Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Ultra-fast optical time-domain transformation techniques

Abstract

Owing to their inherent high-speed acquisition, ultra-short pulses are the major provider of big data in communications, metrology, spectroscopy, imaging and sensing. This has paved the way for various artificial intelligence and machine learning applications. The development of ultra-fast optical time-domain transformation (UO-TDT) techniques — specifically, time-stretched dispersive Fourier transform, temporal imaging and time-stretch imaging — has revolutionized photonic information acquisition. Dispersion-based frequency-to-time transformation of ultra-short pulses enables optical signal spectra to be converted into the time domain for ultra-fast spectral characterization. High-speed acquisition of information encoded on optical spectra means that new measurement techniques can effectively converge photonic and digital technologies. This Primer introduces the fundamental concepts and experimental set-up of various UO-TDT techniques with the associated transformation mechanisms. Recent advances in UO-TDT for various applications, from spectroscopy to velocimetry, and novel breakthroughs in ultra-fast imaging or quantum science are focused on. A range of experimental results are discussed, alongside an examination of reproducibility and limitations of the methods. Finally, a perspective on promising emerging techniques is provided.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Concept tree of the application-based UO-TDT techniques.
Fig. 2: Instrument set-up and components for UO-TDT techniques.
Fig. 3: Results of the TS-DFT techniques.
Fig. 4: Results of the temporal imaging system.
Fig. 5: Results of the time-stretch imaging system.
Fig. 6: Application examples of UO-TDT for all-optical manipulating, sensing and imaging.
Fig. 7: Example applications of UO-TDT for ultra-fast signal processing.

Similar content being viewed by others

References

  1. Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423–444 (1996).

    ADS  MATH  Google Scholar 

  2. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Google Scholar 

  3. Hodgkinson, J. & Tatam, R. P. Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013).

    ADS  MATH  Google Scholar 

  4. Brady, D. J. Optical Imaging and Spectroscopy (Wiley-OSA, 2009).

  5. Dorrer, C. & Walmsley, I. A. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photonics 1, 308–437 (2009).

    ADS  MATH  Google Scholar 

  6. Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).

    MATH  Google Scholar 

  7. Zewail, A. H. Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. C 100, 12701–12724 (1996).

    MATH  Google Scholar 

  8. Evans, C. L. & Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).

    MATH  Google Scholar 

  9. Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).

    Google Scholar 

  10. Hiraoka, Y., Sedat, J. W. & Agard, D. A. The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science 238, 36–41 (1987).

    ADS  MATH  Google Scholar 

  11. Radio, C. et al. Optimization of the Czerny–Turner spectrometer. J. Opt. Soc. Am. 54, 879–887 (1964).

    MATH  Google Scholar 

  12. Etoh, T. G. et al. Evolution of ultra-high-speed CCD imagers. Plasma Fusion. Res. 2, S1021 (2007).

    MATH  Google Scholar 

  13. Das, P. K. Optical Signal Processing: Fundamentals (Springer Science & Business Media, 2012).

  14. Turitsyn, S. K. et al. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4, 307–322 (2017).

    ADS  MATH  Google Scholar 

  15. Heck, A. J. R. & Chandler, D. W. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46, 335–372 (1995).

    ADS  MATH  Google Scholar 

  16. Herink, G., Jalali, B., Ropers, C. & Solli, D. R. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10, 321–326 (2016). To our knowledge, this work is the first experimental observation of the build-up process of mode-locking.

    ADS  MATH  Google Scholar 

  17. Yu, H., Peng, Y., Yang, Y. & Li, Z. Y. Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater. 5, 45 (2019).

    ADS  MATH  Google Scholar 

  18. Godin, T. et al. Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7, 2067487 (2022).

    MATH  Google Scholar 

  19. Torres-Company, V., Lancis, J. & Andrés, P. Space-time analogies in optics. Prog. Opt. 56, 1–80 (2011).

    ADS  MATH  Google Scholar 

  20. Van Howe, J. & Xu, C. Ultrafast optical signal processing based upon space-time dualities. J. Light Technol. 24, 2649–2662 (2006).

    MATH  Google Scholar 

  21. Goodman, J. W. Introduction to Fourier Optics (Roberts, 2005).

  22. Goda, K., Solli, D. R., Tsia, K. K. & Jalali, B. Theory of amplified dispersive Fourier transformation. Phys. Rev. A 80, 043821 (2009).

    ADS  Google Scholar 

  23. Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102–112 (2013). This review discusses the basic principle of TS-DFT and its implementation in diverse applications.

    ADS  MATH  Google Scholar 

  24. Wang, Y. et al. Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83, 116401 (2020).

    ADS  Google Scholar 

  25. Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photonics 11, 341–351 (2017).

    ADS  MATH  Google Scholar 

  26. Zapasskii, V. S. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photonics 5, 274–317 (2013).

    MATH  Google Scholar 

  27. Lei, C. & Goda, K. The complete optical oscilloscope. Nat. Photonics 12, 190–191 (2018).

    ADS  MATH  Google Scholar 

  28. Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). To our knowledge, this work is the first demonstration of a FWM time lens within a silicon-photonic platform.

    ADS  Google Scholar 

  29. Lei, C., Guo, B., Cheng, Z. & Goda, K. Optical time-stretch imaging: principles and applications. Appl. Phys. Rev. 3, 011102 (2016).

    ADS  MATH  Google Scholar 

  30. Goda, K., Tsia, K. K. & Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145–1149 (2009). This paper holds the world records for both shutter speed and frame rate in continuous real-time imaging.

    ADS  Google Scholar 

  31. Xu, Y. & Murdoch, S. G. Real-time spectral analysis of ultrafast pulses using a free-space angular chirp-enhanced delay. Opt. Lett. 44, 3697–3700 (2019).

    ADS  MATH  Google Scholar 

  32. Xian, T., Zhan, L., Wang, W. & Zhang, W. Subharmonic entrainment breather solitons in ultrafast lasers. Phys. Rev. Lett. 125, 163901 (2020).

    ADS  MATH  Google Scholar 

  33. Mance, J. G. et al. Time-stretched photonic Doppler velocimetry. Opt. Express 27, 25022–25030 (2019).

    ADS  Google Scholar 

  34. Huang, L., Zhang, Y. & Liu, X. Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics 9, 2731–2761 (2020).

    MATH  Google Scholar 

  35. Khodadad Kashi, A., Sader, L., Haldar, R., Wetzel, B. & Kues, M. Frequency-to-time mapping technique for direct spectral characterization of biphoton states from pulsed spontaneous parametric processes. Front. Photonics 3, 834065 (2022).

    Google Scholar 

  36. Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).

    ADS  MATH  Google Scholar 

  37. Zhou, Y., Chan, J. C. K. & Jalali, B. A unified framework for photonic time‐stretch systems. Laser Photonics Rev. 16, 2100524 (2022).

    ADS  Google Scholar 

  38. Diebold, E. D. et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Opt. Express 19, 23809–23817 (2011).

    ADS  MATH  Google Scholar 

  39. Yegnanarayanan, S., Trinh, P. D. & Jalali, B. Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access. Opt. Lett. 21, 740 (1996).

    ADS  Google Scholar 

  40. Jalali, B. & Mahjoubfar, A. Tailoring wideband signals with a photonic hardware accelerator. Proc. IEEE 103, 1071–1086 (2015).

    MATH  Google Scholar 

  41. Mahjoubfar, A., Chen, C. L. & Jalali, B. Design of warped stretch transform. Sci. Rep. 5, 17148 (2015).

    ADS  MATH  Google Scholar 

  42. Solli, D. R., Chou, J. & Jalali, B. Amplified wavelength–time transformation for real-time spectroscopy. Nat. Photonics 2, 48–51 (2008).

    ADS  MATH  Google Scholar 

  43. Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 15, 630–632 (1990).

    MATH  Google Scholar 

  44. Shen, Y. et al. Electro-optic time lensing with an intense single-cycle terahertz pulse. Phys. Rev. A 81, 053835 (2010).

    ADS  Google Scholar 

  45. Kauffman, M. T., Banyai, W. C., Godil, A. A. & Bloom, D. M. Time-to-frequency converter for measuring picosecond optical pulses. Appl. Phys. Lett. 64, 270–272 (1994).

    ADS  Google Scholar 

  46. Bennett, C. V. & Kolner, B. H. Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms. Opt. Lett. 24, 783–785 (1999).

    ADS  Google Scholar 

  47. Ng, T. T. et al. Compensation of linear distortions by using XPM with parabolic pulses as a time lens. IEEE Photonics Technol. Lett. 20, 1097–1099 (2008).

    ADS  MATH  Google Scholar 

  48. Bennett, C. V. & Kolner, B. H. Principles of parametric temporal imaging. I. System configurations. IEEE J. Quantum Electron. 36, 430–437 (2000).

    ADS  MATH  Google Scholar 

  49. Zhang, Y., Huang, L., Cui, Y. & Liu, X. Unveiling external motion dynamics of solitons in passively mode-locked fiber lasers. Opt. Lett. 45, 4835 (2020).

    ADS  MATH  Google Scholar 

  50. Zhang, Y., Cui, Y., Huang, L., Tong, L. & Liu, X. Full-field real-time characterization of creeping solitons dynamics in a mode-locked fiber laser. Opt. Lett. 45, 6246–6249 (2020).

    ADS  MATH  Google Scholar 

  51. Berti, N., Coen, S., Erkintalo, M. & Fatome, J. Extreme waveform compression with a nonlinear temporal focusing mirror. Nat. Photonics 16, 822–827 (2022).

    ADS  Google Scholar 

  52. Adam, J., Mahjoubfar, A., Diebold, E. D., Buckley, B. W. & Jalali, B. Spectrally encoded angular light scattering. Opt. Express 21, 28960–28967 (2013).

    ADS  Google Scholar 

  53. Shirasaki, M. Chromatic-dispersion compensator using virtually imaged phased array. IEEE Photonics Technol. Lett. 9, 1598–1600 (1997).

    ADS  MATH  Google Scholar 

  54. Li, B., Wang, S., Huang, Y. W. S. & Wong, K. K. Y. Temporal imaging for ultrafast optical signal processing and characterization. IEEE J. Sel. Top. Quantum Electron. 27, 7600613 (2020).

    Google Scholar 

  55. Krausz, F., Brabec, T., & Spielmann, Ch. Self-starting passive mode locking. Opt. Lett. 16, 235–237 (1991).

    ADS  Google Scholar 

  56. Liu, X. & Cui, Y. Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1, 016003 (2019).

    ADS  MATH  Google Scholar 

  57. Cui, Y. & Liu, X. Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photonics Res. 7, 423–430 (2019).

    MATH  Google Scholar 

  58. Kudelin, I., Sugavanam, S. & Chernysheva, M. Build-up dynamics in bidirectional soliton fibre laser. Photonics Res. 8, 776–780 (2020).

    Google Scholar 

  59. Wang, C., Li, X. & Zhang, S. Automated start-up and extinction dynamics of a Mamyshev oscillator based on a temperature-dependent filter. Laser Photonics Rev. 17, 2201016 (2023).

    ADS  Google Scholar 

  60. Ryczkowski, P. et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics 12, 221–227 (2018). To our knowledge, this work is the first real-time full-field characterization of soliton dynamics.

    ADS  MATH  Google Scholar 

  61. Du, Y. et al. Multi-port real-time observation for ultrafast intracavitary evolution dynamics. Commun. Phys. 6, 3 (2023).

    MATH  Google Scholar 

  62. Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017).

    ADS  Google Scholar 

  63. Peng, J., Boscolo, S., Zhao, Z. & Zeng, H. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, eaax1110 (2019).

    ADS  Google Scholar 

  64. Liu, M. et al. Visualizing the “invisible” soliton pulsation in an ultrafast laser. Laser Photonics Rev. 14, 1900317 (2020).

    ADS  Google Scholar 

  65. Chang, W., Ankiewicz, A., Akhmediev, N. & Soto-Crespo, J. M. Creeping solitons in dissipative systems and their bifurcations. Phys. Rev. E 76, 016607 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  66. Wu, X. et al. Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers. Nat. Commun. 13, 5784 (2022).

    ADS  MATH  Google Scholar 

  67. Chen, H.-J. et al. Dynamical diversity of pulsating solitons in a fiber laser. Opt. Express 27, 28507–28522 (2019).

    ADS  Google Scholar 

  68. Wang, Z., Coillet, A., Hamdi, S., Zhang, Z. & Grelu, P. Spectral pulsations of dissipative solitons in ultrafast fiber lasers: period doubling and beyond. Laser Photonics Rev. 17, 2200298 (2023).

    ADS  Google Scholar 

  69. Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017). To our knowledge, this work is the first experimental observation on internal dynamics of soliton molecules.

    ADS  Google Scholar 

  70. Hamdi, S., Coillet, A., Cluzel, B., Grelu, P. & Colman, P. Superlocalization reveals long-range synchronization of vibrating soliton molecules. Phys. Rev. Lett. 128, 213902 (2022).

    ADS  Google Scholar 

  71. Joo, K.-N. & Kim, S.-W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 14, 5954–5960 (2006).

    ADS  MATH  Google Scholar 

  72. Xian, T., Wang, W. & Zhan, L. Real time revealing relaxation dynamics of ultrafast mode-locked lasers. Phys. Rev. Res. 4, 013202 (2022).

    MATH  Google Scholar 

  73. Cole, D. C. & Papp, S. B. Subharmonic entrainment of Kerr breather solitons. Phys. Rev. Lett. 123, 173904 (2019).

    ADS  MATH  Google Scholar 

  74. Cui, Y. et al. Dichromatic “breather molecules” in a mode-locked fiber laser. Phys. Rev. Lett. 130, 153801 (2023).

    ADS  Google Scholar 

  75. Mao, D. et al. Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation. Nat. Commun. 12, 6712 (2021).

    ADS  MATH  Google Scholar 

  76. Lourdesamy, J. P. et al. Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18, 59–66 (2022).

    Google Scholar 

  77. Zhang, H. et al. The dissipative Talbot soliton fiber laser. Sci. Adv. 10, eadl2125 (2024).

    Google Scholar 

  78. Cui, Y. et al. Dichromatic soliton‐molecule compounds in mode‐locked fiber lasers. Laser Photonics Rev. 18, 2300471 (2024).

    ADS  Google Scholar 

  79. Närhi, M. et al. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun. 9, 4923 (2018).

    ADS  MATH  Google Scholar 

  80. Li, B., Huang, S.-W., Li, Y., Wong, C. W. & Wong, K. K. Y. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun. 8, 61 (2017).

    ADS  MATH  Google Scholar 

  81. Li, Y. et al. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl. 9, 52 (2020).

    ADS  MATH  Google Scholar 

  82. Suret, P. et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016).

    ADS  MATH  Google Scholar 

  83. Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. 7, 13675 (2016).

    ADS  MATH  Google Scholar 

  84. Salem, R. et al. High-speed optical sampling using a silicon-chip temporal magnifier. Opt. Express 17, 4324–4329 (2009).

    ADS  MATH  Google Scholar 

  85. Meng, F. et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun. 12, 5567 (2021).

    ADS  MATH  Google Scholar 

  86. Zhang, Y. et al. Spectral-temporal transient dynamics of dissipative soliton molecules in mode-locking fiber lasers. Opt. Laser Technol. 153, 108286 (2022).

    MATH  Google Scholar 

  87. Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).

    ADS  Google Scholar 

  88. Goda, K. et al. High-throughput single-microparticle imaging flow analyzer. Proc. Natl Acad. Sci. USA 109, 11630–11635 (2012).

    ADS  MATH  Google Scholar 

  89. Guo, B. et al. Optofluidic time-stretch quantitative phase microscopy. Methods 136, 116–125 (2018).

    MATH  Google Scholar 

  90. Xing, F., Chen, H., Xie, S. & Yao, J. Ultrafast surface imaging with an increased spatial resolution based on polarization-division multiplexing. J. Light Technol. 33, 396–402 (2015).

    ADS  MATH  Google Scholar 

  91. Xing, F. et al. Serial wavelength division 1 GHz line-scan microscopic imaging. Photonics Res. 2, B31–B34 (2014).

    Google Scholar 

  92. Lau, A. K. S., Shum, H. C., Wong, K. K. Y. & Tsia, K. K. Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry. Lab. Chip 16, 1743–1756 (2016).

    Google Scholar 

  93. Lau, A. K. S., Wong, T. T. W., Shum, H. C., Wong, K. K. Y. & Tsia, K. K. Ultrafast microfluidic cellular imaging by optical time-stretch. Methods Mol. Biol. 1389, 23–45 (2016).

    MATH  Google Scholar 

  94. Li, Y. et al. Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Sci. Rep. 9, 11088 (2019).

    ADS  MATH  Google Scholar 

  95. Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016).

    ADS  Google Scholar 

  96. Lei, C. et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat. Protoc. 13, 1603–1631 (2018).

    MATH  Google Scholar 

  97. Cui, Y. et al. XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15, 2000216 (2021).

    ADS  Google Scholar 

  98. Krupa, K., Nithyanandan, K. & Grelu, P. Vector dynamics of incoherent dissipative optical solitons. Optica 4, 1239–1244 (2017).

    ADS  MATH  Google Scholar 

  99. Gao, L., Cao, Y. L. & Zhu, T. Polarization dynamics of dissipative soliton fiber laser. Photonics Res. 7, 1331–1339 (2019).

    MATH  Google Scholar 

  100. Wu, Q. et al. Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude. Photonics Res. 11, 35–43 (2023).

    MATH  Google Scholar 

  101. Feng, Y. et al. Ultrafast Mueller matrix polarimetry with 10 nanosecond temporal resolution based on optical time-stretch. Opt. Lett. 47, 1403–1406 (2022).

    ADS  MATH  Google Scholar 

  102. Liu, K., Xiao, X. & Yang, C. Buildup dynamics of multiple-soliton in spatiotemporal mode-locked multimode fiber lasers. Photonics Res. 9, 1898–1906 (2021).

    MATH  Google Scholar 

  103. Guo, Y. et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons. Nat. Commun. 12, 67 (2021).

    ADS  MATH  Google Scholar 

  104. Guo, Y. et al. Unveiling the complexity of spatiotemporal soliton molecules in real time. Nat. Commun. 14, 2029 (2023).

    ADS  MATH  Google Scholar 

  105. Gao, Z. et al. Breaking the speed limitation of wavemeter through spectra-space-time mapping. Light Adv. Manuf. 4, 13 (2024).

    MATH  Google Scholar 

  106. Wu, J. L. et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci. Appl. 6, e16196 (2017).

    Google Scholar 

  107. Wu, J. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 17, 287–290 (2020).

    MATH  Google Scholar 

  108. Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005).

    ADS  MATH  Google Scholar 

  109. He, W., Pang, M., Yeh, D.-H., Huang, J., & Russell, P. S. Synthesis and dissociation of soliton molecules in parallel optical–soliton reactors. Light Sci. Appl. 10, 120 (2021).

    ADS  MATH  Google Scholar 

  110. Luo, Y. et al. Real-time dynamics of soliton triplets in fiber lasers. Photonics Res. 8, 884–891 (2020).

    MATH  Google Scholar 

  111. Liu, X., Yao, X. & Cui, Y. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018).

    ADS  MATH  Google Scholar 

  112. Peng, J. & Zeng, H. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photonics Rev. 12, 1800009 (2018).

    ADS  MATH  Google Scholar 

  113. Zhou, Y., Ren, Y., Shi, J., Mao, H. & Wong, K. K.-Y. Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica 7, 965–972 (2020).

    ADS  MATH  Google Scholar 

  114. Sulimany, K., Tziperman, O., Bromberg, Y. & Gat, O. Soliton-pair dynamical transition in mode-locked lasers. Optica 9, 1260–1267 (2022).

    ADS  MATH  Google Scholar 

  115. Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P. & Grelu, P. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017).

    ADS  Google Scholar 

  116. Liu, S., Cui, Y., Karimi, E. & Malomed, B. A. On-demand harnessing of photonic soliton molecules. Optica 9, 240–250 (2022).

    ADS  Google Scholar 

  117. Liu, Y. et al. Phase-tailored assembly and encoding of dissipative soliton molecules. Light Sci. Appl. 12, 123 (2023).

    ADS  MATH  Google Scholar 

  118. Liu, Y. et al. Unveiling manipulation mechanism on internal dynamics of soliton triplets via polarization and gain control. Opt. Lasers Eng. 168, 107645 (2023).

    MATH  Google Scholar 

  119. Kurtz, F., Ropers, C. & Herink, G. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics 14, 9–13 (2020). To our knowledge, this paper is the first to demonstrate that soliton molecules can be manipulated entirely through optical means.

    ADS  MATH  Google Scholar 

  120. Völkel, A., Nimmesgern, L., Mielnik-Pyszczorski, A., Wirth, T. & Herink, G. Intracavity Raman scattering couples soliton molecules with terahertz phonons. Nat. Commun. 13, 2066 (2022).

    ADS  Google Scholar 

  121. Song, Y., Zhou, F., Tian, H. & Hu, M. Attosecond timing jitter within a temporal soliton molecule. Optica 7, 1531–1534 (2020).

    ADS  MATH  Google Scholar 

  122. Leitenstorfer, A., Beckh, C., Herink, G., Kempf, H. & Nimmesgern, L. Soliton molecules in femtosecond fiber lasers: universal binding mechanism and direct electronic control. Optica 8, 1334–1339 (2021).

    ADS  Google Scholar 

  123. Zhou, Y., Shi, J., Ren, Y.-X. & Wong, K. K. Y. Reconfigurable dynamics of optical soliton molecular complexes in an ultrafast thulium fiber laser. Commun. Phys. 5, 302 (2022).

    MATH  Google Scholar 

  124. Pang, M., He, W., Jiang, X. & St Russell, P. J. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics 10, 454–458 (2016).

    ADS  Google Scholar 

  125. Yang, Y. et al. Phase-encoding of loosely bound soliton molecules. APL Photonics 9, 031305 (2024).

    ADS  Google Scholar 

  126. Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photonics 15, 91–101 (2021).

    ADS  Google Scholar 

  127. Wu, X. et al. Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16, 2100191 (2022).

    ADS  Google Scholar 

  128. Xia, H., Wang, C., Blais, S., Yao, J. & Xia, H. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. J. Light Technol. 28, 254–261 (2010).

    ADS  MATH  Google Scholar 

  129. Wang, C. & Yao, J. Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy. J. Light Technol. 29, 2927–2933 (2011).

    ADS  MATH  Google Scholar 

  130. Fernández, M. P. et al. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Opt. Express 27, 36815–36823 (2019).

    ADS  Google Scholar 

  131. Bai, Z. et al. Real-time strain interrogation based on an STS structure and wavelength-to-time mapping. IEEE Photonics Technol. Lett. 33, 615–618 (2021).

    ADS  MATH  Google Scholar 

  132. Lin, W. et al. Ultrafast salinity interrogation based on a tapered fiber modal interferometry and time-stretching method. J. Light Technol. 42, 5025–5032 (2024).

    MATH  Google Scholar 

  133. Zhou, J., Liu, D., Cheng, R. & Xia, L. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters. Opt. Lett. 40, 1760–1763 (2015).

    ADS  MATH  Google Scholar 

  134. Li, Y. et al. Fast spectral characterization of optical passive devices based on dissipative soliton fiber laser assisted dispersive Fourier transform. Phys. Rev. Appl. 14, 024074 (2020).

    ADS  Google Scholar 

  135. Chang, Z. et al. Dynamic phase retrieval method for ultrafast and precise vibration sensing based on time stretching. Opt. Lett. 47, 4652–4655 (2022).

    ADS  MATH  Google Scholar 

  136. Maiuri, M., Garavelli, M. & Cerullo, G. Ultrafast spectroscopy: state of the art and open challenges. J. Am. Chem. Soc. 142, 3–15 (2019).

    Google Scholar 

  137. Mance, J. G., La Lone, B. M., Madajian, J. A., Turley, W. D. & Veeser, L. R. Time-stretch spectroscopy for fast infrared absorption spectra of acetylene and hydroxyl radicals during combustion. Opt. Express 28, 29004–29015 (2020).

    ADS  Google Scholar 

  138. Lang, J. A., Hutter, S. R., Leitenstorfer, A. & Herink, G. Controlling intracavity dual-comb soliton motion in a single-fiber laser. Sci. Adv. 10, 2290 (2024).

    Google Scholar 

  139. Zhang, Z. et al. Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection. Appl. Phys. Lett. 116, 171106 (2020).

    ADS  Google Scholar 

  140. Kawai, A. et al. Time-stretch infrared spectroscopy. Commun. Phys. 3, 152 (2020).

    MATH  Google Scholar 

  141. Wen, Z. et al. Broadband up-conversion mid-infrared time-stretch spectroscopy. Laser Photonics Rev. 18, 2300630 (2023).

    ADS  Google Scholar 

  142. Hashimoto, K. et al. Upconversion time-stretch infrared spectroscopy. Light Sci. Appl. 12, 48 (2023).

    ADS  MATH  Google Scholar 

  143. Chu, P., Kilic, V., Foster, M. A. & Wang, Z. Time-lens photon Doppler velocimetry (TL-PDV). Rev. Sci. Instrum. 92, 044703 (2021).

    ADS  Google Scholar 

  144. Wu, Y. et al. Time-stretched femtosecond LiDAR using microwave photonic signal processing. J. Light Technol. 38, 6265–6271 (2020).

    Google Scholar 

  145. Chang, B. et al. Dispersive Fourier transform based dual-comb ranging. Nat. Commun. 15, 4990 (2024).

    ADS  MATH  Google Scholar 

  146. Xia, H. & Zhang, C. Ultrafast ranging LiDAR based on real-time Fourier transformation. Opt. Lett. 34, 2108–2110 (2009).

    ADS  MATH  Google Scholar 

  147. Zhang, C. & Xia, H. Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry. Opt. Express 18, 4118–4129 (2010).

    ADS  MATH  Google Scholar 

  148. Zhao, L. et al. Nanometer precision time-stretch femtosecond laser metrology using phase delay retrieval. J. Light Technol. 39, 5156–5162 (2021).

    ADS  MATH  Google Scholar 

  149. Niu, Q. et al. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb. Opt. Express 30, 35029–35040 (2022).

    ADS  Google Scholar 

  150. Xian, T., Wang, W. & Zhan, L. Dispersive temporal interferometry toward single‐shot probing ultrashort time signal with attosecond resolution. Adv. Photonics Res. 3, 2100303 (2022).

    Google Scholar 

  151. Kudelin, I., Sugavanam, S. & Chernysheva, M. Ultrafast gyroscopic measurements in a passive all‐fiber Mach–Zehnder interferometer via time‐stretch technique. Adv. Photonics Res. 3, 2200092 (2022).

    MATH  Google Scholar 

  152. Zhang, L. et al. Calibration-free time-stretch optical coherence tomography with large imaging depth. Opt. Lett. 44, 4135–4138 (2019).

    ADS  MATH  Google Scholar 

  153. Huang, D., Li, F., Shang, C., Cheng, Z. & Wai, P. K. A. Reconfigurable time-stretched swept laser source with up to 100 MHz sweep rate, 100 nm bandwidth, and 100 mm OCT imaging range. Photonics Res. 8, 1360–1367 (2020).

    Google Scholar 

  154. Huang, D. et al. 400 MHz ultrafast optical coherence tomography. Opt. Lett. 45, 6675–6678 (2020).

    ADS  Google Scholar 

  155. Huang, J. et al. Time-stretch-based multidimensional line-scan microscopy. Opt. Lasers Eng. 160, 107197 (2023).

    Google Scholar 

  156. Wang, K. & Xu, C. Synchronized time-lens source for coherent Raman scattering microscopy. Opt. Express 18, 24019–24024 (2010).

    ADS  Google Scholar 

  157. Klein, A., Yaron, T., Preter, E., Duadi, H. & Fridman, M. Temporal depth imaging. Optica 4, 502–506 (2017).

    ADS  Google Scholar 

  158. Li, B. et al. 109 MHz optical tomography using temporal magnification. Opt. Lett. 40, 2965–2968 (2015).

    ADS  MATH  Google Scholar 

  159. Yang, L. et al. Sensitivity-enhanced ultrafast optical tomography by parametric- and Raman-amplified temporal imaging. Opt. Lett. 43, 5673–5676 (2018).

    ADS  MATH  Google Scholar 

  160. Zang, Z. et al. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photonics 7, 046102 (2022).

    ADS  MATH  Google Scholar 

  161. Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012).

    ADS  MATH  Google Scholar 

  162. Jiang, Y., Karpf, S. & Jalali, B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics 14, 14–18 (2020). To our knowledge, this paper is the first to demonstrate ultra-fast LiDAR.

    MATH  Google Scholar 

  163. Palushani, E. et al. OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation. IEEE J. Sel. Top. Quantum Electron. 18, 681–688 (2012).

    ADS  MATH  Google Scholar 

  164. Li, L. et al. Real-time Fourier-domain optical vector oscilloscope. Sci. Adv. 9, eadg2538 (2023).

  165. Romero Cortés, L., Onori, D., Guillet de Chatellus, H., Burla, M. & Azaña, J. Towards on-chip photonic-assisted radio-frequency spectral measurement and monitoring. Optica 7, 434–447 (2020).

    ADS  Google Scholar 

  166. Zhou, F. et al. Photonic multiple microwave frequency measurement based on frequency-to-time mapping. IEEE Photonics J. 10, 5500807 (2018).

    MATH  Google Scholar 

  167. Saperstein, R. E., Xie, X. B., Yu, P. K. L. & Fainman, Y. Demonstration of a microwave spectrum analyzer based on time domain processing of ultrafast pulses. Opt. Lett. 29, 501–503 (2005).

    ADS  MATH  Google Scholar 

  168. Nguyen, T. A., Chan, E. H. W. & Minasian, R. A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique. Opt. Lett. 39, 2419–2422 (2014).

  169. Chen, L., Duan, Y., Zhang, C. & Zhang, X. A real-time ultra-broadband radio frequency spectrum analyzer based on parametric spectro-temporal analyzer. Opt. Express 25, 9416–9425 (2017).

    ADS  MATH  Google Scholar 

  170. Duan, Y. et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification. Opt. Express 25, 7520–7529 (2017).

    ADS  MATH  Google Scholar 

  171. Liu, J., Shi, T. & Chen, Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping. J. Light Technol. 39, 2023–2032 (2021).

    ADS  MATH  Google Scholar 

  172. Patera, G., Horoshko, D. B. & Kolobov, M. I. Space-time duality and quantum temporal imaging. Phys. Rev. A 98, 053815 (2018).

    ADS  MATH  Google Scholar 

  173. Mazelanik, M., Leszczyński, A., Lipka, M., Parniak, M. & Wasilewski, W. Temporal imaging for ultra-narrowband few-photon states of light. Optica 7, 203–208 (2020).

    ADS  MATH  Google Scholar 

  174. Karpiński, M., Davis, A. O. C., Sośnicki, F., Thiel, V. & Smith, B. J. Control and measurement of quantum light pulses for quantum information science and technology. Adv. Quantum Technol. 4, 2000150 (2021).

    Google Scholar 

  175. Li, B., Bartos, J., Xie, Y. & Huang, S.-W. Time-magnified photon counting with 550-fs resolution. Optica 8, 1109–1112 (2021).

    ADS  MATH  Google Scholar 

  176. Joshi, C. et al. Picosecond-resolution single-photon time lens for temporal mode quantum processing. Optica 9, 364–373 (2022). This paper demonstrates that a time lens-based framework can be a new toolkit for arbitrary spectro-temporal processing of single photons.

    ADS  MATH  Google Scholar 

  177. Karpinski, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photonics 11, 53–57 (2017).

    ADS  Google Scholar 

  178. Goda, K. et al. Hybrid dispersion laser scanner. Sci. Rep. 2, 445 (2012).

    MATH  Google Scholar 

  179. Okawachi, Y. et al. Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier. Opt. Lett. 37, 4892 (2012).

    ADS  MATH  Google Scholar 

  180. Kang, J. et al. 102-nm, 445-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Opt. Express 26, 4370 (2018).

    ADS  MATH  Google Scholar 

  181. Shi, H., Song, Y., Wang, C., Zhao, L. & Hu, M. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule. Opt. Lett. 43, 1623–1626 (2018).

    ADS  MATH  Google Scholar 

  182. Fard, A. M., Gupta, S. & Jalali, B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging. Laser Photonics Rev. 7, 207–263 (2013).

    ADS  MATH  Google Scholar 

  183. Pu, G. & Jalali, B. Neural network enabled time stretch spectral regression. Opt. Express 29, 20786–20794 (2021).

    ADS  Google Scholar 

  184. Han, Y., Boyraz, O. & Jalali, B. Ultrawide-band photonic time-stretch A/D converter employing phase diversity. IEEE Trans. Microw. Theory Tech. 53, 1404–1408 (2005).

    ADS  Google Scholar 

  185. Han, Y. & Jalali, B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Light Technol. 21, 3085 (2003).

    ADS  MATH  Google Scholar 

  186. Roussel, E. et al. Phase diversity electro-optic sampling: a new approach to single-shot terahertz waveform recording. Light Sci. Appl. 11, 14 (2022).

    ADS  MATH  Google Scholar 

  187. Kolner, B. H. Active pulse compression using an integrated electro‐optic phase modulator. Appl. Phys. Lett. 52, 1122–1124 (1988).

    ADS  MATH  Google Scholar 

  188. Hirooka, T. & Nakazawa, M. All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse. IEEE Photonics Technol. Lett. 20, 1869–1871 (2008).

    ADS  MATH  Google Scholar 

  189. Wong, K. K. Y., Marhic, M. E., Uesaka, K. & Kazovsky, L. G. Polarization-independent two-pump fiber optical parametric amplifier. IEEE Photonics Technol. Lett. 14, 911–913 (2002).

    ADS  Google Scholar 

  190. Weng, Y. et al. Temporally interleaved optical time-stretch imaging. Opt. Lett. 45, 2387 (2020).

    ADS  MATH  Google Scholar 

  191. Diebold, E. D., Buckley, B. W., Gossett, D. R. & Jalali, B. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nat. Photonics 7, 806–810 (2013).

    ADS  Google Scholar 

  192. Zhou, T., Wu, W., Zhang, J., Yu, S. & Fang, L. Ultrafast dynamic machine vision with spatiotemporal photonic computing. Sci. Adv. 9, eadg4391 (2023).

    Google Scholar 

  193. Jalali, B., Zhou, Y., Kadambi, A. & Roychowdhury, V. Physics–AI symbiosis. Mach. Learn. Sci. Technol. 3, 041001 (2022).

    ADS  Google Scholar 

  194. Wu, X. et al. Control of spectral extreme events in ultrafast fiber lasers by a genetic algorithm. Laser Photonics Rev. 18, 2200470 (2024).

    ADS  MATH  Google Scholar 

  195. Brida, D., Krauss, G., Sell, A. & Leitenstorfer, A. Ultrabroadband Er:fiber lasers. Laser Photonics Rev. 8, 409–428 (2014).

    ADS  Google Scholar 

  196. Mayor, U., Johnson, C. M., Daggett, V. & Fersht, A. R. Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl Acad. Sci. USA 97, 13518–13522 (2000).

    ADS  Google Scholar 

  197. Zhang, Y. et al. Advances and challenges of ultrafast fiber lasers in 2–4 µm mid-infrared spectral regions. Laser Photonics Rev. 18, 2300786 (2024).

    ADS  Google Scholar 

  198. Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).

    ADS  MATH  Google Scholar 

  199. Singh, N. et al. Silicon photonics-based high-energy passively Q-switched laser. Nat. Photonics 18, 485–491 (2024).

    ADS  MATH  Google Scholar 

  200. Liu, Y. et al. A fully hybrid integrated erbium-based laser. Nat. Photonics 18, 829–835 (2024).

    MATH  Google Scholar 

  201. Daniel, C. Ultrafast processes: coordination chemistry and quantum theory. Phys. Chem. Chem. Phys. 23, 43–58 (2021).

    MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (grant nos. 62305299, 62205296 and W2433154), the Zhejiang Provincial Natural Science Foundation of China (grant nos. LQ23F050004 and LQ22F050007), the National Key R&D Program of China (grant no. 2023YFF0715802) and the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang (grant no. 2022C03084). S.K.T. acknowledges the support of the Engineering and Physical Sciences Research Council (project EP/W002868/1).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (S.K.T. and Z.S.); Experimentation (Y.Z., C.T., L.H. and Y.C.); Results (Y.Z., C.T., S.L., Q.L. and D.C.); Applications (S.L., K.Y.L., J.Z., A.Z., L.S., Z.G. and Y.C.); Reproducibility and data deposition (Z.G. and Y.C.); Limitations and optimizations (Y.Z., Z.S., D.C. and J.Q.); Outlook (S.K.T., Z.S. and J.Q.); overview of the Primer (all authors).

Corresponding authors

Correspondence to Yudong Cui, Daru Chen, Sergei K. Turitsyn or Zhipei Sun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Diffraction

A wave phenomenon that occurs when a wave encounters an obstacle or slit that is comparable in size with its wavelength. Diffraction causes the wave to bend, spread out or interfere with itself after passing through or around the object.

Fourier transform

A powerful tool to convert a signal from its time (or spatial) domain into its frequency domain and vice versa. This transform breaks down a complex signal into its constituent sinusoidal waves, revealing how much of each frequency is present in the original signal.

Group-velocity dispersion

(GVD). An optical phenomenon where different frequencies of a wave packet travel at different velocities, causing the packet to spread out over time. GVD occurs in optical fibres and other dispersive media, affecting the propagation of light pulses by broadening their temporal profile.

Mode-locked laser

A type of laser that produces extremely short pulses of light by locking the phases of different frequency modes. This synchronization creates constructive interference at regular intervals, resulting in a train of high-intensity, ultra-short pulses.

Optical non-linearity

A phenomenon where the optical response — such as the refractive index or polarization — of a material does not simply scale linearly with the intensity of the incident light during the interaction between light and matter. When the light intensity reaches a certain threshold, the optical properties of the material change, leading to non-linear effects.

Soliton

A self-reinforcing wave packet that maintains its shape while travelling at a constant velocity due to a balance between dispersion and non-linearity.

Soliton molecules

Bound states of multiple solitons that maintain a stable, fixed structure, behaving similarly to molecules with quantized bond distances between individual solitons.

Space–time analogy

A conceptual framework that draws parallels between spatial (space-related) and temporal (time-related) phenomena. This analogy is especially useful to understand and describe how light waves behave in different media, both in spatial and temporal dimensions.

Spatial dispersers

Spatial dispersers are optical devices or components that separate light based on spatial frequencies or wavelengths by spreading different spectral components across space. Unlike temporal dispersers, which separate wavelengths over time, spatial dispersers spread wavelengths in space, allowing each frequency component of light to propagate in different directions.

Temporal Fraunhofer regime

An analogy to the spatial Fraunhofer diffraction, but in the time domain. A temporal Fraunhofer regime occurs when a signal is observed far enough away in time from an event, allowing for a simplified analysis. In this regime, the temporal waveform behaves similar to a Fourier transform of the original signal, revealing its frequency components more clearly.

Temporal imaging

A technique that manipulates the temporal profile of optical signals, analogous to spatial imaging but in the time domain. Temporal imaging allows for the magnification, compression and reshaping of ultra-fast optical pulses, enabling detailed analysis and processing of temporal features.

Time lens

A concept that enables manipulation of light pulses in the time domain, analogous to how a spatial lens manipulates light in the spatial domain.

Time-stretched dispersive Fourier transform

(TS-DFT). A spectroscopy technique that uses optical dispersion to separate light wavelengths, transforming the spectrum of an ultra-short pulse into a time-stretched temporal waveform. This method is used to perform Fourier transforms on optical signals at high frame rates, enabling real-time analysis of fast dynamic processes.

Time-stretched imaging

A technique that builds on temporally stretching broadband pulses by using the dispersive properties of light in both spatial and temporal domains.

Ultra-short pulses

Electromagnetic pulses whose time duration lasts only a few trillionths of a second (femtoseconds) or less. They typically spread across a wide range of colours due to their broad optical spectrum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Tao, C., Luo, S. et al. Ultra-fast optical time-domain transformation techniques. Nat Rev Methods Primers 5, 11 (2025). https://doi.org/10.1038/s43586-025-00381-3

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00381-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing