused by multidrug-resistant Staphylococcus aureus. BMC Microbiol. 20, 204 (2020).

    Google Scholar 

  160. Shan, J. et al. Bacteriophages are more virulent to bacteria with human cells than they are in bacterial culture; insights from HT-29 cells. Sci. Rep. 8, 5091 (2018).

    ADS  MATH  Google Scholar 

  161. Zaldastanishvili, E. et al. Phage therapy experience at the Eliava phage therapy center: three cases of bacterial persistence. Viruses https://doi.org/10.3390/v13101901 (2021).

  162. Nadareishvili, L. et al. Bacteriophage therapy as a potential management option for surgical wound infections. Phage 1, 158–165 (2020).

    MATH  Google Scholar 

  163. Burrowes, B. H., Molineux, I. J. & Fralick, J. A. Directed in vitro evolution of therapeutic bacteriophages: the Appelmans protocol. Viruses https://doi.org/10.3390/v11030241 (2019).

  164. Merabishvili, M., Pirnay, J. P. & De Vos, D. Guidelines to compose an ideal bacteriophage cocktail. Methods Mol. Biol. 2734, 49–66 (2024).

    MATH  Google Scholar 

  165. Nagel, T. et al. Phage banks as potential tools to rapidly and cost-effectively manage antimicrobial resistance in the developing world. Curr. Opin. Virol. 53, 101208 (2022).

    MATH  Google Scholar 

  166. Pirnay, J. P. & Kutter, E. Bacteriophages: it’s a medicine, Jim, but not as we know it. Lancet Infect. Dis. 21, 309–311 (2021).

    Google Scholar 

  167. Cook, R. et al. Infrastructure for a Phage Reference Database: identification of large-scale biases in the current collection of cultured phage genomes. Phage 2, 214–223 (2021).

    MATH  Google Scholar 

  168. Djebara, S. et al. Processing phage therapy requests in a Brussels Military Hospital: lessons identified. Viruses https://doi.org/10.3390/v11030265 (2019).

  169. Aslam, S. et al. Lessons learned from the first 10 consecutive cases of intravenous bacteriophage therapy to treat multidrug-resistant bacterial infections at a single center in the United States. Open Forum Infect. Dis. 7, ofaa389 (2020).

    Google Scholar 

  170. Onallah, H., Hazan, R., Nir-Paz, R. & The Israeli Phage Therapy Center Study Compassionate use of bacteriophages for failed persistent infections during the first 5 years of the Israeli Phage Therapy Center. Open Forum Infect. Dis. 10, ofad221 (2023).

    Google Scholar 

  171. Dedrick, R. M. et al. Phage therapy of mycobacterium infections: compassionate-use of phages in twenty patients with drug-resistant mycobacterial disease. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac453 (2022).

    Article  MATH  Google Scholar 

  172. Pirnay, J. P. et al. The magistral phage. Viruses https://doi.org/10.3390/v10020064 (2018).

  173. Pirnay, J. P. & Verbeken, G. Magistral phage preparations: is this the model for everyone? Clin. Infect. Dis. 77, S360–S369 (2023).

    MATH  Google Scholar 

  174. Pirnay, J. P. et al. Quality and safety requirements for sustainable phage therapy products. Pharm. Res. 32, 2173–2179 (2015).

    MATH  Google Scholar 

  175. Uyttebroek, S. et al. Safety and efficacy of phage therapy in difficult-to-treat infections: a systematic review. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(21)00612-5 (2022).

    Article  Google Scholar 

  176. Luria, S. E. & Delbruck, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).

    MATH  Google Scholar 

  177. Torres-Barcelo, C. Phage therapy faces evolutionary challenges. Viruses https://doi.org/10.3390/v10060323 (2018).

  178. McCallin, S. et al. Phages and phage-borne enzymes as new antibacterial agents. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2023.10.018 (2023).

    Article  Google Scholar 

  179. Myelnikov, D. An alternative cure: the adoption and survival of bacteriophage therapy in the USSR, 1922–1955. J. History Med. Allied Sci. 73, 385–411 (2018).

    Google Scholar 

  180. Chanishvili, N. Phage therapy — history from Twort and d’Herelle through Soviet experience to current approaches. Adv. Virus Res. 83, 3–40 (2012).

    Google Scholar 

  181. República Portuguesa & lnfarmed. Deliberação N.0 112/CD/2024. lnfarmed https://www.infarmed.pt/documents/15786/9697484/2024-11-15_Delibera%C3%A7%C3%A3o_112_CD_2024/d0424242-a103-1256-cd7d-526aaf12dfac (2024).

  182. Khatami, A. et al. Standardised treatment and monitoring protocol to assess safety and tolerability of bacteriophage therapy for adult and paediatric patients (STAMP study): protocol for an open-label, single-arm trial. BMJ Open 12, e065401 (2022).

    MATH  Google Scholar 

  183. Bosco, K., Lynch, S., Sandaradura, I. & Khatami, A. Therapeutic phage monitoring: a review. Clin. Infect. Dis. 77, S384–S394 (2023).

    MATH  Google Scholar 

  184. Miedzybrodzki, R. et al. Pharmacokinetic and pharmacodynamic obstacles for phage therapy from the perspective of clinical practice. Clin. Infect. Dis. 77, S395–S400 (2023).

    MATH  Google Scholar 

  185. Kim, P. et al. Safety, pharmacokinetics, and pharmacodynamics of LBP-EC01, a CRISPR–Cas3-enhanced bacteriophage cocktail, in uncomplicated urinary tract infections due to Escherichia coli (ELIMINATE): the randomised, open-label, first part of a two-part phase 2 trial. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(24)00424-9 (2024).

    Article  Google Scholar 

  186. Leitner, L. et al. Intravesical bacteriophages for treating urinary tract infections in patients undergoing transurethral resection of the prostate: a randomised, placebo-controlled, double-blind clinical trial. Lancet Infect. Dis. 21, 427–436 (2021).

    MATH  Google Scholar 

  187. Miedzybrodzki, R. et al. Clinical aspects of phage therapy. Adv. Virus Res. 83, 73–121 (2012).

    MATH  Google Scholar 

  188. Onsea, J. et al. Bacteriophage therapy for difficult-to-treat infections: the implementation of a Multidisciplinary Phage Task Force (The PHAGEFORCE Study Protocol). Viruses https://doi.org/10.3390/v13081543 (2021).

  189. Sarker, S. A. et al. Oral phage therapy of acute bacterial diarrhea with two coliphage preparations: a randomized trial in children from Bangladesh. eBioMedicine 4, 124–137 (2016).

    Google Scholar 

  190. Wright, A., Hawkins, C. H., Anggard, E. E. & Harper, D. R. A controlled clinical trial of a therapeutic bacteriophage preparation in chronic otitis due to antibiotic-resistant Pseudomonas aeruginosa; a preliminary report of efficacy. Clin. Otolaryngol. 34, 349–357 (2009).

    Google Scholar 

  191. Fowler, V. G. Jr et al. Exebacase in addition to standard-of-care antibiotics for Staphylococcus aureus bloodstream infections and right-sided infective endocarditis: a phase 3, superiority-design, placebo-controlled, randomized clinical trial (DISRUPT). Clin. Infect. Dis. https://doi.org/10.1093/cid/ciae043 (2024).

    Article  Google Scholar 

  192. Zheng, T. & Zhang, C. Engineering strategies and challenges of endolysin as an antibacterial agent against Gram-negative bacteria. Microb. Biotechnol. 17, e14465 (2024).

    Google Scholar 

  193. Ferry, T. et al. Personalized bacteriophage therapy to treat pandrug-resistant spinal Pseudomonas aeruginosa infection. Nat. Commun. 13, 4239 (2022).

    ADS  MATH  Google Scholar 

  194. McCallin, S., Sacher, J. C., Zheng, J. & Chan, B. K. Current state of compassionate phage therapy. Viruses https://doi.org/10.3390/v11040343 (2019).

  195. Advocating for phage therapy. Nat. Microbiol. 9, 1397–1398 (2024).

  196. Nagel, T. E. et al. The developing world urgently needs phages to combat pathogenic bacteria. Front. Microbiol. 7, 882 (2016).

    MATH  Google Scholar 

  197. Tay, A. How building a phage directory can mean life or death for patients. Nature https://doi.org/10.1038/d41586-023-02209-0 (2023).

    Article  MATH  Google Scholar 

  198. Bouras, G. et al. Pharokka: a fast scalable bacteriophage annotation tool. Bioinformatics https://doi.org/10.1093/bioinformatics/btac776 (2023).

  199. Coppens, L., Wicke, L. & Lavigne, R. SAPPHIRE.CNN: implementation of dRNA-seq-driven, species-specific promoter prediction using convolutional neural networks. Comput. Struct. Biotechnol. J. 20, 4969–4974 (2022).

    MATH  Google Scholar 

  200. Sampaio, M., Rocha, M., Oliveira, H. & Dias, O. Predicting promoters in phage genomes using PhagePromoter. Bioinformatics 35, 5301–5302 (2019).

    Google Scholar 

  201. Putzeys, L. et al. Exploring the transcriptional landscape of phage–host interactions using novel high-throughput approaches. Curr. Opin. Microbiol. 77, 102419 (2024).

    MATH  Google Scholar 

  202. Fortier, L. C. & Moineau, S. Phage production and maintenance of stocks, including expected stock lifetimes. Methods Mol. Biol. 501, 203–219 (2009).

    MATH  Google Scholar 

  203. Malik, D. J. et al. Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv. Colloid Interface Sci. 249, 100–133 (2017).

    ADS  MATH  Google Scholar 

  204. Ferran, A. A. et al. The selection of antibiotic- and bacteriophage-resistant Pseudomonas aeruginosa is prevented by their combination. Microbiol. Spectr. 10, e0287422 (2022).

    MATH  Google Scholar 

  205. Orndorff, P. E. Use of bacteriophage to target bacterial surface structures required for virulence: a systematic search for antibiotic alternatives. Curr. Genet. 62, 753–757 (2016).

    Google Scholar 

  206. Oromi-Bosch, A., Antani, J. D. & Turner, P. E. Developing phage therapy that overcomes the evolution of bacterial resistance. Annu. Rev. Virol. 10, 503–524 (2023).

    Google Scholar 

  207. Chan, B. K. et al. Phage selection restores antibiotic sensitivity in MDR Pseudomonas aeruginosa. Sci. Rep. 6, 26717 (2016).

    ADS  Google Scholar 

  208. Kortright, K. E., Chan, B. K., Evans, B. R. & Turner, P. E. Arms race and fluctuating selection dynamics in Pseudomonas aeruginosa bacteria coevolving with phage OMKO1. J. Evol. Biol. 35, 1475–1487 (2022).

    MATH  Google Scholar 

  209. Gordillo Altamirano, F. L. et al. Phage-antibiotic combination is a superior treatment against Acinetobacter baumannii in a preclinical study. eBioMedicine 80, 104045 (2022).

    MATH  Google Scholar 

  210. Cumby, N., Edwards, A. M., Davidson, A. R. & Maxwell, K. L. The bacteriophage HK97 gp15 moron element encodes a novel superinfection exclusion protein. J. Bacteriol. 194, 5012–5019 (2012).

    Google Scholar 

  211. Gaborieau, B. et al. Variable fitness effects of bacteriophage resistance mutations in Escherichia coli: implications for phage therapy. J. Virol. 98, e0111324 (2024).

    Google Scholar 

  212. Doron, S. et al. Systematic discovery of antiphage defense systems in the microbial pangenome. Science https://doi.org/10.1126/science.aar4120 (2018).

  213. Bernheim, A. & Sorek, R. The pan-immune system of bacteria: antiviral defence as a community resource. Nat. Rev. Microbiol. 18, 113–119 (2020).

    MATH  Google Scholar 

  214. Mayo-Munoz, D., Pinilla-Redondo, R., Birkholz, N. & Fineran, P. C. A host of armor: prokaryotic immune strategies against mobile genetic elements. Cell Rep. 42, 112672 (2023).

    Google Scholar 

  215. Westra, E. R. et al. Parasite exposure drives selective evolution of constitutive versus inducible defense. Curr. Biol. 25, 1043–1049 (2015).

    MATH  Google Scholar 

  216. Suh, G. A. & Patel, R. Clinical phage microbiology: a narrative summary. Clin. Microbiol. Infect. 29, 710–713 (2023).

    MATH  Google Scholar 

  217. Guerrero-Bustamante, C. A., Dedrick, R. M., Garlena, R. A., Russell, D. A. & Hatfull, G. F. Toward a phage cocktail for tuberculosis: susceptibility and tuberculocidal action of mycobacteriophages against diverse Mycobacterium tuberculosis strains. mBio https://doi.org/10.1128/mBio.00973-21 (2021).

  218. Bono, L. M. et al. Advancing phage therapy through the lens of virus host-breadth and emergence potential. Adv. Virus Res. 111, 63–110 (2021).

    MATH  Google Scholar 

  219. Van Nieuwenhuyse, B. et al. Bacteriophage–antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat. Commun. 13, 5725 (2022).

    ADS  MATH  Google Scholar 

  220. Nir-Paz, R. et al. Successful treatment of antibiotic-resistant, poly-microbial bone infection with bacteriophages and antibiotics combination. Clin. Infect. Dis. 69, 2015–2018 (2019).

    MATH  Google Scholar 

  221. Lusiak-Szelachowska, M. et al. Bacteriophages and antibiotic interactions in clinical practice: what we have learned so far. J. Biomed. Sci. 29, 23 (2022).

    Google Scholar 

  222. Gu Liu, C. et al. Phage-antibiotic synergy is driven by a unique combination of antibacterial mechanism of action and stoichiometry. mBio https://doi.org/10.1128/mBio.01462-20 (2020).

  223. Gelman, D. et al. Clinical phage microbiology: a suggested framework and recommendations for the in-vitro matching steps of phage therapy. Lancet Microbe 2, e555–e563 (2021).

    MATH  Google Scholar 

  224. Yerushalmy, O. et al. Towards standardization of phage susceptibility testing: the Israeli Phage Therapy Center ‘Clinical Phage Microbiology’ — a pipeline proposal. Clin. Infect. Dis. 77, S337–S351 (2023).

    MATH  Google Scholar 

  225. Pirnay, J. P. Phage therapy in the year 2035. Front. Microbiol. 11, 1171 (2020).

    MATH  Google Scholar 

  226. Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K. & Kilcher, S. Enhancing phage therapy through synthetic biology and genome engineering. Curr. Opin. Biotechnol. 68, 151–159 (2021).

    Google Scholar 

  227. Costa, A. R., Azeredo, J. & Pires, D. P. Synthetic biology to engineer bacteriophage genomes. Methods Mol. Biol. 2734, 261–277 (2024).

    Google Scholar 

  228. Dedrick, R. M. et al. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733 (2019).

    MATH  Google Scholar 

  229. Gencay, Y. E. et al. Engineered phage with antibacterial CRISPR–Cas selectively reduce E. coli burden in mice. Nat. Biotechnol. 42, 265–274 (2024).

    MATH  Google Scholar 

  230. Briers, Y. et al. Engineered endolysin-based ‘Artilysins’ to combat multidrug-resistant Gram-negative pathogens. mBio 5, e01379-01314 (2014).

    Google Scholar 

  231. Schmelcher, M. & Loessner, M. J. Bacteriophage endolysins — extending their application to tissues and the bloodstream. Curr. Opin. Biotechnol. 68, 51–59 (2021).

    MATH  Google Scholar 

  232. Loeffler, J. M., Nelson, D. & Fischetti, V. A. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 294, 2170–2172 (2001).

    ADS  Google Scholar 

  233. Pires, D. P., Oliveira, H., Melo, L. D., Sillankorva, S. & Azeredo, J. Bacteriophage-encoded depolymerases: their diversity and biotechnological applications. Appl. Microbiol. Biotechnol. 100, 2141–2151 (2016).

    Google Scholar 

  234. Wan, X., Hendrix, H., Skurnik, M. & Lavigne, R. Phage-based target discovery and its exploitation towards novel antibacterial molecules. Curr. Opin. Biotechnol. 68, 1–7 (2021).

    MATH  Google Scholar 

  235. Pires, D. P., Cleto, S., Sillankorva, S., Azeredo, J. & Lu, T. K. Genetically engineered phages: a review of advances over the last decade. Microbiol. Mol. Biol. Rev. 80, 523–543 (2016).

    Google Scholar 

  236. Amgarten, D., Braga, L. P. P., da Silva, A. M. & Setubal, J. C. MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front. Genet. 9, 304 (2018).

    Google Scholar 

  237. Lood, C. et al. Digital phagograms: predicting phage infectivity through a multilayer machine learning approach. Curr. Opin. Virol. 52, 174–181 (2022).

    Google Scholar 

  238. Palluk, S. et al. De novo DNA synthesis using polymerase-nucleotide conjugates. Nat. Biotechnol. 36, 645–650 (2018).

    MATH  Google Scholar 

  239. Rustad, M., Eastlund, A., Jardine, P. & Noireaux, V. Cell-free TXTL synthesis of infectious bacteriophage T4 in a single test tube reaction. Synth. Biol. 3, ysy002 (2018).

    Google Scholar 

  240. Emslander, Q. et al. Cell-free production of personalized therapeutic phages targeting multidrug-resistant bacteria. Cell Chem. Biol. 29, 1434–1445.e7 (2022).

    MATH  Google Scholar 

  241. Muniesa, M., Hammerl, J. A., Hertwig, S., Appel, B. & Brussow, H. Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl. Environ. Microb. 78, 4065–4073 (2012).

    ADS  Google Scholar 

  242. Jonczyk-Matysiak, E., Klak, M., Weber-Dabrowska, B., Borysowski, J. & Gorski, A. Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. Biomed. Res. Int. 2014, 735413 (2014).

    Google Scholar 

  243. Taylor, P. W. & Sommer, A. P. Towards rational treatment of bacterial infections during extended space travel. Int. J. Antimicrob. Agents 26, 183–187 (2005).

    MATH  Google Scholar 

  244. De Maesschalck, V., Gutierrez, D., Paeshuyse, J., Lavigne, R. & Briers, Y. Advanced engineering of third-generation lysins and formulation strategies for clinical applications. Crit. Rev. Microbiol. 46, 548–564 (2020).

    Google Scholar 

  245. Liu, J. et al. Antimicrobial drug discovery through bacteriophage genomics. Nat. Biotechnol. 22, 185–191 (2004).

    Google Scholar 

  246. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    ADS  MATH  Google Scholar 

  247. Krishna, R. et al. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 384, eadl2528 (2024).

    MATH  Google Scholar 

  248. Skurnik, M. & Kiljunen, S. Bakteriofagihoidon mahdollisuudet [Possibilities of bacteriophage therapy]. DUODECIM 132, 712–719 (2016).

    MATH  Google Scholar 

  249. Kiljunen, S., Wicklund, A. & Skurnik, M. Complete genome sequences of two Escherichia phages isolated from wastewater in Finland. Genome Announc. https://doi.org/10.1128/genomeA.00401-18 (2018).

  250. Patpatia, S. et al. Rapid hydrogel-based phage susceptibility test for pathogenic bacteria. Front. Cell. Infect. Microbiol. 12, 1032052 (2022).

    Google Scholar 

  251. Leskinen, K. et al. Characterization of vB_SauM-fRuSau02, a twort-like bacteriophage isolated from a therapeutic phage cocktail. Viruses https://doi.org/10.3390/v9090258 (2017).

  252. Kolsi, A. et al. Isolation and characterization of three novel Acinetobacter baumannii phages from Beninese hospital wastewater. Arch. Virol. 168, 228 (2023).

    Google Scholar 

  253. Tuomala, H. et al. Phage treatment trial to eradicate LA-MRSA from healthy carrier pigs. Viruses https://doi.org/10.3390/v13101888 (2021).

  254. Marinelli, L. J., Piuri, M. & Hatfull, G. F. Genetic manipulation of lytic bacteriophages with BRED: bacteriophage recombineering of electroporated DNA. Methods Mol. Biol. 1898, 69–80 (2019).

    MATH  Google Scholar 

  255. Boeckaerts, D., Stock, M., De Baets, B. & Briers, Y. Identification of phage receptor-binding protein sequences with hidden Markov models and an extreme gradient boosting classifier. Viruses https://doi.org/10.3390/v14061329 (2022).

  256. Hu, B., Margolin, W., Molineux, I. J. & Liu, J. Structural remodeling of bacteriophage T4 and host membranes during infection initiation. Proc. Natl Acad. Sci. USA 112, E4919–E4928 (2015).

    ADS  Google Scholar 

  257. Leon-Velarde, C. G. et al. Yersinia enterocolitica-specific infection by bacteriophages TG1 and fR1-RT is dependent on temperature-regulated expression of the phage host receptor OmpF. Appl. Environ. Microb. 82, 5340–5353 (2016).

    ADS  MATH  Google Scholar 

  258. Murtazalieva, K., Mu, A., Petrovskaya, A. & Finn, R. D. The growing repertoire of phage anti-defence systems. Trends Microbiol. https://doi.org/10.1016/j.tim.2024.05.005 (2024).

    Article  MATH  Google Scholar 

  259. Leon-Felix, J. & Villicana, C. The impact of quorum sensing on the modulation of phage–host interactions. J. Bacteriol. https://doi.org/10.1128/JB.00687-20 (2021).

  260. Khan Mirzaei, M. & Nilsson, A. S. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. PLoS ONE 10, e0118557 (2015).

    Google Scholar 

  261. Clokie, M. R. J., Kropinski, A. M. & Lavigne, R. Bacteriophages: Methods and Protocols (Humana Press, 2017).

  262. Daubie, V. et al. Determination of phage susceptibility as a clinical diagnostic tool: a routine perspective. Front. Cell. Infect. Microbiol. 12, 1000721 (2022).

    MATH  Google Scholar 

  263. Glonti, T. & Pirnay, J. P. In vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses https://doi.org/10.3390/v14071490 (2022).

  264. Mattila, S., Ruotsalainen, P. & Jalasvuori, M. On-demand isolation of bacteriophages against drug-resistant bacteria for personalized phage therapy. Front. Microbiol. 6, 1271 (2015).

    Google Scholar 

  265. Howard-Varona, C., Hargreaves, K. R., Abedon, S. T. & Sullivan, M. B. Lysogeny in nature: mechanisms, impact and ecology of temperate phages. ISME J. 11, 1511–1520 (2017).

    Google Scholar 

  266. Kutter, E. Phage host range and efficiency of plating. Methods Mol. Biol. 501, 141–149 (2009).

    MATH  Google Scholar 

  267. Xie, Y., Wahab, L. & Gill, J. J. Development and validation of a microtiter plate-based assay for determination of bacteriophage host range and virulence. Viruses https://doi.org/10.3390/v10040189 (2018).

  268. Li, X. et al. Rapid bacteriophage quantification by digital biosensing on a SlipChip microfluidic device. Anal. Chem. 95, 8632–8639 (2023).

    MATH  Google Scholar 

  269. Sidi Mabrouk, A., Ongenae, V., Claessen, D., Brenzinger, S. & Briegel, A. A flexible and efficient microfluidics platform for the characterization and isolation of novel bacteriophages. Appl. Environ. Microb. 89, e0159622 (2023).

    Google Scholar 

  270. Nami, Y., Imeni, N. & Panahi, B. Application of machine learning in bacteriophage research. BMC Microbiol. 21, 193 (2021).

    MATH  Google Scholar 

  271. Nale, J. Y., Redgwell, T. A., Millard, A. & Clokie, M. R. J. Efficacy of an optimised bacteriophage cocktail to clear Clostridium difficile in a batch fermentation model. Antibiotics https://doi.org/10.3390/antibiotics7010013 (2018).

  272. Salem, M., Pajunen, M. I., Jun, J. W. & Skurnik, M. T4-like bacteriophages isolated from pig stools infect Yersinia pseudotuberculosis and Yersinia pestis using LPS and OmpF as receptors. Viruses https://doi.org/10.3390/v13020296 (2021).

  273. Happonen, L. J., Pajunen, M. I., Jun, J. W. & Skurnik, M. BtuB-dependent infection of the T5-like Yersinia phage fR2-01. Viruses https://doi.org/10.3390/v13112171 (2021).

  274. Kiljunen, S. et al. Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage fA1122. J. Bacteriol. 193, 4963–4972 (2011).

    MATH  Google Scholar 

  275. Kiljunen, S. et al. Yersiniophage fR1-37 is a tailed bacteriophage having a 270 kb DNA genome with thymidine replaced by deoxyuridine. Microbiology 151, 4093–4102 (2005).

    Google Scholar 

  276. Grygorcewicz, B. et al. PhageScore-based analysis of Acinetobacter baumannii infecting phages antibiotic interaction in liquid medium. Arch. Microbiol. 204, 421 (2022).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Introduction (M.S., M.C., G.F.H., R.H., M.J., S.K., R.L., R.N.-P. and J.-P.P.); Experimentation (M.S., S.A.-O., M.B., M.C., T.S.-P., K.D., G.F.H., R.H., M.J., S.K., R.L., D.J.M., R.N.-P. and J.-P.P.); Results (M.S., M.C., T.S.-P., K.D., G.F.H., R.H., R.L., D.J.M. and J.-P.P.); Applications (M.S., M.C., T.S.-P., K.D., G.F.H., R.H., M.J., R.L., D.J.M., R.N.-P. and J.-P.P.); Reproducibility and data deposition (M.S., G.F.H., R.L., D.J.M. and J.-P.P.); Limitations and optimizations (M.S., M.C., T.S.-P., K.D., G.F.H., R.H., M.J., R.L., R.N.-P. and J.-P.P.); Outlook (M.S., G.F.H., R.L., M.J., R.N.-P. and J.-P.P.); overview of the Primer (M.S., G.F.H., R.L. and J.-P.P.).

Corresponding author

Correspondence to Mikael Skurnik.

Ethics declarations

Competing interests

S.K. and M.J. are shareholders and board members in PrecisionPhage Ltd, Jyväskylä, Finland. The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Pranita Tamma, Paul Turner and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Actinetobacteriophage Database: https://phagesdb.org/

CLSI: https://clsi.org/

DSMZ collection: https://www.dsmz.de/

EUCAST: https://www.eucast.org/clinical_breakpoints

EUCAST and EDQM workgroups: https://www.eucast.org/organization/subcommittees/phage-subcommittee

Felix d’Herrelle Reference Center for Bacterial Viruses: https://www.phage.ulaval.ca/en/home/

Phage Directory: https://phage.directory/

Phages for Global Health: https://www.phagesforglobalhealth.org/

The Phagistry network: https://www.phagistry.org/

Supplementary information

Glossary

Adsorption rate

The rate at which phage binds to host bacterial cells.

Antiphage defence systems

The various approaches bacteria use to limit phage infections.

Appelmans protocol

Iterative co-cultivation of phage(s) with bacteria to select adapted phages with enhanced (therapeutic) characteristics (for example, increased pathogen clearance or delayed emergence of bacterial phage resistance).

Capsid sequencing

Deep sequencing of individual DNA strands, as packaged into phage capsids, enabling determination of the exact DNA molecule contained and identification of sequences of host origin of transduction events.

Circular permutations

Genomic arrangements in which the linear genome of a phage is organized such that the starting point of the sequence appears to vary between different genomic copies.

Cohesive ends

DNA termini that carry short single-stranded DNA overhangs, allowing genome circularization within the bacterial cell.

Complement system

A part of the innate immune system, which enhances the ability of antibodies and phagocytic cells to clear microorganisms and damaged cells from an organism, promote inflammation and attack the cell membrane of the pathogen.

Co-resistance

A situation in which a bacterial mutant that is selected as resistant to a phage is also resistant to another phage owing to the phages sharing, for example, the same phage receptor.

Double agar overlay method

A method to detect and quantify phages by mixing them with host bacteria in soft agar, overlaying it on a solid agar base and observing plaque formation.

Excipients

Inactive substances formulated alongside the active ingredient of a medication to aid in its manufacturing, stability, delivery or absorption without contributing to its therapeutic effect.

Fill-and-finish process

The end of the manufacturing process. Liquid products are filled in vials using a sterile liquid handling process.

Generalized transduction risk

Phages may package bacterial DNA instead of their own DNA during phage assembly, resulting in an infectious virus particle containing bacterial DNA: the packaged host DNA may contain genes encoding virulence factors, antibiotic resistance or toxins, and there is a risk that these may get established in the target bacterial cell infected by such a transducing phage.

Host range

The diversity of bacterial strains that a given phage is able to infect and replicate in.

Innate immune response

The body’s first line of defence against infections, providing a rapid, non-specific response through physical barriers, immune cells and soluble factors to detect and eliminate pathogens.

Major tailed phage morphotypes

Morphotypes of myoviruses (with long contractile tails), podoviruses (with short tail stubs) and siphoviruses (with long non-contractile flexible tails).

Multiplicities of infection

The ratio of the number of viable phage particles to the number of bacterial hosts when a bacterial culture is infected with a phage.

Oxygen uptake rate

The rate at which oxygen is used by cells for respiration.

Phage bioavailability

The extent and rate at which phages are able to reach and effectively interact with their target bacterial cells in a given environment, such as within the body or in a treatment setting.

Phage cocktails

A mixture of phages combined to increase host range and to maximize effective bactericide while minimizing resistance.

Phage lysates

A culture in which phages are co-cultured with bacteria and grown until most bacteria are lysed and have released propagated phages into the growth medium.

Phage selectivity

The ability of a phage to specifically infect and replicate within certain bacterial strains or species while leaving others unaffected.

Pharmacodynamics

Study of pharmacological actions on living systems, including reaction with and binding to cell constituents and the biochemical and physiological consequences of these actions.

Pharmacokinetics

Process of drug uptake by the body, their resulting biotransformation, distribution of both the drugs and their metabolites in tissues and the elimination of drugs and their metabolites from the body over time.

Plaques

Clear zones formed on a bacterial lawn where phages have infected, replicated and lysed bacterial cells, indicating phage activity.

Single-step growth curve

Enables monitoring of the phage life cycle in vitro, in which a bacterial culture is infected with phage such that each infected bacterium is infected by a single phage. The proliferation of the phages in the bacterial culture is monitored by titrating the phage in samples withdrawn from the culture over time.

Strictly lytic phages

Phages that always enter lytic life cycle upon infection of the bacterial host, leading to eventual lysis of the host cell to release the phage progeny.

Temperate phages

Phages whose genomes reside as a prophage integrated into the host genome or as a plasmid. These phages may enter a lytic cycle spontaneously or via stressors.

Transduction

Transfer of non-phage genetic material from a bacterial cell to another by mis-packaged phage particles.

Virulence

Measure of severity of phage infection on a pathogen. The higher the value, the more effective the phage.

Virulence index

Estimate of the ability of a phage to kill or damage a bacterial host population.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skurnik, M., Alkalay-Oren, S., Boon, M. et al. Phage therapy. Nat Rev Methods Primers 5, 9 (2025). https://doi.org/10.1038/s43586-024-00377-5

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-024-00377-5

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology