Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Laser-induced breakdown spectroscopy

Abstract

Laser-induced breakdown spectroscopy (LIBS) is an atomic optical-emission technique with the attractive characteristics of performing spectroscopic analysis ‘at a distance’, on an untreated sample and on very short timescales. Further advantages are high spatial resolution and microdestructivity; also LIBS can be performed on samples in the solid, liquid or gaseous state. All of these advantages arise from the use of a pulsed laser that both samples and excites the material under study, through the mechanism of laser ablation. However, analysis of the resulting optical-emission spectra is complex, and is probably the main reason that LIBS is only slowly being adopted as a viable analytical technique. Nevertheless, LIBS provides excellent elemental imaging, and is finding applications across a range of fields, including in industrial processes, environmental and biomedical analyses, geology and mining, and in cultural heritage. This Primer discusses the key points to consider before, during and after a LIBS measurement, to optimize the experimental conditions, acquire and analyse representative spectra, and properly communicate the results. The most promising current applications of LIBS are described, as are future directions for the development of LIBS that could make it an effective competitor to mainstream analytical techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental set-up for laser-induced breakdown spectroscopy.
Fig. 2: Baseline correction using a polynomial function.
Fig. 3: Deconvolution of a low-spectral-resolution spectrum from laser-induced breakdown spectroscopy using the Richardson–Lucy algorithm.
Fig. 4: High-resolution elemental images from laser-induced breakdown spectroscopy on breccia.

Similar content being viewed by others

References

  1. Cremers, D. A. & Radziemski, L. J. Handbook of Laser‐Induced Breakdown Spectroscopy (Wiley, 2013). A useful guide by the authors who contributed to the early development of LIBS.

  2. Cabalin, L. M. & Laserna, J. J. Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation. Spectrochim. Acta B 53, 723–730 (1998).

    Article  MATH  Google Scholar 

  3. Le, H. C., Zeitoun, D. E., Parisse, J. D., Sentis, M. & Marine, W. Modeling of gas dynamics for a laser-generated plasma: propagation into low-pressure gases. Phys. Rev. E 62, 4152 (2000).

    Article  ADS  MATH  Google Scholar 

  4. Stafe, M., Marcu, A. & Puscas, N. N. Pulsed Laser Ablation of Solids Vol. 53 (Springer, 2014).

  5. Bogaerts, A. & Chen, Z. Effect of laser parameters on laser ablation and laser-induced plasma formation: a numerical modeling investigation. Spectrochim. Acta B 60, 1280–1307 (2005).

    Article  MATH  Google Scholar 

  6. Injeyan, H. & Goodno, G. D. High Power Laser Handbook 591 (McGraw-Hill, 2011).

  7. Hemmerlin, M. & Mermet, J. M. Determination of elements in polymers by laser ablation inductively coupled plasma atomic emission spectrometry: effect of the laser beam wavelength, energy and masking on the ablation threshold and efficiency. Spectrochim. Acta B 51, 579–589 (1996).

    Article  Google Scholar 

  8. Gaona, I. et al. Evaluating the use of standoff LIBS in architectural heritage: surveying the Cathedral of Málaga. J. Anal. At. Spectrom. 28, 810 (2013).

    Article  MATH  Google Scholar 

  9. Sallé, B., Mauchien, P. & Maurice, S. Laser-induced breakdown spectroscopy in open-path configuration for the analysis of distant objects. Spectrochim. Acta B 62, 739–768 (2007). An important paper on LIBS analysis at a distance.

    Article  ADS  MATH  Google Scholar 

  10. Campanella, B., Legnaioli, S., Pagnotta, S., Poggialini, F. & Palleschi, V. Shock waves in laser-induced plasmas. Atoms 7, 57 (2019).

    Article  ADS  Google Scholar 

  11. Yu, J. et al. Improvement of laser induced breakdown spectroscopy signal using gas mixture. Spectrochim. Acta B 174, 105992 (2020).

    Article  MATH  Google Scholar 

  12. Zhang, K., Song, W., Hou, Z. & Wang, Z. Effect of ambient pressures on laser-induced breakdown spectroscopy signals. Front. Phys. 19, 1–14 (2024).

    MATH  Google Scholar 

  13. Iida, Y. Effects of atmosphere on laser vaporization and excitation processes of solid samples. Spectrochim. Acta B 45, 1353–1367 (1990).

    Article  MATH  Google Scholar 

  14. Sabsabi, M., Héon, R. & St-Onge, L. Critical evaluation of gated CCD detectors for laser-induced breakdown spectroscopy analysis. Spectrochim. Acta B 60, 1211–1216 (2005).

    Article  Google Scholar 

  15. Merk, S., Scholz, C., Florek, S. & Mory, D. Increased identification rate of scrap metal using laser induced breakdown spectroscopy Echelle spectra. Spectrochim. Acta B 112, 10–15 (2015).

    Article  MATH  Google Scholar 

  16. Ripoll, L. & Hidalgo, M. Electrospray deposition followed by laser-induced breakdown spectroscopy (ESD–LIBS): a new method for trace elemental analysis of aqueous samples. J. Anal. At. Spectrom. 34, 2016–2026 (2019).

    Article  Google Scholar 

  17. Meng, D. et al. On-line/on-site analysis of heavy metals in water and soils by laser induced breakdown spectroscopy. Spectrochim. Acta B 137, 39–45 (2017).

    Article  MATH  Google Scholar 

  18. Niu, S., Zheng, L., Khan, A. Q., Feng, G. & Zeng, H. Laser-induced breakdown spectroscopic detection of trace level heavy metal in solutions on a laser-pretreated metallic target. Talanta 179, 312–317 (2018).

    Article  MATH  Google Scholar 

  19. Ripoll, L., Navarro-González, J., Legnaioli, S., Palleschi, V. & Hidalgo, M. Evaluation of thin film microextraction for trace elemental analysis of liquid samples using LIBS detection. Talanta 223, 121736 (2021).

    Article  Google Scholar 

  20. Poggialini, F., Campanella, B., Palleschi, V., Hidalgo, M. & Legnaioli, S. Graphene thin film microextraction and nanoparticle enhancement for fast LIBS metal trace analysis in liquids. Spectrochim. Acta B 194, 106471 (2022).

    Article  Google Scholar 

  21. Campanella, B. et al. Identification of inorganic dyeing mordant in textiles by surface-enhanced laser-induced breakdown spectroscopy. Microchem. J. 139, 230–235 (2018).

    Article  MATH  Google Scholar 

  22. Aguirre, M. A. et al. Elemental analysis by surface-enhanced laser-induced breakdown spectroscopy combined with liquid-liquid microextraction. Spectrochim. Acta B 79–80, 88–93 (2013). Introduction of the SENLIBS technique for LIBS analysis of trace elements in solution.

    Article  MATH  Google Scholar 

  23. Chen, F. et al. Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy. Opt. Express 27, 15091–15099 (2019).

    Article  ADS  Google Scholar 

  24. D’Ulivo, A. et al. Determination of the deuterium/hydrogen ratio in gas reaction products by laser-induced breakdown spectroscopy. Spectrochim. Acta B 61, 797–802 (2006).

    Article  MATH  Google Scholar 

  25. Jantzi, S. C. et al. Sample treatment and preparation for laser-induced breakdown spectroscopy. Spectrochim. Acta B 115, 52–63 (2016).

    Article  Google Scholar 

  26. Palleschi, V. Chemometrics and Numerical Methods in LIBS (Wiley, 2022). The state of the art of chemometric techniques for LIBS.

  27. Gornushkin, I. B., Eagan, P. E., Novikov, A. B., Smith, B. W. & Winefordner, J. D. Automatic correction of continuum background in laser-induced breakdown and Raman spectrometry. Appl. Spectrosc. 57, 197–207 (2003).

    Article  ADS  Google Scholar 

  28. Sun, L. & Yu, H. Automatic estimation of varying continuum background emission in laser-induced breakdown spectroscopy. Spectrochim. Acta B 64, 278–287 (2009).

    Article  MATH  Google Scholar 

  29. Yaroshchyk, P. & Eberhardt, J. E. Automatic correction of continuum background in laser-induced breakdown spectroscopy using a model-free algorithm. Spectrochim. Acta B 99, 138–149 (2014).

    Article  MATH  Google Scholar 

  30. Ma, X. G. & Zhang, Z. X. Application of wavelet transform to background correction in inductively coupled plasma atomic emission spectrometry. Anal. Chim. Acta 485, 233–239 (2003).

    Article  MATH  Google Scholar 

  31. Chen, D., Shao, X., Hu, B. & Su, Q. A background and noise elimination method for quantitative calibration of near infrared spectra. Anal. Chim. Acta 511, 37–45 (2004).

    Article  MATH  Google Scholar 

  32. Yuan, T., Wang, Z., Li, Z., Ni, W. & Liu, J. A partial least squares and wavelet-transform hybrid model to analyze carbon content in coal using laser-induced breakdown spectroscopy. Anal. Chim. Acta 807, 29–35 (2014).

    Article  MATH  Google Scholar 

  33. Zou, X. H. et al. Accuracy improvement of quantitative analysis in laser-induced breakdown spectroscopy using modified wavelet transform. Opt. Express 22, 10233 (2014).

    Article  ADS  MATH  Google Scholar 

  34. Muchao, L. Laser induced breakdown spectroscopy data processing method based on wavelet analysis. Adv. Intell. Syst. Comput. 297, 5 (2014).

    Google Scholar 

  35. Képeš, E., Pořízka, P., Klus, J., Modlitbová, P. & Kaiser, J. Influence of baseline subtraction on laser-induced breakdown spectroscopic data. J. Anal. At. Spectrom. 33, 2107–2115 (2018).

    Article  Google Scholar 

  36. Dyar, M. D., Giguere, S., Carey, C. J. & Boucher, T. Comparison of baseline removal methods for laser-induced breakdown spectroscopy of geological samples. Spectrochim. Acta B 126, 53–64 (2016).

    Article  MATH  Google Scholar 

  37. Galloway, C. M., Le Ru, E. C. & Etchegoin, P. G. An iterative algorithm for background removal in spectroscopy by wavelet transforms. Appl. Spectrosc. 63, 1370–1376 (2009).

    Article  ADS  MATH  Google Scholar 

  38. Schlenke, J., Hildebrand, L., Moros, J. & Laserna, J. J. Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform. Anal. Chim. Acta 754, 8–19 (2012).

    Article  Google Scholar 

  39. Ewusi-Annan, E., Delapp, D. M., Wiens, R. C. & Melikechi, N. Automatic preprocessing of laser-induced breakdown spectra using partial least squares regression and feed-forward artificial neural network: applications to Earth and Mars data. Spectrochim. Acta B 171, 105930 (2020).

    Article  Google Scholar 

  40. Zhang, B., Sun, L., Yu, H., Xin, Y. & Cong, Z. Wavelet denoising method for laser-induced breakdown spectroscopy. J. Anal. At. Spectrom 3, 10715–10722 (2013).

    MATH  Google Scholar 

  41. Xie, S., Xu, T., Han, X., Lin, Q. & Duan, Y. Accuracy improvement of quantitative LIBS analysis using wavelet threshold de-noising. J. Anal. At. Spectrom. 32, 629–637 (2017).

    Article  MATH  Google Scholar 

  42. Duan, H., Ma, S., Han, L. & Huang, G. A novel denoising method for laser-induced breakdown spectroscopy: improved wavelet dual threshold function method and its application to quantitative modeling of Cu and Zn in Chinese animal manure composts. Microchem. J. 134, 262–269 (2017).

    Article  Google Scholar 

  43. Zhang, C., Shen, T., Liu, F. & He, Y. Identification of coffee varieties using laser-induced breakdown spectroscopy and chemometrics. Sensors 18, 95 (2018).

    Article  ADS  MATH  Google Scholar 

  44. Zhang, Y. et al. Improved measurement in quantitative analysis of coal properties using laser induced breakdown spectroscopy. J. Anal. At. Spectrom. 35, 810–818 (2020).

    Article  MATH  Google Scholar 

  45. Lu, P. et al. Accuracy improvement of quantitative LIBS analysis of coal properties using a hybrid model based on a wavelet threshold de-noising and feature selection method. Appl. Opt. 59, 6443 (2020).

    Article  ADS  MATH  Google Scholar 

  46. Huang, J. et al. A hybrid model combining wavelet transform and recursive feature elimination for running state evaluation of heat-resistant steel using laser-induced breakdown spectroscopy. Analyst 144, 3736–3745 (2019).

    Article  ADS  MATH  Google Scholar 

  47. Fu, X. et al. A fast variable selection method for quantitative analysis of soils using laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 32, 1166–1176 (2017).

    Article  MATH  Google Scholar 

  48. Zhang, B., Yu, H., Sun, L. & Xin, Y. A method for resolving overlapped peaks in laser-induced breakdown spectroscopy (LIBS). Appl. Spectrosc. 67, 1087–1097 (2013).

    Article  ADS  MATH  Google Scholar 

  49. Tan, B., Huang, M., Zhu, Q., Guo, Y. & Qin, J. Decomposition and correction overlapping peaks of LIBS using an error compensation method combined with curve fitting. Appl. Opt. 56, 7116 (2017).

    Article  ADS  MATH  Google Scholar 

  50. Yang, W., Li, B., Zhou, J., Han, Y. & Wang, Q. Continuous-wavelet-transform-based automatic curve fitting method for laser-induced breakdown spectroscopy. Appl. Opt. 57, 7526 (2018).

    Article  ADS  MATH  Google Scholar 

  51. Guezenoc, J. et al. Variable selection in laser-induced breakdown spectroscopy assisted by multivariate analysis: an alternative to multi-peak fitting. Spectrochim. Acta B 152, 6–13 (2019).

    Article  Google Scholar 

  52. Walker, J. G., Fish, D. A., Pike, E. R. & Brinicombe, A. M. Blind deconvolution by means of the Richardson–Lucy algorithm. J. Opt. Soc. Am. 12, 58–65 (1995).

    Article  ADS  Google Scholar 

  53. Guo, Y. M. et al. Wavelet-based interference correction for laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 32, 2401–2406 (2017).

    Article  MATH  Google Scholar 

  54. Liu, K. et al. Interference correction for laser-induced breakdown spectroscopy using a deconvolution algorithm. J. Anal. At. Spectrom. 35, 762–766 (2020).

    Article  MATH  Google Scholar 

  55. Aberkane, S. M., Melikechi, N. & Yahiaoui, K. in Chemometrics and Numerical Methods in LIBS (ed. Palleschi, V.) 47–80 (John Wiley & Sons, 2022).

  56. Pořízka, P. et al. On the utilization of principal component analysis in laser-induced breakdown spectroscopy data analysis, a review. Spectrochim. Acta B 148, 65–82 (2018).

    Article  MATH  Google Scholar 

  57. Poggialini, F. et al. Catching up on calibration-free LIBS. J. Anal. At. Spectrom. 38, 1751–1771 (2023).

    Article  MATH  Google Scholar 

  58. Fujimoto, T. & McWhirter, R. W. P. Validity criteria for local thermodynamic equilibrium in plasma spectroscopy. Phys. Rev. A 42, 6588–6601 (1990).

    Article  ADS  MATH  Google Scholar 

  59. Lellouche, N., Yahiaoui, K., Kellou, A. & Messaoud Aberkane, S. Spatiotemporal evaluation of plasma parameters and assessment of LTE during LIBS analysis of a zinc-based alloy. Appl. Phys. B 129, 136 (2023).

    Article  ADS  Google Scholar 

  60. Cristoforetti, G., Tognoni, E. & Gizzi, L. A. Thermodynamic equilibrium states in laser-induced plasmas: from the general case to laser-induced breakdown spectroscopy plasmas. Spectrochim. Acta B 90, 1–22 (2013).

    Article  Google Scholar 

  61. Griem, H. R. Stark broadening. Adv. At. Mol. Phys. 11, 331–359 (1976).

    Article  ADS  MATH  Google Scholar 

  62. Konjević, N., Ivković, M. & Sakan, N. Hydrogen Balmer lines for low electron number density plasma diagnostics. Spectrochim. Acta B 76, 16–26 (2012).

    Article  Google Scholar 

  63. El Sherbini, A. M., Hegazy, H. & El Sherbini, T. M. Measurement of electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim. Acta B 61, 532–539 (2006).

    Article  MATH  Google Scholar 

  64. Senesi, G. S. S., Benedetti, P. A. A., Cristoforetti, G., Legnaioli, S. & Palleschi, V. Hydrogen Balmer alpha line behavior in laser-induced breakdown spectroscopy depth scans of Au, Cu, Mn, Pb targets in air. Spectrochim. Acta B 65, 557–564 (2010).

    Article  Google Scholar 

  65. Pardini, L. et al. On the determination of plasma electron number density from Stark broadened hydrogen Balmer series lines in laser-induced breakdown spectroscopy experiments. Spectrochim. Acta B 88, 98–103 (2013).

    Article  MATH  Google Scholar 

  66. Legnaioli, S. et al. in Chemometrics and Numerical Methods in LIBS (ed. Palleschi, V.) 259–276 (John Wiley & Sons, 2022).

  67. Poggialini, F. et al. in Chemometrics and Numerical Methods in LIBS (ed. Palleschi, V.) 303–319 (John Wiley & Sons, 2022).

  68. Gornushkin, S. I., Gornushkin, I. B., Anzano, J. M., Smith, B. W. & Winefordner, J. D. Effective normalization technique for correction of matrix effects in laser-induced breakdown spectroscopy detection of magnesium in powdered samples. Appl. Spectrosc. 56, 433–436 (2002).

    Article  ADS  Google Scholar 

  69. Xu, W. et al. Total alkali silica classification of rocks with LIBS: influences of the chemical and physical matrix effects. J. Anal. At. Spectrom. 35, 1641–1653 (2020).

    Article  MATH  Google Scholar 

  70. Zhang, S. et al. Elemental fractionation and matrix effects in laser sampling based spectrometry. J. Anal. At. Spectrom. 31, 358–382 (2016).

    Article  MATH  Google Scholar 

  71. Borduchi, L. C. L., Milori, D. M. B. P., Meyer, M. C. & Villas-Boas, P. R. Reducing matrix effects on the quantification of Ca, Mg, and Fe in soybean leaf samples using calibration-free LIBS and one-point calibration. Spectrochim. Acta B 198, 106561 (2022).

    Article  Google Scholar 

  72. Li, X. et al. Chromium in soil detection using adaptive weighted normalization and linear weighted network framework for LIBS matrix effect reduction. J. Hazard. Mater. 448, 130885 (2023).

    Article  Google Scholar 

  73. Képeš, E. et al. Quantification of alloying elements in steel targets: the LIBS 2022 regression contest. Spectrochim. Acta B 206, 106710 (2023).

    Article  MATH  Google Scholar 

  74. Ciucci, A. et al. New procedure for quantitative elemental analysis by laser-induced plasma spectroscopy. Appl. Spectrosc. 53, 960–964 (1999). The introduction of calibration-free LIBS analysis.

    Article  ADS  MATH  Google Scholar 

  75. Tognoni, E., Cristoforetti, G., Legnaioli, S. & Palleschi, V. Calibration-free laser-induced breakdown spectroscopy: state of the art. Spectrochim. Acta B 65, 1–14 (2010).

    Article  Google Scholar 

  76. Cristoforetti, G. et al. Local thermodynamic equilibrium in laser-induced breakdown spectroscopy: beyond the McWhirter criterion. Spectrochim. Acta B 65, 86–95 (2010). A discussion of the criteria for local thermal equilibrium in a plasma.

    Article  Google Scholar 

  77. Fornarini, L., Spizzichino, V., Colao, F., Fantoni, R. & Lazic, V. Influence of laser wavelength on LIBS diagnostics applied to the analysis of ancient bronzes. Anal. Bioanal. Chem. 385, 272–280 (2006).

    Article  Google Scholar 

  78. Aguilera, J. A., Aragón, C., Cristoforetti, G. & Tognoni, E. Application of calibration-free laser-induced breakdown spectroscopy to radially resolved spectra from a copper-based alloy laser-induced plasma. Spectrochim. Acta B 64, 685–689 (2009).

    Article  Google Scholar 

  79. Herrera, K. K. et al. Comparative study of two standard-free approaches in laser-induced breakdown spectroscopy as applied to the quantitative analysis of aluminum alloy standards under vacuum conditions. J. Anal. At. Spectrom. 24, 426 (2009).

    Article  MATH  Google Scholar 

  80. Aguilera, J. A. & Aragón, C. New procedure for CSigma laser induced breakdown spectroscopy addressing the laser-induced plasma inhomogeneity. Spectrochim. Acta B 217, 106969 (2024).

    Google Scholar 

  81. Milán, M. & Laserna, J. J. Diagnostics of silicon plasmas produced by visible nanosecond laser ablation. Spectrochim. Acta B 56, 275–288 (2001).

    Article  MATH  Google Scholar 

  82. Aguilera, J. A. & Aragón, C. Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochim. Acta B 59, 1861–1876 (2004).

    Article  MATH  Google Scholar 

  83. Bredice, F., Urbina, I. & Palleschi, V. in Chemometrics and Numerical Methods in LIBS (ed. Palleschi, V.) 97–125 (John Wiley & Sons, 2022).

  84. D’Andrea, E. et al. A hybrid calibration-free/artificial neural networks approach to the quantitative analysis of LIBS spectra. Appl. Phys. B 118, 353–360 (2015). Introduction of a hybrid calibration-free and artificial-neural-network approach for LIBS quantitative analysis.

    Article  ADS  MATH  Google Scholar 

  85. Cavalcanti, G. H. et al. One-point calibration for calibration-free laser-induced breakdown spectroscopy quantitative analysis. Spectrochim. Acta B 87, 51–56 (2013).

    Article  MATH  Google Scholar 

  86. Senesi, G. S., Harmon, R. S. & Hark, R. R. Field-portable and handheld laser-induced breakdown spectroscopy: historical review, current status and future prospects. Spectrochim. Acta B 175, 106013 (2021).

    Article  Google Scholar 

  87. Afgan, M. S., Hou, Z. & Wang, Z. Quantitative analysis of common elements in steel using a handheld μ-LIBS instrument. J. Anal. At. Spectrom. 32, 1905–1915 (2017).

    Article  MATH  Google Scholar 

  88. Poggialini, F. et al. Improvement of the performances of a commercial hand-held laser-induced breakdown spectroscopy instrument for steel analysis using multiple artificial neural networks. Rev. Sci. Instrum. 91, 073111 (2020).

    Article  ADS  MATH  Google Scholar 

  89. Wainner, R. T., Harmon, R. S., Miziolek, A. W., McNesby, K. L. & French, P. D. Analysis of environmental lead contamination: comparison of LIBS field and laboratory instruments. Spectrochim. Acta B 56, 777–793 (2001).

    Article  Google Scholar 

  90. Bertolini, A. et al. Modì: a new mobile instrument for in situ double-pulse LIBS analysis. Anal. Bioanal. Chem. 385, 240–247 (2006).

    Article  MATH  Google Scholar 

  91. Sallé, B., Cremers, D. A., Maurice, S., Wiens, R. C. & Fichet, P. Evaluation of a compact spectrograph for in-situ and stand-off laser-induced breakdown spectroscopy analyses of geological samples on Mars missions. Spectrochim. Acta B 60, 805–815 (2005).

    Article  ADS  Google Scholar 

  92. Noll, R. et al. Laser-induced breakdown spectroscopy — from research to industry, new frontiers for process control. Spectrochim. Acta B 63, 1159–1166 (2008).

    Article  MATH  Google Scholar 

  93. Legnaioli, S. et al. Industrial applications of laser-induced breakdown spectroscopy: a review. Anal. Methods 12, 1014–1029 (2020). A review of the industrial application of LIBS.

    Article  MATH  Google Scholar 

  94. Deguchi, Y. & Wang, Z. in Plasma Science and Technology — Progress in Physical States and Chemical Reactions (ed. Mieno, T.) Ch. 14 (IntechOpen, 2016).

  95. Bulajic, D. et al. Diagnostics of high-temperature steel pipes in industrial environment by laser-induced breakdown spectroscopy technique: the LIBSGRAIN project. Spectrochim. Acta B 57, 1181–1192 (2002).

    Article  MATH  Google Scholar 

  96. Zhang, Y. et al. Study on the evaluation of the aging grade for industrial heat-resistant steel by laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 37, 139–147 (2022).

    Article  MATH  Google Scholar 

  97. Lorenzetti, G., Legnaioli, S., Grifoni, E., Pagnotta, S. & Palleschi, V. Laser-based continuous monitoring and resolution of steel grades in sequence casting machines. Spectrochim. Acta B 112, 1–5 (2015).

    Article  Google Scholar 

  98. Cabalín, L. M., Delgado, T., Ruiz, J., Mier, D. & Laserna, J. J. Stand-off laser-induced breakdown spectroscopy for steel-grade intermix detection in sequence casting operations. At-line monitoring of temporal evolution versus predicted mathematical model. Spectrochim. Acta B 146, 93–100 (2018).

    Article  Google Scholar 

  99. Sturm, V. et al. Laser-induced breakdown spectroscopy for 24/7 automatic liquid slag analysis at a steel works. Anal. Chem. 86, 9687–9692 (2014).

    Article  MATH  Google Scholar 

  100. Aragón, C., Aguilera, J. A. & Campos, J. Determination of carbon content in molten steel using laser-induced breakdown spectroscopy. Appl. Spectrosc. 47, 606–608 (1993).

    Article  ADS  MATH  Google Scholar 

  101. Hudson, S. W., Craparo, J., De Saro, R. & Apelian, D. Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing. Metall. Mater. Trans. B 48, 2731–2742 (2017).

    Article  Google Scholar 

  102. Noll, R. et al. Laser-induced breakdown spectrometry — applications for production control and quality assurance in the steel industry. Spectrochim. Acta B 56, 637–649 (2001).

    Article  MATH  Google Scholar 

  103. Campanella, B. et al. Classification of wrought aluminum alloys by ANN evaluation of LIBS spectra from aluminum scrap samples. Spectrochim. Acta B 134, 52–57 (2017).

    Article  MATH  Google Scholar 

  104. Sun, L. et al. Applications of laser-induced breakdown spectroscopy in the aluminum electrolysis industry. Spectrochim. Acta B 142, 29–36 (2018).

    Article  MATH  Google Scholar 

  105. Dong, M. et al. A review of laser-induced breakdown spectroscopy and spontaneous emission techniques in monitoring thermal conversion of fuels. Spectrochim. Acta B 210, 106807 (2023).

    Article  MATH  Google Scholar 

  106. Li, W. et al. Quantitative analysis of calorific value of coal based on spectral preprocessing by laser-induced breakdown spectroscopy (LIBS). Energy Fuels 32, 24–32 (2018).

    Article  MATH  Google Scholar 

  107. Legnaioli, S., Campanella, B., Pagnotta, S., Poggialini, F. & Palleschi, V. Determination of ash content of coal by laser-induced breakdown spectroscopy. Spectrochim. Acta B 155, 123–126 (2019).

    Article  MATH  Google Scholar 

  108. Romero, C. E. & De Saro, R. in Laser-Induced Breakdown of Spectroscopy (eds Musazzi, S. & Perini, U.) 511–529 (Springer, 2014).

  109. Costa, V. C. et al. Laser-induced breakdown spectroscopy (LIBS) applications in the chemical analysis of waste electrical and electronic equipment (WEEE). Trends Anal. Chem. 108, 65–73 (2018).

    Article  MATH  Google Scholar 

  110. Ángel Aguirre, M., Hidalgo, M., Canals, A., Nóbrega, J. A. & Pereira-Filho, E. R. Analysis of waste electrical and electronic equipment (WEEE) using laser induced breakdown spectroscopy (LIBS) and multivariate analysis. Talanta 117, 419–424 (2013).

    Article  Google Scholar 

  111. Gonçalves, D. A., Senesi, G. S. & Nicolodelli, G. Laser-induced breakdown spectroscopy applied to environmental systems and their potential contaminants. An overview of advances achieved in the last few years. Trends Environ. Anal. Chem. 30, e00121 (2021).

    Article  Google Scholar 

  112. Villas-Boas, P. R., Franco, M. A., Martin-Neto, L., Gollany, H. T. & Milori, D. M. B. P. Applications of laser-induced breakdown spectroscopy for soil characterization, part II: review of elemental analysis and soil classification. Eur. J. Soil Sci. 71, 805–818 (2020).

    Article  Google Scholar 

  113. Villas-Boas, P. R., Franco, M. A., Martin-Neto, L., Gollany, H. T. & Milori, D. M. B. P. Applications of laser-induced breakdown spectroscopy for soil analysis, part I: review of fundamentals and chemical and physical properties. Eur. J. Soil Sci. 71, 789–804 (2020).

    Article  Google Scholar 

  114. Neuhauser, R. E., Panne, U. & Niessner, R. Laser-induced plasma spectroscopy (LIPS): a versatile tool for monitoring heavy metal aerosols. Anal. Chim. Acta 392, 47–54 (1999).

    Article  Google Scholar 

  115. Michel, A. P. M. et al. Rapid identification of marine plastic debris via spectroscopic techniques and machine learning classifiers. Environ. Sci. Technol. 54, 10630–10637 (2020).

    Article  ADS  MATH  Google Scholar 

  116. Giugliano, R. et al. Rapid identification of beached marine plastics pellets using laser-induced breakdown spectroscopy: a promising tool for the quantification of coastal pollution. Sensors 22, 6910 (2022).

    Article  ADS  MATH  Google Scholar 

  117. Jolivet, L. et al. Review of the recent advances and applications of LIBS-based imaging. Spectrochim. Acta B 151, 41–53 (2019).

    Article  MATH  Google Scholar 

  118. Limbeck, A. et al. Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal. Chim. Acta 1147, 72–98 (2021).

    Article  MATH  Google Scholar 

  119. Manrique, J., Garrido, P. & Velasco, J. Laser-induced breakdown spectroscopy in biological samples: a review of experiments with soft tissues. Atoms 12, 21 (2024).

    Article  ADS  MATH  Google Scholar 

  120. Gaudiuso, R. et al. Laser-induced breakdown spectroscopy for human and animal health: a review. Spectrochim. Acta B 152, 123–148 (2019). A review of LIBS applications in human and animal health.

    Article  MATH  Google Scholar 

  121. Kaiser, J. et al. Trace elemental analysis by laser-induced breakdown spectroscopy — biological applications. Surf. Sci. Rep. 67, 233–243 (2012).

    Article  ADS  MATH  Google Scholar 

  122. Moon, Y. et al. Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy. J. Biomed. Opt. 24, 1–6 (2019).

    MATH  Google Scholar 

  123. Schiavo, C. et al. High-resolution three-dimensional compositional imaging by double-pulse laser-induced breakdown spectroscopy. J. Instrum. 11, C08002 (2016).

    Article  MATH  Google Scholar 

  124. Markushin, Y., Sivakumar, P., Connolly, D. & Melikechi, N. Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma. Anal. Bioanal. Chem. 407, 1849–1855 (2015).

    Article  Google Scholar 

  125. Moncayo, S. et al. Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy. Spectrochim. Acta B 133, 40–44 (2017).

    Article  MATH  Google Scholar 

  126. Motto-Ros, V. et al. Mapping of native inorganic elements and injected nanoparticles in a biological organ with laser-induced plasma. Appl. Phys. Lett. 101, 223702 (2012).

    Article  ADS  MATH  Google Scholar 

  127. Busser, B., Moncayo, S., Coll, J. L., Sancey, L. & Motto-Ros, V. Elemental imaging using laser-induced breakdown spectroscopy: a new and promising approach for biological and medical applications. Coord. Chem. Rev. 358, 70–79 (2018).

    Article  Google Scholar 

  128. Rosenwasser, S. et al. Development of a method for automated quantitative analysis of ores using LIBS. Spectrochim. Acta B 56, 707–714 (2001).

    Article  MATH  Google Scholar 

  129. Gaft, M., Sapir-Sofer, I., Modiano, H. & Stana, R. Laser induced breakdown spectroscopy for bulk minerals online analyses. Spectrochim. Acta B 62, 1496–1503 (2007).

    Article  Google Scholar 

  130. Senesi, G. S. Portable hand held laser-induced breakdown spectroscopy (LIBS) instrumentation for in-field elemental analysis of geological samples. Int. J. Earth Environ. Sci. 2017, 146 (2017). A paper describing how hand-held LIBS instrumentation can be important in geological research.

    MATH  Google Scholar 

  131. Raneri, S. et al. Increasing resolution in chemical mapping of geomaterials: from X-ray fluorescence to laser-induced breakdown spectroscopy. Spectrochim. Acta B 194, 106482 (2022).

    Article  MATH  Google Scholar 

  132. Ma, Q. L. et al. Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy. Spectrochim. Acta B 65, 707–714 (2010).

    Article  MATH  Google Scholar 

  133. Boucher, T. F. et al. A study of machine learning regression methods for major elemental analysis of rocks using laser-induced breakdown spectroscopy. Spectrochim. Acta B 107, 1–10 (2015).

    Article  MATH  Google Scholar 

  134. Coron, J. et al. Investigating critical metals Ge and Ga in complex sulphide mineral assemblages using LIBS mapping. Spectrochim. Acta B 219, 107004 (2024).

    Article  MATH  Google Scholar 

  135. Akhmetzhanov, T. F., Labutin, T. A., Korshunov, D. M., Samsonov, A. A. & Popov, A. M. Determination of Ce and La in REE-rich ores using handheld LIBS and PLS regression. J. Anal. At. Spectrom. 38, 2134–2143 (2023).

    Article  Google Scholar 

  136. Fabre, C. Advances in laser-induced breakdown spectroscopy analysis for geology: a critical review. Spectrochim. Acta B 166, 105799 (2020).

    Article  MATH  Google Scholar 

  137. Nevin, A., Spoto, G. & Anglos, D. Laser spectroscopies for elemental and molecular analysis in art and archaeology. Appl. Phys. A 106, 339–361 (2012).

    Article  ADS  MATH  Google Scholar 

  138. Botto, A. et al. Applications of laser-induced breakdown spectroscopy in cultural heritage and archaeology: a critical review. J. Anal. At. Spectrom. 34, 81–103 (2019).

    Article  MATH  Google Scholar 

  139. Anglos, D. Laser-induced breakdown spectroscopy in art and archaeology. Appl. Spectrosc. 55, 186A–205A (2001).

    Article  ADS  Google Scholar 

  140. Spizzichino, V. & Fantoni, R. Laser induced breakdown spectroscopy in archeometry: a review of its application and future perspectives. Spectrochim. Acta B 99, 201–209 (2014).

    Article  MATH  Google Scholar 

  141. Fortes, F. J., Cuñat, J., Cabalín, L. M. & Laserna, J. J. In situ analytical assessment and chemical imaging of historical buildings using a man-portable laser system. Appl. Spectrosc. 61, 558–564 (2007).

    Article  ADS  Google Scholar 

  142. Osticioli, I., Mendes, N. F. C., Porcinai, S., Cagnini, A. & Castellucci, E. Spectroscopic analysis of works of art using a single LIBS and pulsed Raman setup. Anal. Bioanal. Chem. 394, 1033–1041 (2009).

    Article  Google Scholar 

  143. Alberghina, M. F., Barraco, R., Brai, M., Schillaci, T. & Tranchina, L. Comparison of LIBS and μ-XRF measurements on bronze alloys for monitoring plasma effects. J. Phys. Conf. Ser. 275, 012017 (2011).

    Article  Google Scholar 

  144. Lazic, V. et al. Applications of laser induced breakdown spectroscopy for cultural heritage: a comparison with XRF and PIXE techniques. Spectrochim. Acta B 149, 1–14 (2018).

    Article  ADS  MATH  Google Scholar 

  145. Mateo, M. P., Ctvrtnickova, T. & Nicolas, G. Characterization of pigments used in painting by means of laser-induced plasma and attenuated total reflectance FTIR spectroscopy. Appl. Surf. Sci. 255, 5172–5176 (2009).

    Article  ADS  Google Scholar 

  146. Campanella, B. et al. Multi-technique characterization of madder lakes: a comparison between non- and micro-destructive methods. J. Cult. Herit. https://doi.org/10.1016/j.culher.2018.01.013 (2018).

    Article  MATH  Google Scholar 

  147. Abdelhamid, M., Grassini, S., Angelini, E., Ingo, G. M. & Harith, M. A. Depth profiling of coated metallic artifacts adopting laser-induced breakdown spectrometry. Spectrochim. Acta B 65, 695–701 (2010).

    Article  Google Scholar 

  148. Cacciari, I., Agresti, J. & Siano, S. Combined THz and LIPS analysis of corroded archaeological bronzes. Microchem. J. 126, 76–82 (2016).

    Article  Google Scholar 

  149. Ferretti, M. et al. In situ study of the Porticello Bronzes by portable X-ray fluorescence and laser-induced breakdown spectroscopy. Spectrochim. Acta B 62, 1512–1518 (2007).

    Article  MATH  Google Scholar 

  150. Scholten, J. H., Teule, J. M., Zafiropulos, V. & Heeren, R. M. A. Controlled laser cleaning of painted artworks using accurate beam manipulation and on-line LIBS-detection. J. Cult. Herit. 1, S215–S220 (2000).

    Article  Google Scholar 

  151. Guirado, S., Fortes, F. J. & Laserna, J. J. Elemental analysis of materials in an underwater archeological shipwreck using a novel remote laser-induced breakdown spectroscopy system. Talanta 137, 182–188 (2015). The LIBS analysis underwater is described in this paper.

    Article  MATH  Google Scholar 

  152. Maurice, S. et al. ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale Crater, Mars. J. Anal. At. Spectrom. 31, 863–889 (2016).

    Article  MATH  Google Scholar 

  153. Maurice, S. et al. The SuperCam instrument suite on the Mars 2020 Rover: science objectives and mast-unit description. Space Sci. Rev. 217, 1–108 (2021).

    Article  ADS  MATH  Google Scholar 

  154. Xu, W. et al. The MarSCoDe instrument suite on the Mars Rover of China’s Tianwen-1 Mission. Space Sci. Rev. 217, 1–58 (2021).

    Article  ADS  Google Scholar 

  155. Wiens, R. C. et al. The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: body unit and combined system tests. Space Sci. Rev. 170, 167–227 (2012).

    Article  ADS  MATH  Google Scholar 

  156. Rammelkamp, K. et al. Low‐level LIBS and Raman data fusion in the context of in situ Mars exploration. J. Raman Spectrosc. 51, 1682–1701 (2020).

    Article  ADS  MATH  Google Scholar 

  157. Moros, J., Elfaham, M. M. & Javier Laserna, J. Dual-spectroscopy platform for the surveillance of Mars mineralogy using a decisions fusion architecture on simultaneous LIBS-Raman data. Anal. Chem. 90, 2079–2087 (2018).

    Article  MATH  Google Scholar 

  158. Li, C., Feng, C. L., Oderji, H. Y., Luo, G. N. & Ding, H. B. Review of LIBS application in nuclear fusion technology. Front. Phys. 11, 1–16 (2016).

    Article  MATH  Google Scholar 

  159. Zhao, D. et al. Remote in situ laser-induced breakdown spectroscopic approach for diagnosis of the plasma facing components on experimental advanced superconducting tokamak. Rev. Sci. Instrum. 89, 073501 (2018).

    Article  ADS  MATH  Google Scholar 

  160. Maurya, G. S., Marín-Roldán, A., Veis, P., Pathak, A. K. & Sen, P. A review of the LIBS analysis for the plasma-facing components diagnostics. J. Nucl. Mater. 541, 152417 (2020).

    Article  Google Scholar 

  161. Almaviva, S. et al. LIBS measurements inside the FTU vessel mock-up by using a robotic arm. Fusion Eng. Des. 157, 111685 (2020).

    Article  MATH  Google Scholar 

  162. Coffey, P. et al. Robotic arm material characterisation using LIBS and Raman in a nuclear hot cell decommissioning environment. J. Hazard. Mater. 412, 125193 (2021).

    Article  MATH  Google Scholar 

  163. Whitehouse, A. I. et al. Remote material analysis of nuclear power station steam generator tubes by laser-induced breakdown spectroscopy. Spectrochim. Acta B 56, 821–830 (2001).

    Article  MATH  Google Scholar 

  164. Russo, R. E. et al. Laser ablation molecular isotopic spectrometry. Spectrochim. Acta B 66, 99–104 (2011). This paper introduces the LAMIS technique for LIBS isotope discrimination.

    Article  MATH  Google Scholar 

  165. Bol’šhakov, A. A., Mao, X., González, J. J. & Russo, R. E. Laser ablation molecular isotopic spectrometry (LAMIS): current state of the art. J. Anal. At. Spectrom. 31, 119–134 (2016).

    Article  Google Scholar 

  166. Motto-Ros, V. et al. Critical aspects of data analysis for quantification in laser-induced breakdown spectroscopy. Spectrochim. Acta B 140, 54–64 (2018).

    Article  MATH  Google Scholar 

  167. Hahn, D. W. & Omenetto, N. Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl. Spectrosc. 66, 347–419 (2012). A review on LIBS instruments and methods for analytical applications.

    Article  ADS  Google Scholar 

  168. Fassel, V. A. International Union of Pure and Applied Chemistry. Analytical Chemistry Division. Commission on Spectrochemical and Other Optical Procedures for Analysis. Nomenclature, symbols, units and their usage in spectrochemical analysis. II. Data interpretation. (Rules approved 1975). Anal. Chem. 48, 2294–2296 (1976).

    Article  MATH  Google Scholar 

  169. Long, G. L. & Winefordner, J. D. Limit of detection. A closer look at the IUPAC definition. Anal. Chem. 55, 712A–724A (1983).

    Google Scholar 

  170. Oleneva, E. et al. A simple procedure to assess limit of detection for multisensor systems. Sensors 19, 1–11 (2019).

    Article  Google Scholar 

  171. Poggialini, F. et al. Calculating the limits of detection in laser-induced breakdown spectroscopy: not as easy as it might seem. Appl. Sci. 13, 3642 (2023). A paper on the problems associated with calculating limits of detection in LIBS.

    Article  MATH  Google Scholar 

  172. Wachter, J. R. & Cremers, D. A. Determination of uranium in solution using laser-induced breakdown spectroscopy. Appl. Spectrosc. 41, 1042–1048 (1987).

    Article  ADS  MATH  Google Scholar 

  173. Ruas, A., Matsumoto, A., Ohba, H., Akaoka, K. & Wakaida, I. Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution. Spectrochim. Acta B 131, 99–106 (2017).

    Article  Google Scholar 

  174. Moncayo, S., Manzoor, S., Rosales, J. D., Anzano, J. & Caceres, J. O. Qualitative and quantitative analysis of milk for the detection of adulteration by laser induced breakdown spectroscopy (LIBS). Food Chem. 232, 322–328 (2017).

    Article  Google Scholar 

  175. Fernandes Andrade, D., Pereira-Filho, E. R. & Amarasiriwardena, D. Current trends in laser-induced breakdown spectroscopy: a tutorial review. Appl. Spectrosc. Rev. 56, 98–114 (2021).

    Article  ADS  Google Scholar 

  176. Yang, J., Li, X., Xu, J. & Ma, X. A calibration-free laser-induced breakdown spectroscopy (CF-LIBS) quantitative analysis method based on the auto-selection of an internal reference line and optimized estimation of plasma temperature. Appl. Spectrosc. 72, 129–140 (2018).

    Article  ADS  MATH  Google Scholar 

  177. Pan, C. et al. Quantitative analysis of carbon steel with multi-line internal standard calibration method using laser-induced breakdown spectroscopy. Appl. Spectrosc. 70, 702–708 (2016).

    Article  ADS  MATH  Google Scholar 

  178. Yuan, R. et al. Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration. Anal. Chim. Acta 1064, 11–16 (2019).

    Article  MATH  Google Scholar 

  179. St-Onge, L., Sabsabi, M. & Cielo, P. Analysis of solids using laser-induced plasma spectroscopy in double-pulse mode. Spectrochim. Acta B 53, 407–415 (1998).

    Article  Google Scholar 

  180. Corsi, M. et al. Three-dimensional analysis of laser induced plasmas in single and double pulse configuration. Spectrochim. Acta B 59, 723–735 (2004).

    Article  MATH  Google Scholar 

  181. Yaroshchyk, P., Morrison, R. J. S., Body, D. & Chadwick, B. L. Quantitative determination of wear metals in engine oils using LIBS: the use of paper substrates and a comparison between single- and double-pulse LIBS. Spectrochim. Acta B 60, 1482–1485 (2005).

    Article  Google Scholar 

  182. Favre, A. et al. Double pulse laser-induced plasmas on W and Al by ps-LIBS: focus on the plasma-second pulse interaction. Fusion Eng. Des. 168, 112364 (2021).

    Article  MATH  Google Scholar 

  183. De Giacomo, A., Gaudiuso, R., Koral, C., Dell’Aglio, M. & De Pascale, O. Nanoparticle-enhanced laser-induced breakdown spectroscopy of metallic samples. Anal. Chem. 85, 10180–10187 (2013). This paper introduces the nanoparticle-enhanced LIBS technique.

    Article  Google Scholar 

  184. Dell’Aglio, M., Alrifai, R. & De Giacomo, A. Nanoparticle enhanced laser induced breakdown spectroscopy (NELIBS), a first review. Spectrochim. Acta B 148, 105–112 (2018).

    Article  MATH  Google Scholar 

  185. De Giacomo, A., Alrifai, R., Gardette, V., Salajková, Z. & Dell’Aglio, M. Nanoparticle enhanced laser ablation and consequent effects on laser induced plasma optical emission. Spectrochim. Acta B 166, 105794 (2020).

    Article  Google Scholar 

  186. Koral, C. et al. Nanoparticle-enhanced laser induced breakdown spectroscopy for the noninvasive analysis of transparent samples and gemstones. Talanta 182, 253–258 (2018).

    Article  Google Scholar 

  187. Kiris, V. V., Butsen, A. V., Ershov-Pavlov, E. A., Nedelko, M. I. & Nevar, A. A. Nanoparticle-enhanced laser induced breakdown spectroscopy using copper–silver and nickel–carbon nanocomposites on aluminium. Int. J. Nanosci. 18, 1940022 (2019).

    Article  Google Scholar 

  188. Rebollar, E. & Castillejo, M. in Handbook of Laser Micro- and Nano-Engineering (ed. Sugioka, K.) 165–212 (Springer, 2020).

  189. Detalle, V. & Bai, X. The assets of laser-induced breakdown spectroscopy (LIBS) for the future of heritage science. Spectrochim. Acta B 191, 106407 (2022).

    Article  MATH  Google Scholar 

  190. Pyl Vander, C. et al. Evolution of LIBS technology to mobile instrumentation for expediting firearm-related investigations at the laboratory and the crime scene. Spectrochim. Acta B 207, 106741 (2023).

    Article  MATH  Google Scholar 

  191. Abdul Kalam, S., Balaji Manasa Rao, S. V., Jayananda, M. & Venugopal Rao, S. Standoff femtosecond filament-induced breakdown spectroscopy for classification of geological materials. J. Anal. At. Spectrom. 35, 3007–3020 (2020).

    Article  Google Scholar 

  192. Kalam Shaik, A. et al. Femtosecond laser induced breakdown spectroscopy based standoff detection of explosives and discrimination using principal component analysis. Opt. Express 26, 8069–8083 (2018).

    Article  ADS  MATH  Google Scholar 

  193. Winefordner, J. D. et al. Comparing several atomic spectrometric methods to the super stars: special emphasis on laser induced breakdown spectrometry, LIBS, a future super star. J. Anal. At. Spectrom. 19, 1061–1083 (2004). One of the most important papers in the history of LIBS.

    Article  Google Scholar 

  194. Harmon, R. S. & Senesi, G. S. Laser-induced breakdown spectroscopy — a geochemical tool for the 21st century. Appl. Geochem. 128, 104929 (2021).

    Article  MATH  Google Scholar 

  195. Vrábel, J. et al. Classification of challenging laser-induced breakdown spectroscopy soil sample data — EMSLIBS contest. Spectrochim. Acta B 169, 105872 (2020).

    Article  MATH  Google Scholar 

  196. Palleschi, V. If laser-induced breakdown spectroscopy was a brand: some market considerations. Spectrosc. Eur. 29, 6–9 (2017).

    MATH  Google Scholar 

  197. Sancey, L. et al. Laser spectrometry for multi-elemental imaging of biological tissues. Sci. Rep. 4, 6065 (2014).Demonstration of the feasibility of LIBS for obtaining high-resolution elemental images.

    Article  MATH  Google Scholar 

  198. Lennard, C., El-Deftar, M. M. & Robertson, J. Forensic application of laser-induced breakdown spectroscopy for the discrimination of questioned documents. Forensic Sci. Int. 254, 68–79 (2015).

    Article  MATH  Google Scholar 

  199. Pagnin, L., Brunnbauer, L., Wiesinger, R., Limbeck, A. & Schreiner, M. Multivariate analysis and laser-induced breakdown spectroscopy (LIBS): a new approach for the spatially resolved classification of modern art materials. Anal. Bioanal. Chem. 412, 3187–3198 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

I.A.U. acknowledges the financial support of the Scientific Grant Agency of the Slovak Republic (contract number VEGA-1/0803/21) and the Slovak Research and Development Agency (contract number APVV-22-0548). F.O.B. thanks the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires for support.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (V.P.); Experimentation (F.O.B.); Results (N.L. and S.M.A.); Applications (S.L.); Reproducibility and data deposition (F.P.); Limitations and optimizations (I.A.U.); Outlook (V.P.); overview of the Primer (V.P.).

Corresponding author

Correspondence to Vincenzo Palleschi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Alessandro Di Giacomo, Jozef Kaiser, Vincent Motto-Ross and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Breakdown

The mechanism that produces an electrical discharge in a non-conducting medium subject to a high electric field, such as the electric field of a high-power laser beam in atmosphere or in other gases.

Charge-coupled device

A solid-state photoelectric 2D detector that produces an electrical signal proportional to the number of photons striking the detector.

Cross-talk

An effect that can occur in laser-induced breakdown spectroscopy measurements, where the residual material from one pulse (ablated material particles or vapours) interacts with the subsequent laser pulse.

Dark current

Light detectors (photodiodes, photomultiplier, charge-coupled device cameras) generate small currents even in the absence of light: these ‘dark currents’ are indistinguishable from a real signal. Dark current increases with sensor temperature, and hence can be reduced by cooling the detector to temperatures close to zero degrees Celsius.

Electron continuum emission

In the early stages of plasma evolution, the temperature is very high and there are many free electrons that can be decelerated by interacting with ions in the plasma. This deceleration causes the emission of radiation with a continuum spectrum (free–free transitions). A further contribution to the continuum radiation comes from the capture of free electrons by ions (free–bound transitions).

Fluence

Defined as the laser-beam energy divided by the surface area of the laser beam spot at the focus and determines the ablation or breakdown thresholds. Fluence is usually expressed in units of J cm−2.

Instrumental broadening

The spectrometers and detectors used in laser-induced breakdown spectroscopy cause a broadening of spectral lines, which can be viewed as the convolution of the intrinsic broadening of the emission line and a Gaussian function of a characteristic width.

Intensified charge-coupled device

(ICCD). Realized by integrating an image intensifier with a charge-coupled device. The intensifier boosts the incoming light on the detector, enabling the detection of low-intensity signals. ICCDs are particularly useful for capturing signals within narrow time windows, down to the nanosecond scale — making them essential for analysing rapidly varying laser-induced breakdown spectroscopy signals.

Irradiance

Defined as the laser-pulse power divided by the surface area of the laser beam spot at the focus.

Laser ablation

The mechanism by which some minimal quantity of material is removed from the sample under the effect of a high-power laser beam.

Optical emission

Emission of radiation in the optical region, comprised from near ultraviolet to near infrared wavelengths. Hot material ablated and brought to the plasma state by a laser pulse is characterized by strong optical emission.

Plasma

Highly ionized gas in which the interactions between ions and electrons are dominant and determine its physical and chemical properties; also known as the fourth state of matter.

Stark effect

The fluctuating electric field generated by fast, free electrons around atoms and ions perturbs atomic energy levels and causes a broadening of emission lines. For most elements, the broadening is proportional to the electron number density; the proportionality factor is called the Stark coefficient.

Wavelet transform

Conceptually similar to the Fourier transform; whereas in a Fourier transform the signal (here, the laser-induced breakdown spectroscopy spectrum) is decomposed into a series of sines and cosines across the whole spectrum, in a wavelet transform, the decomposition is done using localized functions (called wavelets), which better fits the peaks in the spectrum.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palleschi, V., Legnaioli, S., Poggialini, F. et al. Laser-induced breakdown spectroscopy. Nat Rev Methods Primers 5, 17 (2025). https://doi.org/10.1038/s43586-025-00388-w

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00388-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing