Abstract
Owing to their inherent high-speed acquisition, ultra-short pulses are the major provider of big data in communications, metrology, spectroscopy, imaging and sensing. This has paved the way for various artificial intelligence and machine learning applications. The development of ultra-fast optical time-domain transformation (UO-TDT) techniques — specifically, time-stretched dispersive Fourier transform, temporal imaging and time-stretch imaging — has revolutionized photonic information acquisition. Dispersion-based frequency-to-time transformation of ultra-short pulses enables optical signal spectra to be converted into the time domain for ultra-fast spectral characterization. High-speed acquisition of information encoded on optical spectra means that new measurement techniques can effectively converge photonic and digital technologies. This Primer introduces the fundamental concepts and experimental set-up of various UO-TDT techniques with the associated transformation mechanisms. Recent advances in UO-TDT for various applications, from spectroscopy to velocimetry, and novel breakthroughs in ultra-fast imaging or quantum science are focused on. A range of experimental results are discussed, alongside an examination of reproducibility and limitations of the methods. Finally, a perspective on promising emerging techniques is provided.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
References
Haus, H. A. & Wong, W. S. Solitons in optical communications. Rev. Mod. Phys. 68, 423–444 (1996).
Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).
Hodgkinson, J. & Tatam, R. P. Optical gas sensing: a review. Meas. Sci. Technol. 24, 012004 (2013).
Brady, D. J. Optical Imaging and Spectroscopy (Wiley-OSA, 2009).
Dorrer, C. & Walmsley, I. A. Characterization of ultrashort electromagnetic pulses. Adv. Opt. Photonics 1, 308–437 (2009).
Bailes, M. et al. Gravitational-wave physics and astronomy in the 2020s and 2030s. Nat. Rev. Phys. 3, 344–366 (2021).
Zewail, A. H. Femtochemistry: recent progress in studies of dynamics and control of reactions and their transition states. J. Phys. Chem. C 100, 12701–12724 (1996).
Evans, C. L. & Xie, X. S. Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008).
Huang, B., Bates, M. & Zhuang, X. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78, 993–1016 (2009).
Hiraoka, Y., Sedat, J. W. & Agard, D. A. The use of a charge-coupled device for quantitative optical microscopy of biological structures. Science 238, 36–41 (1987).
Radio, C. et al. Optimization of the Czerny–Turner spectrometer. J. Opt. Soc. Am. 54, 879–887 (1964).
Etoh, T. G. et al. Evolution of ultra-high-speed CCD imagers. Plasma Fusion. Res. 2, S1021 (2007).
Das, P. K. Optical Signal Processing: Fundamentals (Springer Science & Business Media, 2012).
Turitsyn, S. K. et al. Nonlinear Fourier transform for optical data processing and transmission: advances and perspectives. Optica 4, 307–322 (2017).
Heck, A. J. R. & Chandler, D. W. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46, 335–372 (1995).
Herink, G., Jalali, B., Ropers, C. & Solli, D. R. Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90 MHz frame rate. Nat. Photonics 10, 321–326 (2016). To our knowledge, this work is the first experimental observation of the build-up process of mode-locking.
Yu, H., Peng, Y., Yang, Y. & Li, Z. Y. Plasmon-enhanced light–matter interactions and applications. npj Comput. Mater. 5, 45 (2019).
Godin, T. et al. Recent advances on time-stretch dispersive Fourier transform and its applications. Adv. Phys. X 7, 2067487 (2022).
Torres-Company, V., Lancis, J. & Andrés, P. Space-time analogies in optics. Prog. Opt. 56, 1–80 (2011).
Van Howe, J. & Xu, C. Ultrafast optical signal processing based upon space-time dualities. J. Light Technol. 24, 2649–2662 (2006).
Goodman, J. W. Introduction to Fourier Optics (Roberts, 2005).
Goda, K., Solli, D. R., Tsia, K. K. & Jalali, B. Theory of amplified dispersive Fourier transformation. Phys. Rev. A 80, 043821 (2009).
Goda, K. & Jalali, B. Dispersive Fourier transformation for fast continuous single-shot measurements. Nat. Photonics 7, 102–112 (2013). This review discusses the basic principle of TS-DFT and its implementation in diverse applications.
Wang, Y. et al. Recent advances in real-time spectrum measurement of soliton dynamics by dispersive Fourier transformation. Rep. Prog. Phys. 83, 116401 (2020).
Mahjoubfar, A. et al. Time stretch and its applications. Nat. Photonics 11, 341–351 (2017).
Zapasskii, V. S. Application of space–time duality to ultrahigh-speed optical signal processing. Adv. Opt. Photonics 5, 274–317 (2013).
Lei, C. & Goda, K. The complete optical oscilloscope. Nat. Photonics 12, 190–191 (2018).
Foster, M. A. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008). To our knowledge, this work is the first demonstration of a FWM time lens within a silicon-photonic platform.
Lei, C., Guo, B., Cheng, Z. & Goda, K. Optical time-stretch imaging: principles and applications. Appl. Phys. Rev. 3, 011102 (2016).
Goda, K., Tsia, K. K. & Jalali, B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature 458, 1145–1149 (2009). This paper holds the world records for both shutter speed and frame rate in continuous real-time imaging.
Xu, Y. & Murdoch, S. G. Real-time spectral analysis of ultrafast pulses using a free-space angular chirp-enhanced delay. Opt. Lett. 44, 3697–3700 (2019).
Xian, T., Zhan, L., Wang, W. & Zhang, W. Subharmonic entrainment breather solitons in ultrafast lasers. Phys. Rev. Lett. 125, 163901 (2020).
Mance, J. G. et al. Time-stretched photonic Doppler velocimetry. Opt. Express 27, 25022–25030 (2019).
Huang, L., Zhang, Y. & Liu, X. Dynamics of carbon nanotube-based mode-locking fiber lasers. Nanophotonics 9, 2731–2761 (2020).
Khodadad Kashi, A., Sader, L., Haldar, R., Wetzel, B. & Kues, M. Frequency-to-time mapping technique for direct spectral characterization of biphoton states from pulsed spontaneous parametric processes. Front. Photonics 3, 834065 (2022).
Kolner, B. H. Space-time duality and the theory of temporal imaging. IEEE J. Quantum Electron. 30, 1951–1963 (1994).
Zhou, Y., Chan, J. C. K. & Jalali, B. A unified framework for photonic time‐stretch systems. Laser Photonics Rev. 16, 2100524 (2022).
Diebold, E. D. et al. Giant tunable optical dispersion using chromo-modal excitation of a multimode waveguide. Opt. Express 19, 23809–23817 (2011).
Yegnanarayanan, S., Trinh, P. D. & Jalali, B. Recirculating photonic filter: a wavelength-selective time delay for phased-array antennas and wavelength code-division multiple access. Opt. Lett. 21, 740 (1996).
Jalali, B. & Mahjoubfar, A. Tailoring wideband signals with a photonic hardware accelerator. Proc. IEEE 103, 1071–1086 (2015).
Mahjoubfar, A., Chen, C. L. & Jalali, B. Design of warped stretch transform. Sci. Rep. 5, 17148 (2015).
Solli, D. R., Chou, J. & Jalali, B. Amplified wavelength–time transformation for real-time spectroscopy. Nat. Photonics 2, 48–51 (2008).
Kolner, B. H. & Nazarathy, M. Temporal imaging with a time lens. Opt. Lett. 15, 630–632 (1990).
Shen, Y. et al. Electro-optic time lensing with an intense single-cycle terahertz pulse. Phys. Rev. A 81, 053835 (2010).
Kauffman, M. T., Banyai, W. C., Godil, A. A. & Bloom, D. M. Time-to-frequency converter for measuring picosecond optical pulses. Appl. Phys. Lett. 64, 270–272 (1994).
Bennett, C. V. & Kolner, B. H. Upconversion time microscope demonstrating 103× magnification of femtosecond waveforms. Opt. Lett. 24, 783–785 (1999).
Ng, T. T. et al. Compensation of linear distortions by using XPM with parabolic pulses as a time lens. IEEE Photonics Technol. Lett. 20, 1097–1099 (2008).
Bennett, C. V. & Kolner, B. H. Principles of parametric temporal imaging. I. System configurations. IEEE J. Quantum Electron. 36, 430–437 (2000).
Zhang, Y., Huang, L., Cui, Y. & Liu, X. Unveiling external motion dynamics of solitons in passively mode-locked fiber lasers. Opt. Lett. 45, 4835 (2020).
Zhang, Y., Cui, Y., Huang, L., Tong, L. & Liu, X. Full-field real-time characterization of creeping solitons dynamics in a mode-locked fiber laser. Opt. Lett. 45, 6246–6249 (2020).
Berti, N., Coen, S., Erkintalo, M. & Fatome, J. Extreme waveform compression with a nonlinear temporal focusing mirror. Nat. Photonics 16, 822–827 (2022).
Adam, J., Mahjoubfar, A., Diebold, E. D., Buckley, B. W. & Jalali, B. Spectrally encoded angular light scattering. Opt. Express 21, 28960–28967 (2013).
Shirasaki, M. Chromatic-dispersion compensator using virtually imaged phased array. IEEE Photonics Technol. Lett. 9, 1598–1600 (1997).
Li, B., Wang, S., Huang, Y. W. S. & Wong, K. K. Y. Temporal imaging for ultrafast optical signal processing and characterization. IEEE J. Sel. Top. Quantum Electron. 27, 7600613 (2020).
Krausz, F., Brabec, T., & Spielmann, Ch. Self-starting passive mode locking. Opt. Lett. 16, 235–237 (1991).
Liu, X. & Cui, Y. Revealing the behavior of soliton buildup in a mode-locked laser. Adv. Photonics 1, 016003 (2019).
Cui, Y. & Liu, X. Revelation of the birth and extinction dynamics of solitons in SWNT-mode-locked fiber lasers. Photonics Res. 7, 423–430 (2019).
Kudelin, I., Sugavanam, S. & Chernysheva, M. Build-up dynamics in bidirectional soliton fibre laser. Photonics Res. 8, 776–780 (2020).
Wang, C., Li, X. & Zhang, S. Automated start-up and extinction dynamics of a Mamyshev oscillator based on a temperature-dependent filter. Laser Photonics Rev. 17, 2201016 (2023).
Ryczkowski, P. et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser. Nat. Photonics 12, 221–227 (2018). To our knowledge, this work is the first real-time full-field characterization of soliton dynamics.
Du, Y. et al. Multi-port real-time observation for ultrafast intracavitary evolution dynamics. Commun. Phys. 6, 3 (2023).
Lucas, E., Karpov, M., Guo, H., Gorodetsky, M. L. & Kippenberg, T. J. Breathing dissipative solitons in optical microresonators. Nat. Commun. 8, 736 (2017).
Peng, J., Boscolo, S., Zhao, Z. & Zeng, H. Breathing dissipative solitons in mode-locked fiber lasers. Sci. Adv. 5, eaax1110 (2019).
Liu, M. et al. Visualizing the “invisible” soliton pulsation in an ultrafast laser. Laser Photonics Rev. 14, 1900317 (2020).
Chang, W., Ankiewicz, A., Akhmediev, N. & Soto-Crespo, J. M. Creeping solitons in dissipative systems and their bifurcations. Phys. Rev. E 76, 016607 (2007).
Wu, X. et al. Farey tree and devil’s staircase of frequency-locked breathers in ultrafast lasers. Nat. Commun. 13, 5784 (2022).
Chen, H.-J. et al. Dynamical diversity of pulsating solitons in a fiber laser. Opt. Express 27, 28507–28522 (2019).
Wang, Z., Coillet, A., Hamdi, S., Zhang, Z. & Grelu, P. Spectral pulsations of dissipative solitons in ultrafast fiber lasers: period doubling and beyond. Laser Photonics Rev. 17, 2200298 (2023).
Herink, G., Kurtz, F., Jalali, B., Solli, D. R. & Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 356, 50–54 (2017). To our knowledge, this work is the first experimental observation on internal dynamics of soliton molecules.
Hamdi, S., Coillet, A., Cluzel, B., Grelu, P. & Colman, P. Superlocalization reveals long-range synchronization of vibrating soliton molecules. Phys. Rev. Lett. 128, 213902 (2022).
Joo, K.-N. & Kim, S.-W. Absolute distance measurement by dispersive interferometry using a femtosecond pulse laser. Opt. Express 14, 5954–5960 (2006).
Xian, T., Wang, W. & Zhan, L. Real time revealing relaxation dynamics of ultrafast mode-locked lasers. Phys. Rev. Res. 4, 013202 (2022).
Cole, D. C. & Papp, S. B. Subharmonic entrainment of Kerr breather solitons. Phys. Rev. Lett. 123, 173904 (2019).
Cui, Y. et al. Dichromatic “breather molecules” in a mode-locked fiber laser. Phys. Rev. Lett. 130, 153801 (2023).
Mao, D. et al. Synchronized multi-wavelength soliton fiber laser via intracavity group delay modulation. Nat. Commun. 12, 6712 (2021).
Lourdesamy, J. P. et al. Spectrally periodic pulses for enhancement of optical nonlinear effects. Nat. Phys. 18, 59–66 (2022).
Zhang, H. et al. The dissipative Talbot soliton fiber laser. Sci. Adv. 10, eadl2125 (2024).
Cui, Y. et al. Dichromatic soliton‐molecule compounds in mode‐locked fiber lasers. Laser Photonics Rev. 18, 2300471 (2024).
Närhi, M. et al. Machine learning analysis of extreme events in optical fibre modulation instability. Nat. Commun. 9, 4923 (2018).
Li, B., Huang, S.-W., Li, Y., Wong, C. W. & Wong, K. K. Y. Panoramic-reconstruction temporal imaging for seamless measurements of slowly-evolved femtosecond pulse dynamics. Nat. Commun. 8, 61 (2017).
Li, Y. et al. Real-time transition dynamics and stability of chip-scale dispersion-managed frequency microcombs. Light Sci. Appl. 9, 52 (2020).
Suret, P. et al. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy. Nat. Commun. 7, 13136 (2016).
Närhi, M. et al. Real-time measurements of spontaneous breathers and rogue wave events in optical fibre modulation instability. Nat. Commun. 7, 13675 (2016).
Salem, R. et al. High-speed optical sampling using a silicon-chip temporal magnifier. Opt. Express 17, 4324–4329 (2009).
Meng, F. et al. Intracavity incoherent supercontinuum dynamics and rogue waves in a broadband dissipative soliton laser. Nat. Commun. 12, 5567 (2021).
Zhang, Y. et al. Spectral-temporal transient dynamics of dissipative soliton molecules in mode-locking fiber lasers. Opt. Laser Technol. 153, 108286 (2022).
Lamont, M. R. E., Okawachi, Y. & Gaeta, A. L. Route to stabilized ultrabroadband microresonator-based frequency combs. Opt. Lett. 38, 3478–3481 (2013).
Goda, K. et al. High-throughput single-microparticle imaging flow analyzer. Proc. Natl Acad. Sci. USA 109, 11630–11635 (2012).
Guo, B. et al. Optofluidic time-stretch quantitative phase microscopy. Methods 136, 116–125 (2018).
Xing, F., Chen, H., Xie, S. & Yao, J. Ultrafast surface imaging with an increased spatial resolution based on polarization-division multiplexing. J. Light Technol. 33, 396–402 (2015).
Xing, F. et al. Serial wavelength division 1 GHz line-scan microscopic imaging. Photonics Res. 2, B31–B34 (2014).
Lau, A. K. S., Shum, H. C., Wong, K. K. Y. & Tsia, K. K. Optofluidic time-stretch imaging—an emerging tool for high-throughput imaging flow cytometry. Lab. Chip 16, 1743–1756 (2016).
Lau, A. K. S., Wong, T. T. W., Shum, H. C., Wong, K. K. Y. & Tsia, K. K. Ultrafast microfluidic cellular imaging by optical time-stretch. Methods Mol. Biol. 1389, 23–45 (2016).
Li, Y. et al. Deep cytometry: deep learning with real-time inference in cell sorting and flow cytometry. Sci. Rep. 9, 11088 (2019).
Chen, C. L. et al. Deep learning in label-free cell classification. Sci. Rep. 6, 21471 (2016).
Lei, C. et al. High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nat. Protoc. 13, 1603–1631 (2018).
Cui, Y. et al. XPM-induced vector asymmetrical soliton with spectral period doubling in mode-locked fiber laser. Laser Photonics Rev. 15, 2000216 (2021).
Krupa, K., Nithyanandan, K. & Grelu, P. Vector dynamics of incoherent dissipative optical solitons. Optica 4, 1239–1244 (2017).
Gao, L., Cao, Y. L. & Zhu, T. Polarization dynamics of dissipative soliton fiber laser. Photonics Res. 7, 1331–1339 (2019).
Wu, Q. et al. Single-shot measurement of wavelength-resolved state of polarization dynamics in ultrafast lasers using dispersed division-of-amplitude. Photonics Res. 11, 35–43 (2023).
Feng, Y. et al. Ultrafast Mueller matrix polarimetry with 10 nanosecond temporal resolution based on optical time-stretch. Opt. Lett. 47, 1403–1406 (2022).
Liu, K., Xiao, X. & Yang, C. Buildup dynamics of multiple-soliton in spatiotemporal mode-locked multimode fiber lasers. Photonics Res. 9, 1898–1906 (2021).
Guo, Y. et al. Real-time multispeckle spectral-temporal measurement unveils the complexity of spatiotemporal solitons. Nat. Commun. 12, 67 (2021).
Guo, Y. et al. Unveiling the complexity of spatiotemporal soliton molecules in real time. Nat. Commun. 14, 2029 (2023).
Gao, Z. et al. Breaking the speed limitation of wavemeter through spectra-space-time mapping. Light Adv. Manuf. 4, 13 (2024).
Wu, J. L. et al. Ultrafast laser-scanning time-stretch imaging at visible wavelengths. Light Sci. Appl. 6, e16196 (2017).
Wu, J. et al. Kilohertz two-photon fluorescence microscopy imaging of neural activity in vivo. Nat. Methods 17, 287–290 (2020).
Stratmann, M., Pagel, T. & Mitschke, F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005).
He, W., Pang, M., Yeh, D.-H., Huang, J., & Russell, P. S. Synthesis and dissociation of soliton molecules in parallel optical–soliton reactors. Light Sci. Appl. 10, 120 (2021).
Luo, Y. et al. Real-time dynamics of soliton triplets in fiber lasers. Photonics Res. 8, 884–891 (2020).
Liu, X., Yao, X. & Cui, Y. Real-time observation of the buildup of soliton molecules. Phys. Rev. Lett. 121, 023905 (2018).
Peng, J. & Zeng, H. Build-up of dissipative optical soliton molecules via diverse soliton interactions. Laser Photonics Rev. 12, 1800009 (2018).
Zhou, Y., Ren, Y., Shi, J., Mao, H. & Wong, K. K.-Y. Buildup and dissociation dynamics of dissipative optical soliton molecules. Optica 7, 965–972 (2020).
Sulimany, K., Tziperman, O., Bromberg, Y. & Gat, O. Soliton-pair dynamical transition in mode-locked lasers. Optica 9, 1260–1267 (2022).
Krupa, K., Nithyanandan, K., Andral, U., Tchofo-Dinda, P. & Grelu, P. Real-time observation of internal motion within ultrafast dissipative optical soliton molecules. Phys. Rev. Lett. 118, 243901 (2017).
Liu, S., Cui, Y., Karimi, E. & Malomed, B. A. On-demand harnessing of photonic soliton molecules. Optica 9, 240–250 (2022).
Liu, Y. et al. Phase-tailored assembly and encoding of dissipative soliton molecules. Light Sci. Appl. 12, 123 (2023).
Liu, Y. et al. Unveiling manipulation mechanism on internal dynamics of soliton triplets via polarization and gain control. Opt. Lasers Eng. 168, 107645 (2023).
Kurtz, F., Ropers, C. & Herink, G. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics 14, 9–13 (2020). To our knowledge, this paper is the first to demonstrate that soliton molecules can be manipulated entirely through optical means.
Völkel, A., Nimmesgern, L., Mielnik-Pyszczorski, A., Wirth, T. & Herink, G. Intracavity Raman scattering couples soliton molecules with terahertz phonons. Nat. Commun. 13, 2066 (2022).
Song, Y., Zhou, F., Tian, H. & Hu, M. Attosecond timing jitter within a temporal soliton molecule. Optica 7, 1531–1534 (2020).
Leitenstorfer, A., Beckh, C., Herink, G., Kempf, H. & Nimmesgern, L. Soliton molecules in femtosecond fiber lasers: universal binding mechanism and direct electronic control. Optica 8, 1334–1339 (2021).
Zhou, Y., Shi, J., Ren, Y.-X. & Wong, K. K. Y. Reconfigurable dynamics of optical soliton molecular complexes in an ultrafast thulium fiber laser. Commun. Phys. 5, 302 (2022).
Pang, M., He, W., Jiang, X. & St Russell, P. J. All-optical bit storage in a fibre laser by optomechanically bound states of solitons. Nat. Photonics 10, 454–458 (2016).
Yang, Y. et al. Phase-encoding of loosely bound soliton molecules. APL Photonics 9, 031305 (2024).
Genty, G. et al. Machine learning and applications in ultrafast photonics. Nat. Photonics 15, 91–101 (2021).
Wu, X. et al. Intelligent breathing soliton generation in ultrafast fiber lasers. Laser Photonics Rev. 16, 2100191 (2022).
Xia, H., Wang, C., Blais, S., Yao, J. & Xia, H. Ultrafast and precise interrogation of fiber Bragg grating sensor based on wavelength-to-time mapping incorporating higher order dispersion. J. Light Technol. 28, 254–261 (2010).
Wang, C. & Yao, J. Ultrafast and ultrahigh-resolution interrogation of a fiber Bragg grating sensor based on interferometric temporal spectroscopy. J. Light Technol. 29, 2927–2933 (2011).
Fernández, M. P. et al. High-speed and high-resolution interrogation of FBG sensors using wavelength-to-time mapping and Gaussian filters. Opt. Express 27, 36815–36823 (2019).
Bai, Z. et al. Real-time strain interrogation based on an STS structure and wavelength-to-time mapping. IEEE Photonics Technol. Lett. 33, 615–618 (2021).
Lin, W. et al. Ultrafast salinity interrogation based on a tapered fiber modal interferometry and time-stretching method. J. Light Technol. 42, 5025–5032 (2024).
Zhou, J., Liu, D., Cheng, R. & Xia, L. Wavelength interrogation of fiber Bragg grating sensors based on crossed optical Gaussian filters. Opt. Lett. 40, 1760–1763 (2015).
Li, Y. et al. Fast spectral characterization of optical passive devices based on dissipative soliton fiber laser assisted dispersive Fourier transform. Phys. Rev. Appl. 14, 024074 (2020).
Chang, Z. et al. Dynamic phase retrieval method for ultrafast and precise vibration sensing based on time stretching. Opt. Lett. 47, 4652–4655 (2022).
Maiuri, M., Garavelli, M. & Cerullo, G. Ultrafast spectroscopy: state of the art and open challenges. J. Am. Chem. Soc. 142, 3–15 (2019).
Mance, J. G., La Lone, B. M., Madajian, J. A., Turley, W. D. & Veeser, L. R. Time-stretch spectroscopy for fast infrared absorption spectra of acetylene and hydroxyl radicals during combustion. Opt. Express 28, 29004–29015 (2020).
Lang, J. A., Hutter, S. R., Leitenstorfer, A. & Herink, G. Controlling intracavity dual-comb soliton motion in a single-fiber laser. Sci. Adv. 10, 2290 (2024).
Zhang, Z. et al. Femtosecond imbalanced time-stretch spectroscopy for ultrafast gas detection. Appl. Phys. Lett. 116, 171106 (2020).
Kawai, A. et al. Time-stretch infrared spectroscopy. Commun. Phys. 3, 152 (2020).
Wen, Z. et al. Broadband up-conversion mid-infrared time-stretch spectroscopy. Laser Photonics Rev. 18, 2300630 (2023).
Hashimoto, K. et al. Upconversion time-stretch infrared spectroscopy. Light Sci. Appl. 12, 48 (2023).
Chu, P., Kilic, V., Foster, M. A. & Wang, Z. Time-lens photon Doppler velocimetry (TL-PDV). Rev. Sci. Instrum. 92, 044703 (2021).
Wu, Y. et al. Time-stretched femtosecond LiDAR using microwave photonic signal processing. J. Light Technol. 38, 6265–6271 (2020).
Chang, B. et al. Dispersive Fourier transform based dual-comb ranging. Nat. Commun. 15, 4990 (2024).
Xia, H. & Zhang, C. Ultrafast ranging LiDAR based on real-time Fourier transformation. Opt. Lett. 34, 2108–2110 (2009).
Zhang, C. & Xia, H. Ultrafast and Doppler-free femtosecond optical ranging based on dispersive frequency-modulated interferometry. Opt. Express 18, 4118–4129 (2010).
Zhao, L. et al. Nanometer precision time-stretch femtosecond laser metrology using phase delay retrieval. J. Light Technol. 39, 5156–5162 (2021).
Niu, Q. et al. Arbitrary distance measurement without dead zone by chirped pulse spectrally interferometry using a femtosecond optical frequency comb. Opt. Express 30, 35029–35040 (2022).
Xian, T., Wang, W. & Zhan, L. Dispersive temporal interferometry toward single‐shot probing ultrashort time signal with attosecond resolution. Adv. Photonics Res. 3, 2100303 (2022).
Kudelin, I., Sugavanam, S. & Chernysheva, M. Ultrafast gyroscopic measurements in a passive all‐fiber Mach–Zehnder interferometer via time‐stretch technique. Adv. Photonics Res. 3, 2200092 (2022).
Zhang, L. et al. Calibration-free time-stretch optical coherence tomography with large imaging depth. Opt. Lett. 44, 4135–4138 (2019).
Huang, D., Li, F., Shang, C., Cheng, Z. & Wai, P. K. A. Reconfigurable time-stretched swept laser source with up to 100 MHz sweep rate, 100 nm bandwidth, and 100 mm OCT imaging range. Photonics Res. 8, 1360–1367 (2020).
Huang, D. et al. 400 MHz ultrafast optical coherence tomography. Opt. Lett. 45, 6675–6678 (2020).
Huang, J. et al. Time-stretch-based multidimensional line-scan microscopy. Opt. Lasers Eng. 160, 107197 (2023).
Wang, K. & Xu, C. Synchronized time-lens source for coherent Raman scattering microscopy. Opt. Express 18, 24019–24024 (2010).
Klein, A., Yaron, T., Preter, E., Duadi, H. & Fridman, M. Temporal depth imaging. Optica 4, 502–506 (2017).
Li, B. et al. 109 MHz optical tomography using temporal magnification. Opt. Lett. 40, 2965–2968 (2015).
Yang, L. et al. Sensitivity-enhanced ultrafast optical tomography by parametric- and Raman-amplified temporal imaging. Opt. Lett. 43, 5673–5676 (2018).
Zang, Z. et al. Ultrafast parallel single-pixel LiDAR with all-optical spectro-temporal encoding. APL Photonics 7, 046102 (2022).
Velten, A. et al. Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging. Nat. Commun. 3, 745 (2012).
Jiang, Y., Karpf, S. & Jalali, B. Time-stretch LiDAR as a spectrally scanned time-of-flight ranging camera. Nat. Photonics 14, 14–18 (2020). To our knowledge, this paper is the first to demonstrate ultra-fast LiDAR.
Palushani, E. et al. OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation. IEEE J. Sel. Top. Quantum Electron. 18, 681–688 (2012).
Li, L. et al. Real-time Fourier-domain optical vector oscilloscope. Sci. Adv. 9, eadg2538 (2023).
Romero Cortés, L., Onori, D., Guillet de Chatellus, H., Burla, M. & Azaña, J. Towards on-chip photonic-assisted radio-frequency spectral measurement and monitoring. Optica 7, 434–447 (2020).
Zhou, F. et al. Photonic multiple microwave frequency measurement based on frequency-to-time mapping. IEEE Photonics J. 10, 5500807 (2018).
Saperstein, R. E., Xie, X. B., Yu, P. K. L. & Fainman, Y. Demonstration of a microwave spectrum analyzer based on time domain processing of ultrafast pulses. Opt. Lett. 29, 501–503 (2005).
Nguyen, T. A., Chan, E. H. W. & Minasian, R. A. Instantaneous high-resolution multiple-frequency measurement system based on frequency-to-time mapping technique. Opt. Lett. 39, 2419–2422 (2014).
Chen, L., Duan, Y., Zhang, C. & Zhang, X. A real-time ultra-broadband radio frequency spectrum analyzer based on parametric spectro-temporal analyzer. Opt. Express 25, 9416–9425 (2017).
Duan, Y. et al. Ultrafast electrical spectrum analyzer based on all-optical Fourier transform and temporal magnification. Opt. Express 25, 7520–7529 (2017).
Liu, J., Shi, T. & Chen, Y. High-accuracy multiple microwave frequency measurement with two-step accuracy improvement based on stimulated Brillouin scattering and frequency-to-time mapping. J. Light Technol. 39, 2023–2032 (2021).
Patera, G., Horoshko, D. B. & Kolobov, M. I. Space-time duality and quantum temporal imaging. Phys. Rev. A 98, 053815 (2018).
Mazelanik, M., Leszczyński, A., Lipka, M., Parniak, M. & Wasilewski, W. Temporal imaging for ultra-narrowband few-photon states of light. Optica 7, 203–208 (2020).
Karpiński, M., Davis, A. O. C., Sośnicki, F., Thiel, V. & Smith, B. J. Control and measurement of quantum light pulses for quantum information science and technology. Adv. Quantum Technol. 4, 2000150 (2021).
Li, B., Bartos, J., Xie, Y. & Huang, S.-W. Time-magnified photon counting with 550-fs resolution. Optica 8, 1109–1112 (2021).
Joshi, C. et al. Picosecond-resolution single-photon time lens for temporal mode quantum processing. Optica 9, 364–373 (2022). This paper demonstrates that a time lens-based framework can be a new toolkit for arbitrary spectro-temporal processing of single photons.
Karpinski, M., Jachura, M., Wright, L. J. & Smith, B. J. Bandwidth manipulation of quantum light by an electro-optic time lens. Nat. Photonics 11, 53–57 (2017).
Goda, K. et al. Hybrid dispersion laser scanner. Sci. Rep. 2, 445 (2012).
Okawachi, Y. et al. Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier. Opt. Lett. 37, 4892 (2012).
Kang, J. et al. 102-nm, 445-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Opt. Express 26, 4370 (2018).
Shi, H., Song, Y., Wang, C., Zhao, L. & Hu, M. Observation of subfemtosecond fluctuations of the pulse separation in a soliton molecule. Opt. Lett. 43, 1623–1626 (2018).
Fard, A. M., Gupta, S. & Jalali, B. Photonic time-stretch digitizer and its extension to real-time spectroscopy and imaging. Laser Photonics Rev. 7, 207–263 (2013).
Pu, G. & Jalali, B. Neural network enabled time stretch spectral regression. Opt. Express 29, 20786–20794 (2021).
Han, Y., Boyraz, O. & Jalali, B. Ultrawide-band photonic time-stretch A/D converter employing phase diversity. IEEE Trans. Microw. Theory Tech. 53, 1404–1408 (2005).
Han, Y. & Jalali, B. Photonic time-stretched analog-to-digital converter: fundamental concepts and practical considerations. J. Light Technol. 21, 3085 (2003).
Roussel, E. et al. Phase diversity electro-optic sampling: a new approach to single-shot terahertz waveform recording. Light Sci. Appl. 11, 14 (2022).
Kolner, B. H. Active pulse compression using an integrated electro‐optic phase modulator. Appl. Phys. Lett. 52, 1122–1124 (1988).
Hirooka, T. & Nakazawa, M. All-optical 40-GHz time-domain Fourier transformation using XPM with a dark parabolic pulse. IEEE Photonics Technol. Lett. 20, 1869–1871 (2008).
Wong, K. K. Y., Marhic, M. E., Uesaka, K. & Kazovsky, L. G. Polarization-independent two-pump fiber optical parametric amplifier. IEEE Photonics Technol. Lett. 14, 911–913 (2002).
Weng, Y. et al. Temporally interleaved optical time-stretch imaging. Opt. Lett. 45, 2387 (2020).
Diebold, E. D., Buckley, B. W., Gossett, D. R. & Jalali, B. Digitally synthesized beat frequency multiplexing for sub-millisecond fluorescence microscopy. Nat. Photonics 7, 806–810 (2013).
Zhou, T., Wu, W., Zhang, J., Yu, S. & Fang, L. Ultrafast dynamic machine vision with spatiotemporal photonic computing. Sci. Adv. 9, eadg4391 (2023).
Jalali, B., Zhou, Y., Kadambi, A. & Roychowdhury, V. Physics–AI symbiosis. Mach. Learn. Sci. Technol. 3, 041001 (2022).
Wu, X. et al. Control of spectral extreme events in ultrafast fiber lasers by a genetic algorithm. Laser Photonics Rev. 18, 2200470 (2024).
Brida, D., Krauss, G., Sell, A. & Leitenstorfer, A. Ultrabroadband Er:fiber lasers. Laser Photonics Rev. 8, 409–428 (2014).
Mayor, U., Johnson, C. M., Daggett, V. & Fersht, A. R. Protein folding and unfolding in microseconds to nanoseconds by experiment and simulation. Proc. Natl Acad. Sci. USA 97, 13518–13522 (2000).
Zhang, Y. et al. Advances and challenges of ultrafast fiber lasers in 2–4 µm mid-infrared spectral regions. Laser Photonics Rev. 18, 2300786 (2024).
Guo, Q. et al. Ultrafast mode-locked laser in nanophotonic lithium niobate. Science 382, 708–713 (2023).
Singh, N. et al. Silicon photonics-based high-energy passively Q-switched laser. Nat. Photonics 18, 485–491 (2024).
Liu, Y. et al. A fully hybrid integrated erbium-based laser. Nat. Photonics 18, 829–835 (2024).
Daniel, C. Ultrafast processes: coordination chemistry and quantum theory. Phys. Chem. Chem. Phys. 23, 43–58 (2021).
Acknowledgements
This work was partially supported by the National Natural Science Foundation of China (grant nos. 62305299, 62205296 and W2433154), the Zhejiang Provincial Natural Science Foundation of China (grant nos. LQ23F050004 and LQ22F050007), the National Key R&D Program of China (grant no. 2023YFF0715802) and the ‘Pioneer’ and ‘Leading Goose’ R&D Program of Zhejiang (grant no. 2022C03084). S.K.T. acknowledges the support of the Engineering and Physical Sciences Research Council (project EP/W002868/1).
Author information
Authors and Affiliations
Contributions
Introduction (S.K.T. and Z.S.); Experimentation (Y.Z., C.T., L.H. and Y.C.); Results (Y.Z., C.T., S.L., Q.L. and D.C.); Applications (S.L., K.Y.L., J.Z., A.Z., L.S., Z.G. and Y.C.); Reproducibility and data deposition (Z.G. and Y.C.); Limitations and optimizations (Y.Z., Z.S., D.C. and J.Q.); Outlook (S.K.T., Z.S. and J.Q.); overview of the Primer (all authors).
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Glossary
- Diffraction
-
A wave phenomenon that occurs when a wave encounters an obstacle or slit that is comparable in size with its wavelength. Diffraction causes the wave to bend, spread out or interfere with itself after passing through or around the object.
- Fourier transform
-
A powerful tool to convert a signal from its time (or spatial) domain into its frequency domain and vice versa. This transform breaks down a complex signal into its constituent sinusoidal waves, revealing how much of each frequency is present in the original signal.
- Group-velocity dispersion
-
(GVD). An optical phenomenon where different frequencies of a wave packet travel at different velocities, causing the packet to spread out over time. GVD occurs in optical fibres and other dispersive media, affecting the propagation of light pulses by broadening their temporal profile.
- Mode-locked laser
-
A type of laser that produces extremely short pulses of light by locking the phases of different frequency modes. This synchronization creates constructive interference at regular intervals, resulting in a train of high-intensity, ultra-short pulses.
- Optical non-linearity
-
A phenomenon where the optical response — such as the refractive index or polarization — of a material does not simply scale linearly with the intensity of the incident light during the interaction between light and matter. When the light intensity reaches a certain threshold, the optical properties of the material change, leading to non-linear effects.
- Soliton
-
A self-reinforcing wave packet that maintains its shape while travelling at a constant velocity due to a balance between dispersion and non-linearity.
- Soliton molecules
-
Bound states of multiple solitons that maintain a stable, fixed structure, behaving similarly to molecules with quantized bond distances between individual solitons.
- Space–time analogy
-
A conceptual framework that draws parallels between spatial (space-related) and temporal (time-related) phenomena. This analogy is especially useful to understand and describe how light waves behave in different media, both in spatial and temporal dimensions.
- Spatial dispersers
-
Spatial dispersers are optical devices or components that separate light based on spatial frequencies or wavelengths by spreading different spectral components across space. Unlike temporal dispersers, which separate wavelengths over time, spatial dispersers spread wavelengths in space, allowing each frequency component of light to propagate in different directions.
- Temporal Fraunhofer regime
-
An analogy to the spatial Fraunhofer diffraction, but in the time domain. A temporal Fraunhofer regime occurs when a signal is observed far enough away in time from an event, allowing for a simplified analysis. In this regime, the temporal waveform behaves similar to a Fourier transform of the original signal, revealing its frequency components more clearly.
- Temporal imaging
-
A technique that manipulates the temporal profile of optical signals, analogous to spatial imaging but in the time domain. Temporal imaging allows for the magnification, compression and reshaping of ultra-fast optical pulses, enabling detailed analysis and processing of temporal features.
- Time lens
-
A concept that enables manipulation of light pulses in the time domain, analogous to how a spatial lens manipulates light in the spatial domain.
- Time-stretched dispersive Fourier transform
-
(TS-DFT). A spectroscopy technique that uses optical dispersion to separate light wavelengths, transforming the spectrum of an ultra-short pulse into a time-stretched temporal waveform. This method is used to perform Fourier transforms on optical signals at high frame rates, enabling real-time analysis of fast dynamic processes.
- Time-stretched imaging
-
A technique that builds on temporally stretching broadband pulses by using the dispersive properties of light in both spatial and temporal domains.
- Ultra-short pulses
-
Electromagnetic pulses whose time duration lasts only a few trillionths of a second (femtoseconds) or less. They typically spread across a wide range of colours due to their broad optical spectrum.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Zhang, Y., Tao, C., Luo, S. et al. Ultra-fast optical time-domain transformation techniques. Nat Rev Methods Primers 5, 11 (2025). https://doi.org/10.1038/s43586-025-00381-3
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43586-025-00381-3
This article is cited by
-
Lasers in the spotlight
Nature Reviews Methods Primers (2025)


