Abstract
Over the past two decades, interferometric scattering (iSCAT) microscopy has become a powerful label-free imaging method with a range of applications in fundamental science and technology. iSCAT detects the scattering of subwavelength entities through interference with a reference beam of light. Performed in a variety of illumination and detection schemes, iSCAT has exploited both amplitude and phase information to reach single-molecule detection sensitivity; to determine the size, mass and refractive index of nanoparticles; to achieve high spatiotemporal precision in 3D tracking of nanoparticles; to image subcellular nanostructures; and to quantify ultrafast diffusion and transport of energy in solids. In this Primer, we describe the basic principles of iSCAT detection and imaging from theoretical and practical points of view. We discuss various factors that affect the attainable signal-to-noise ratio, which in turn determines crucial performance features such as sensitivity and speed. We survey selected applications in which iSCAT has been instrumental in providing new insights. Finally, we discuss some of the current challenges and potential avenues for advancing the technique further.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
References
Weisenburger, S. & Sandoghdar, V. Light microscopy: an ongoing contemporary revolution. Contemp. Phys. 56, 123–143 (2015).
Adhikari, S. & Orrit, M. Progress and perspectives in single-molecule optical spectroscopy. J. Chem. Phys. 156, 160903 (2022).
Mazumder, N. et al. Label-free non-linear multimodal optical microscopy — basics, development, and applications. Front. Phys. https://doi.org/10.3389/fphy.2019.00170 (2019).
Saleh, B. E. A. & Teich, M. C. (eds) Fundamentals of Photonics 3rd edn Vol. 1 and 2 (Wiley, 2019).
Taylor, R. W. & Sandoghdar, V. in Label-Free Super-Resolution Microscopy (ed. Astratov, V.) 25–65 (Springer, 2019).
Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects. Physica 9, 686–698 (1942).
Zernike, F. Phase contrast, a new method for the microscopic observation of transparent objects part II. Physica 9, 974–986 (1942).
Normarski, G. Dispositif oculaire a contraste de phase pour microscope. J. Phys. Radium 11, 9–10 (1950).
Curtis, A. S. G. The mechanism of adhesion of cells to glass: a study by interference reflection microscopy. J. Cell Biol. 20, 199–215 (1964).
Park, Y., Depeursinge, C. & Popescu, G. Quantitative phase imaging in biomedicine. Nat. Photonics 12, 578–589 (2018).
Javidi, B. et al. Roadmap on digital holography [Invited]. Opt. Express 29, 35078–35118 (2021).
Lane, N. The unseen world: reflections on Leeuwenhoek (1677) ‘Concerning little animals’. Philos. Trans. R. Soc. B 370, 20140344 (2015).
Cocquyt, T., Zhou, Z., Plomp, J. & van Eijck, L. Neutron tomography of Van Leeuwenhoek’s microscopes. Sci. Adv. 7, eabf2402 (2021).
Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 330, 377–445 (1908).
Zimm, B. H. Apparatus and methods for measurement and interpretation of the angular variation of light scattering; preliminary results on polystyrene solutions. J. Chem. Phys. 16, 1099–1116 (1948).
Thompson, B. J. & Zinky, W. R. Holographic detection of submicron particles. Appl. Opt. 7, 2426–2428 (1968).
Batchelder, J. S. & Taubenblatt, M. A. Interferometric detection of forward scattered light from small particles. Appl. Phys. Lett. 55, 215–217 (1989).
Amos, L. A. & Amos, W. B. The bending of sliding microtubules imaged by confocal light microscopy and negative stain electron microscopy. J. Cell Sci. 1991, 95–101 (1991).
Kalkbrenner, T., Ramstein, M., Mlynek, J. & Sandoghdar, V. A single gold particle as a probe for apertureless scanning near-field optical microscopy. J. Microsc. 202, 72–76 (2001).
Klar, T. et al. Surface-plasmon resonances in single metallic nanoparticles. Phys. Rev. Lett. 80, 4249–4252 (1998).
Boyer, D., Tamarat, P., Maali, A., Lounis, B. & Orrit, M. Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297, 1160–1163 (2002).
Lindfors, K., Kalkbrenner, T., Stoller, P. & Sandoghdar, V. Detection and spectroscopy of gold nanoparticles using supercontinuum white light confocal microscopy. Phys. Rev. Lett. 93, 037401 (2004).
Arbouet, A. et al. Direct measurement of the single-metal-cluster optical absorption. Phys. Rev. Lett. 93, 127401 (2004).
Hsieh, C.-L., Spindler, S., Ehrig, J. & Sandoghdar, V. Tracking single particles on supported lipid membranes: multimobility diffusion and nanoscopic confinement. J. Phys. Chem. B 118, 1545–1554 (2014).
Spindler, S. et al. Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy. J. Phys. Appl. Phys. 49, 274002 (2016).
Huang, Y.-F. et al. Coherent brightfield microscopy provides the spatiotemporal resolution to study early stage viral infection in live cells. ACS Nano 11, 2575–2585 (2017).
de Wit, G., Albrecht, D., Ewers, H. & Kukura, P. Revealing compartmentalized diffusion in living cells with interferometric scattering microscopy. Biophys. J. 114, 2945–2950 (2018).
Taylor, R. W. et al. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 13, 480–487 (2019).
Vala, M. et al. Nanoscopic structural fluctuations of disassembling microtubules revealed by label‐free super‐resolution microscopy. Small Methods 5, 2000985 (2021).
Vamivakas, A. N. et al. Strong extinction of a far-field laser beam by a single quantum dot. Nano Lett. 7, 2892–2896 (2007).
Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Imaging a single quantum dot when it is dark. Nano Lett. 9, 926–929 (2009).
Kukura, P., Celebrano, M., Renn, A. & Sandoghdar, V. Single-molecule sensitivity in optical absorption at room temperature. J. Phys. Chem. Lett. 1, 3323–3327 (2010).
Celebrano, M., Kukura, P., Renn, A. & Sandoghdar, V. Single-molecule imaging by optical absorption. Nat. Photonics 5, 95–98 (2011).
Piliarik, M. & Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 5, 4495 (2014).
Ortega Arroyo, J. et al. Label-free, all-optical detection, imaging, and tracking of a single protein. Nano Lett. 14, 2065–2070 (2014).
Young, G. et al. Quantitative mass imaging of single biological macromolecules. Science 360, 423–427 (2018).
Delor, M., Weaver, H. L., Yu, Q. & Ginsberg, N. S. Imaging material functionality through three-dimensional nanoscale tracking of energy flow. Nat. Mater. 19, 56–62 (2020).
Su, H. et al. Dark-exciton driven energy funneling into dielectric inhomogeneities in two-dimensional semiconductors. Nano Lett. 22, 2843–2850 (2022).
Baxter, J. M. et al. Coexistence of incoherent and ultrafast coherent exciton transport in a two-dimensional superatomic semiconductor. J. Phys. Chem. Lett. 14, 10249–10256 (2023).
Gruber, C. G., Frey, L., Guntermann, R., Medina, D. D. & Cortés, E. Early stages of covalent organic framework formation imaged in operando. Nature 630, 872–877 (2024).
Küppers, M., Albrecht, D., Kashkanova, A. D., Lühr, J. & Sandoghdar, V. Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells. Nat. Commun. 14, 1962 (2023).
Hsiao, Y.-T., Wu, T.-Y., Wu, B.-K., Chu, S.-W. & Hsieh, C.-L. Spinning disk interferometric scattering confocal microscopy captures millisecond timescale dynamics of living cells. Opt. Express 30, 45233–45245 (2022).
Wrigge, G., Gerhardt, I., Hwang, J., Zumofen, G. & Sandoghdar, V. Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence. Nat. Phys. 4, 60–66 (2008).
Gerhardt, I. et al. Strong extinction of a laser beam by a single molecule. Phys. Rev. Lett. 98, 033601 (2007).
Loudon, R. The Quantum Theory of Light (Oxford Univ. Press, 2000).
Martin, C. et al. In-line holographic microscopy with model-based analysis. Nat. Rev. Methods Primers 2, 83 (2022).
Thiele, J. C., Pfitzner, E. & Kukura, P. Single-protein optical holography. Nat. Photonics 18, 388–395 (2024).
Ortega Arroyo, J., Cole, D. & Kukura, P. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat. Protoc. 11, 617–633 (2016).
Gemeinhardt, A. & et al. Label-free imaging of single proteins secreted from living cells via iSCAT microscopy. J. Vis. Exp. https://doi.org/10.3791/58486 (2018).
Kukura, P. et al. High-speed nanoscopic tracking of the position and orientation of a single virus. Nat. Methods 6, 923–927 (2009).
Yang, Y. et al. Interferometric plasmonic imaging and detection of single exosomes. Proc. Natl Acad. Sci. USA 115, 10275–10280 (2018).
Zhang, P. et al. Plasmonic scattering imaging of single proteins and binding kinetics. Nat. Methods 17, 1010–1017 (2020).
Mazaheri, M. et al. iSCAT microscopy and particle tracking with tailored spatial coherence. Optica 11, 1030 (2024).
Daaboul, G. G. et al. Digital sensing and sizing of vesicular stomatitis virus pseudotypes in complex media: a model for ebola and marburg detection. ACS Nano 8, 6047–6055 (2014).
Utterback, J. K. et al. Operando label-free optical imaging of solution-phase ion transport and electrochemistry. ACS Energy Lett. 8, 1785–1792 (2023).
Folie, B. D. et al. Effect of anisotropic confinement on electronic structure and dynamics of band edge excitons in inorganic perovskite nanowires. J. Phys. Chem. A 124, 1867–1876 (2020).
Guzelturk, B. et al. Nonequilibrium thermodynamics of colloidal gold nanocrystals monitored by ultrafast electron diffraction and optical scattering microscopy. ACS Nano 14, 4792–4804 (2020).
Delor, M. et al. Carrier diffusion lengths exceeding 1 μm despite trap-limited transport in halide double perovskites. ACS Energy Lett. 5, 1337–1345 (2020).
Utterback, J. K. et al. Nanoscale disorder generates subdiffusive heat transport in self-assembled nanocrystal films. Nano Lett. 21, 3540–3547 (2021).
Li, J. et al. Zwitterions in 3D perovskites: organosulfide-halide perovskites. J. Am. Chem. Soc. 144, 22403–22408 (2022).
Weaver, H. L. et al. Detecting, distinguishing, and spatiotemporally tracking photogenerated charge and heat at the nanoscale. ACS Nano 17, 19011–19021 (2023).
Xu, D. et al. Ultrafast imaging of polariton propagation and interactions. Nat. Commun. 14, 3881 (2023).
Cheng, S.-W. et al. Optical imaging of ultrafast phonon–polariton propagation through an excitonic sensor. Nano Lett. 23, 9936–9942 (2023).
Tulyagankhodjaev, J. A. et al. Room-temperature wavelike exciton transport in a van der Waals superatomic semiconductor. Science 382, 438–442 (2023).
Lyu, P.-T. et al. Decrypting material performance by wide-field femtosecond interferometric imaging of energy carrier evolution. J. Am. Chem. Soc. 144, 13928–13937 (2022).
Schnedermann, C. et al. Ultrafast tracking of exciton and charge carrier transport in optoelectronic materials on the nanometer scale. J. Phys. Chem. Lett. 10, 6727–6733 (2019).
Schnedermann, C. et al. Sub-10 fs time-resolved vibronic optical microscopy. J. Phys. Chem. Lett. 7, 4854–4859 (2016).
Sung, J. et al. Long-range ballistic propagation of carriers in methylammonium lead iodide perovskite thin films. Nat. Phys. 16, 171–176 (2020).
Dastjerdi, H. M. et al. Optimized analysis for sensitive detection and analysis of single proteins via interferometric scattering microscopy. J. Phys. Appl. Phys. 55, 054002 (2022).
Bohren, C. F. & Huffman, D. R. Absorption and Scattering of Light by Small Particles 1st edn (Wiley-VCH, 1983).
Kalkbrenner, T., Håkanson, U. & Sandoghdar, V. Tomographic plasmon spectroscopy of a single gold nanoparticle. Nano Lett. 4, 2309–2314 (2004).
Jacobsen, V., Klotzsch, E. & Sandoghdar, V. Interferometric detection and tracking of nanoparticles. In Nano Biophotonics: Science and Technology. Proc. 3rd International Nanophotonics Symposium (eds Masuhara, H., Kawata, S. & Tokunaga, F.) 143–159 (Elsevier, 2007).
Taylor, R. W. & Sandoghdar, V. Interferometric scattering microscopy: seeing single nanoparticles and molecules via Rayleigh scattering. Nano Lett. 19, 4827–4835 (2019).
Špačková, B. et al. Label-free nanofluidic scattering microscopy of size and mass of single diffusing molecules and nanoparticles. Nat. Methods 19, 751–758 (2022).
Ignatovich, F. V. & Novotny, L. Real-time and background-free detection of nanoscale particles. Phys. Rev. Lett. 96, 013901 (2006).
Yurdakul, C. et al. High-throughput, high-resolution interferometric light microscopy of biological nanoparticles. ACS Nano 14, 2002–2013 (2020).
Cole, D., Young, G., Weigel, A., Sebesta, A. & Kukura, P. Label-free single-molecule imaging with numerical-aperture-shaped interferometric scattering microscopy. ACS Photonics 4, 211–216 (2017).
Liebel, M., Hugall, J. T. & van Hulst, N. F. Ultrasensitive label-free nanosensing and high-speed tracking of single proteins. Nano Lett. 17, 1277–1281 (2017).
Avci, O., Campana, M. I., Yurdakul, C. & Ünlü, M. S. Pupil function engineering for enhanced nanoparticle visibility in wide-field interferometric microscopy. Optica 4, 247–254 (2017).
Brokmann, X., Coolen, L., Hermier, J.-P. & Dahan, M. Emission properties of single CdSe/ZnS quantum dots close to a dielectric interface. Chem. Phys. 318, 91–98 (2005).
Lee, K. G. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nat. Photonics 5, 166–169 (2011).
Cheng, C.-Y., Liao, Y.-H. & Hsieh, C.-L. High-speed imaging and tracking of very small single nanoparticles by contrast enhanced microscopy. Nanoscale 11, 568–577 (2019).
Li, N. et al. Photonic resonator interferometric scattering microscopy. Nat. Commun. 12, 1744 (2021).
Gentner, C. et al. Enhanced quantitative wavefront imaging for nano-object characterization. ACS Nano 18, 19247–19256 (2024).
Hogenboom, D. O., DiMarzio, C. A., Gaudette, T. J., Devaney, A. J. & Lindberg, S. C. Three-dimensional images generated by quadrature interferometry. Opt. Lett. 23, 783–785 (1998).
Diezmann, L., von, Lee, M. Y., Lew, M. D. & Moerner, W. E. Correcting field-dependent aberrations with nanoscale accuracy in three-dimensional single-molecule localization microscopy. Optica 2, 985–993 (2015).
McGorty, R., Schnitzbauer, J., Zhang, W. & Huang, B. Correction of depth-dependent aberrations in 3D single-molecule localization and super-resolution microscopy. Opt. Lett. 39, 275–278 (2014).
Mahmoodabadi, R. G. et al. Point spread function in interferometric scattering microscopy (iSCAT). Part I: aberrations in defocusing and axial localization. Opt. Express 28, 25969–25988 (2020).
Kasaian, K., Mazaheri, M. & Sandoghdar, V. Long-range three-dimensional tracking of nanoparticles using interferometric scattering microscopy. ACS Nano 18, 30463–30472 (2024).
Brooks, N. J., Liu, C.-C., Chen, Y.-H. & Hsieh, C.-L. Point spread function engineering for spiral phase interferometric scattering microscopy enables robust 3D single-particle tracking and characterization. ACS Photonics 11, 5239–5250 (2024).
Hitzelhammer, F. et al. Unified simulation platform for interference microscopy. ACS Photonics 11, 2745–2756 (2024).
Dastjerdi, H. M., Mahmoodabadi, R. G., Bär, M., Sandoghdar, V. & Köstler, H. PiSCAT: a Python package for interferometric scattering microscopy. J. Open Source Softw. 7, 4024 (2022).
Wu, H.-M., Lin, Y.-H., Yen, T.-C. & Hsieh, C.-L. Nanoscopic substructures of raft-mimetic liquid-ordered membrane domains revealed by high-speed single-particle tracking. Sci. Rep. 6, 20542 (2016).
Lin, S., He, Y., Feng, D., Piliarik, M. & Chen, X.-W. Optical fingerprint of flat substrate surface and marker-free lateral displacement detection with angstrom-level precision. Phys. Rev. Lett. 129, 213201 (2022).
Holanová, K., Vala, M. & Piliarik, M. Optical imaging and localization of prospective scattering labels smaller than a single protein. Opt. Laser Technol. 109, 323–327 (2019).
Jacobsen, V., Stoller, P., Brunner, C., Vogel, V. & Sandoghdar, V. Interferometric optical detection and tracking of very small gold nanoparticles at a water-glass interface. Opt. Express 14, 405–414 (2006).
Li, Q. -Y., Lyu, P. -T., Kang, B., Chen, H. -Y. & Xu, J. -J. Label-free optical imaging of ion channel activity on living cells. Preprint at https://arxiv.org/abs/2312.16461 (2023).
Namink, K., Meng, X., Koper, M. T. M. & Kukura, P. & Faez, S. Electric-double-layer-modulation microscopy. Phys. Rev. Appl. 13, 044065 (2020).
Spindler, S., Sibold, J., Gholami Mahmoodabadi, R., Steinem, C. & Sandoghdar, V. High-speed microscopy of diffusion in pore-spanning lipid membranes. Nano Lett. 18, 5262–5271 (2018).
Robert, H. M. L. et al. Fast photothermal spatial light modulation for quantitative phase imaging at the nanoscale. Nat. Commun. 12, 2921 (2021).
Foley, E. D. B., Kushwah, M. S., Young, G. & Kukura, P. Mass photometry enables label-free tracking and mass measurement of single proteins on lipid bilayers. Nat. Methods 18, 1247–1252 (2021).
Witkowska, A., Spindler, S., Mahmoodabadi, R. G., Sandoghdar, V. & Jahn, R. Differential diffusional properties in loose and tight docking prior to membrane fusion. Biophys. J. 119, 2431–2439 (2020).
Dahmardeh, M., Mirzaalian Dastjerdi, H., Mazal, H., Köstler, H. & Sandoghdar, V. Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa. Nat. Methods 20, 442–447 (2023).
Simon, F., Weiss, L. E. & van Teeffelen, S. A guide to single-particle tracking. Nat. Rev. Methods Primers 4, 66 (2024).
Kashkanova, A. D. et al. Precision single-particle localization using radial variance transform. Opt. Express 29, 11070–11083 (2021).
Krishnan, M., Mojarad, N., Kukura, P. & Sandoghdar, V. Geometry-induced electrostatic trapping of nanometric objects in a fluid. Nature 467, 692–695 (2010).
Taylor, R. W. et al. High-precision protein-tracking with interferometric scattering microscopy. Front. Cell Dev. Biol. 8, 590158 (2020).
Shechtman, Y. Recent advances in point spread function engineering and related computational microscopy approaches: from one viewpoint. Biophys. Rev. 12, 1303–1309 (2020).
de Wit, X. M. et al. Precise characterization of nanometer-scale systems using interferometric scattering microscopy and Bayesian analysis. Appl. Opt. 62, 7205–7215 (2023).
Dong, J., Maestre, D., Conrad-Billroth, C. & Juffmann, T. Fundamental bounds on the precision of iSCAT, COBRI and dark-field microscopy for 3D localization and mass photometry. J. Phys. Appl. Phys. 54, 394002 (2021).
Lin, Y.-H., Chang, W.-L. & Hsieh, C.-L. Shot-noise limited localization of single 20 nm gold particles with nanometer spatial precision within microseconds. Opt. Express 22, 9159–9170 (2014).
Isojima, H., Iino, R., Niitani, Y., Noji, H. & Tomishige, M. Direct observation of intermediate states during the stepping motion of kinesin-1. Nat. Chem. Biol. 12, 290–297 (2016).
Kashkanova, A. D., Blessing, M., Gemeinhardt, A., Soulat, D. & Sandoghdar, V. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods 19, 586–593 (2022).
Ortiz-Orruño, U., Quidant, R., van Hulst, N. F., Liebel, M. & Ortega Arroyo, J. Simultaneous sizing and refractive index analysis of heterogeneous nanoparticle suspensions. ACS Nano 17, 221–229 (2023).
Lee, I.-B. et al. Interferometric scattering microscopy with polarization-selective dual detection scheme: capturing the orientational information of anisotropic nanometric objects. ACS Photonics 5, 797–804 (2018).
Stoller, P., Jacobsen, V. & Sandoghdar, V. Measurement of the complex dielectric constant of a single gold nanoparticle. Opt. Lett. 31, 2474–2476 (2006).
Daaboul, G. G. et al. High-throughput detection and sizing of individual low-index nanoparticles and viruses for pathogen identification. Nano Lett. 10, 4727–4731 (2010).
McDonald, M. P. et al. Visualizing single-cell secretion dynamics with single-protein sensitivity. Nano Lett. 18, 513–519 (2018).
Malay, A. D. et al. An ultra-stable gold-coordinated protein cage displaying reversible assembly. Nature 569, 438–442 (2019).
Soltermann, F. et al. Quantifying protein–protein interactions by molecular counting with mass photometry. Angew. Chem. Int. Ed. 59, 10774–10779 (2020).
Sendker, F. L. et al. Emergence of fractal geometries in the evolution of a metabolic enzyme. Nature 628, 894–900 (2024).
Olerinyova, A. et al. Mass photometry of membrane proteins. Chem 7, 224–236 (2021).
Heermann, T., Steiert, F., Ramm, B., Hundt, N. & Schwille, P. Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle. Nat. Methods 18, 1239–1246 (2021).
Lee, S.-H. et al. Characterizing and tracking single colloidal particles with video holographic microscopy. Opt. Express 15, 18275–18282 (2007).
Kashkanova, A. D. et al. Label-free discrimination of extracellular vesicles from large lipoproteins. J. Extracell. Vesicles 12, 12348 (2023).
Andrecka, J., Spillane, K. M., Ortega-Arroyo, J. & Kukura, P. Direct observation and control of supported lipid bilayer formation with interferometric scattering microscopy. ACS Nano 7, 10662–10670 (2013).
de Wit, G., Danial, J. S. H., Kukura, P. & Wallace, M. I. Dynamic label-free imaging of lipid nanodomains. Proc. Natl Acad. Sci. USA 112, 12299–12303 (2015).
Goldfain, A. M., Garmann, R. F., Jin, Y., Lahini, Y. & Manoharan, V. N. Dynamic measurements of the position, orientation, and dna content of individual unlabeled bacteriophages. J. Phys. Chem. B 120, 6130–6138 (2016).
Garmann, R. F., Goldfain, A. M. & Manoharan, V. N. Measurements of the self-assembly kinetics of individual viral capsids around their RNA genome. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.1909223116 (2019).
Bujak, Ł. et al. Fast leaps between millisecond confinements govern ase1 diffusion along microtubules. Small Methods 5, 2100370 (2021).
Mickolajczyk, K. J., Geyer, E. A., Kim, T., Rice, L. M. & Hancock, W. O. Direct observation of individual tubulin dimers binding to growing microtubules. Proc. Natl Acad. Sci. USA 116, 7314–7322 (2019).
Nguyen, T. L. et al. Quantitative phase imaging: recent advances and expanding potential in biomedicine. ACS Nano 16, 11516–11544 (2022).
Park, J.-S., Lee, I.-B., Moon, H.-M., Hong, S.-C. & Cho, M. Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment. Nat. Commun. 14, 7160 (2023).
Park, J.-S. et al. Fluorescence-combined interferometric scattering imaging reveals nanoscale dynamic events of single nascent adhesions in living cells. J. Phys. Chem. Lett. 11, 10233–10241 (2020).
Cheng, C.-Y. & Hsieh, C.-L. Background estimation and correction for high-precision localization microscopy. ACS Photonics 4, 1730–1739 (2017).
Hsiao, Y.-T., Tsai, C.-N., Chen, T.-H. & Hsieh, C.-L. Label-free dynamic imaging of chromatin in live cell nuclei by high-speed scattering-based interference microscopy. ACS Nano 16, 2774–2788 (2022).
Limozin, L. & Sengupta, K. Quantitative reflection interference contrast microscopy (RICM) in soft matter and cell adhesion. ChemPhysChem 10, 2752–2768 (2009).
Sülzle, J. et al. Label-free imaging of DNA interactions with 2D materials. ACS Photonics 11, 737–744 (2024).
Ginsberg, N. S. & Tisdale, W. A. Spatially resolved photogenerated exciton and charge transport in emerging semiconductors. Annu. Rev. Phys. Chem. 71, 1–30 (2020).
Kennedy, C. L., Hill, A. H., Massaro, E. S. & Grumstrup, E. M. Ultrafast excited-state transport and decay dynamics in cesium lead mixed halide perovskites. ACS Energy Lett. 2, 1501–1506 (2017).
Zhu, T., Snaider, J. M., Yuan, L. & Huang, L. Ultrafast dynamic microscopy of carrier and exciton transport. Annu. Rev. Phys. Chem. 70, 219–244 (2019).
Akselrod, G. M. et al. Subdiffusive exciton transport in quantum dot solids. Nano Lett. 14, 3556–3562 (2014).
Penwell, S. B., Ginsberg, L. D. S., Noriega, R. & Ginsberg, N. S. Resolving ultrafast exciton migration in organic solids at the nanoscale. Nat. Mater. 16, 1136–1141 (2017).
Kulig, M. et al. Exciton diffusion and halo effects in monolayer semiconductors. Phys. Rev. Lett. 120, 207401 (2018).
Balasubrahmaniyam, M. et al. From enhanced diffusion to ultrafast ballistic motion of hybrid light–matter excitations. Nat. Mater. 22, 338–344 (2023).
Li, Y. et al. Light-assisted diazonium functionalization of graphene and spatial heterogeneities in reactivity. J. Phys. Chem. Lett. 10, 4788–4793 (2019).
Li, W., Li, Y. & Xu, K. Azidated graphene: direct azidation from monolayers, click chemistry, and bulk production from graphite. Nano Lett. 20, 534–539 (2020).
Li, W., Li, Y. & Xu, K. Facile, electrochemical chlorination of graphene from an aqueous NaCl solution. Nano Lett. 21, 1150–1155 (2021).
Merryweather, A. J., Schnedermann, C., Jacquet, Q., Grey, C. P. & Rao, A. Operando optical tracking of single-particle ion dynamics in batteries. Nature 594, 522–528 (2021).
Xu, C. et al. Operando visualization of kinetically induced lithium heterogeneities in single-particle layered Ni-rich cathodes. Joule 6, 2535–2546 (2022).
Merryweather, A. J. et al. Operando monitoring of single-particle kinetic state-of-charge heterogeneities and cracking in high-rate Li-ion anodes. Nat. Mater. 21, 1306–1313 (2022).
Shan, X., Patel, U., Wang, S., Iglesias, R. & Tao, N. Imaging local electrochemical current via surface plasmon resonance. Science 327, 1363–1366 (2010).
Godeffroy, L., Ciocci, P., Lemineur, J.-F. & Kanoufi, F. Watching operando nanoscale electrochemical deposition by optical microscopy. Curr. Opin. Electrochem. 36, 101165 (2022).
Ciocci, P., Lemineur, J.-F., Noël, J.-M., Combellas, C. & Kanoufi, F. Differentiating electrochemically active regions of indium tin oxide electrodes for hydrogen evolution and reductive decomposition reactions. An situ optical microscopy approach. Electrochim. Acta 386, 138498 (2021).
Lemineur, J.-F., Noël, J.-M., Combellas, C. & Kanoufi, F. Optical monitoring of the electrochemical nucleation and growth of silver nanoparticles on electrode: from single to ensemble nanoparticles inspection. J. Electroanal. Chem. 872, 114043 (2020).
Lemineur, J.-F. et al. Imaging and quantifying the formation of single nanobubbles at single platinum nanoparticles during the hydrogen evolution reaction. ACS Nano 15, 2643–2653 (2021).
Vala, M., Palounek, D., Robert, H. M. L. & Piliarik, M. Quantitative detection of optical anisotropy of single microtubules by polarization-sensitive interferometric scattering microscopy. J. Phys. Appl. Phys. 54, 204001 (2021).
Jiao, N., Lin, S., Feng, D., He, Y. & Chen, X.-W. Defocus-integration interferometric scattering microscopy for speckle suppression and enhancing nanoparticle detection on a substrate. Opt. Lett. 49, 2841–2844 (2024).
Pang, G., Shen, C., Cao, L. & Hengel, A. V. D. Deep learning for anomaly detection: a review. ACM Comput. Surv. 54, 1–38 (2021).
Jeppesen, D. K., Zhang, Q., Franklin, J. L. & Coffey, R. J. Extracellular vesicles and nanoparticles: emerging complexities. Trends Cell Biol. 33, 667–681 (2023).
Morales-Inostroza, L. et al. An optofluidic antenna for enhancing the sensitivity of single-emitter measurements. Nat. Commun. 15, 2545 (2024).
Wen, C., Bertosin, E., Shi, X., Dekker, C. & Schmid, S. Orientation-locked DNA origami for stable trapping of small proteins in the nanopore electro-osmotic trap. Nano Lett. 23, 788–794 (2023).
Svirelis, J. et al. Stable trapping of multiple proteins at physiological conditions using nanoscale chambers with macromolecular gates. Nat. Commun. 14, 5131 (2023).
Wieszczycka, K. et al. Surface functionalization — the way for advanced applications of smart materials. Coord. Chem. Rev. 436, 213846 (2021).
Goswami, N. et al. Label-free SARS-CoV-2 detection and classification using phase imaging with computational specificity. Light. Sci. Appl. 10, 176 (2021).
Sharonov, A. & Hochstrasser, R. M. Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proc. Natl Acad. Sci. USA 103, 18911–18916 (2006).
Gu, M. Advanced Optical Imaging Theory. Springer Series in Optical Sciences Vol. 75 (Springer, 2000).
Xia, Q. et al. Single virus fingerprinting by widefield interferometric defocus-enhanced mid-infrared photothermal microscopy. Nat. Commun. 14, 6655 (2023).
Yurdakul, C., Zong, H., Bai, Y., Cheng, J.-X. & Ünlü, M. S. Bond-selective interferometric scattering microscopy. J. Phys. Appl. Phys. 54, 364002 (2021).
LIGO Scientific Collaboration and Virgo Collaborationet al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Zumofen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M. Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).
Acknowledgements
The authors thank their former and current team members who have contributed to the development of iSCAT over the past 20 years. The authors also thank R. Taylor and M. Miller for their comments on the manuscript. M.P. acknowledges funding by the Czech Science Foundation (project no. 23-07703S) and Operational Programme Johannes Amos Comenius financed by European Structural and Investment Funds and the Czech Ministry of Education, Youth and Sports (project no. SENDISO — CZ.02.01.01/00/22_008/0004596). N.S.G. acknowledges the support of the STROBE Center for Realtime Imaging, a National Science Foundation Science and Technology Center (grant DMR 1548924), the Center for Computational Study of Excited State Phenomena in Energy Materials (grant no. C2SEPEM) under the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division (contract no. DE-AC02-05CH11231), as part of the Computational Materials Sciences Program, and a David and Lucile Packard Fellowship. P.K. is funded by the European Research Council Consolidator (grant PHOTOMASS 819593) and the Engineering and Physical Research Council Leadership Fellowship EP/T03419X/1. V.S. thanks the Max Planck Society for continuous financial support.
Author information
Authors and Affiliations
Contributions
Introduction (V.S., N.S.G. and P.K.); Experimentation (V.S., N.S.G., P.K. and C.-L.H.); Results (V.S., N.S.G., C.-L.H., P.K. and M.P.); Applications (V.S., N.S.G., C.-L.H., P.K. and M.P.); Reproducibility and data deposition (M.P., V.S. and C.-L.H.); Limitations and optimizations (V.S.); Outlook (V.S. and N.S.G.); overview of the Primer (V.S.).
Corresponding author
Ethics declarations
Competing interests
P.K. is founder, shareholder and non-executive director of Refeyn Ltd. V.S. is a member of the Scientific Advisory Board of Bruker Switzerland AG. N.S.G., C.-L.H. and M.P. declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Accumulation
-
Summing multiple measurements to improve the signal-to-noise ratio.
- Airy function
-
A mathematical representation of the diffraction pattern created by a circular aperture.
- Beam scanning mode
-
An imaging configuration whereby a focused beam is moved sequentially across the field of view.
- Bit depth
-
The number of bits used in the digitalization process to encode the signal in each pixel, determining intensity resolution.
- Extinction
-
A phenomenon in which energy is lost from a travelling beam owing to its interaction with an object.
- Fresnel coefficients
-
Multiplicative coefficients that describe the ratio of the amplitude of an electric field of light upon reflection from and transmission through interfaces of two different materials.
- Gouy phase
-
The phase shift experienced by a beam of light when confined in the transverse direction, as is the case for a Gaussian beam. The phase shift is strongest in the region of the focal plane.
- Interference
-
A phenomenon in which two or more coherent waves are superposed, resulting in a wave of added amplitudes. Depending on the relative phases of each wave, the total amplitude at any given moment or location might be larger or smaller than the individual components.
- Measurement integration time
-
The time interval over which a signal is accumulated.
- Pixel well depth
-
The maximum number of photoelectrons that a detector pixel can accumulate before becoming saturated.
- Point spread function
-
(PSF). A 3D intensity distribution describing the response of an imaging system to a point-like source.
- Wide-field mode
-
An imaging configuration that captures a large area without scanning the illumination beam.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ginsberg, N.S., Hsieh, CL., Kukura, P. et al. Interferometric scattering microscopy. Nat Rev Methods Primers 5, 23 (2025). https://doi.org/10.1038/s43586-025-00391-1
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43586-025-00391-1
This article is cited by
-
Future directions in all-optical label-free single-molecule sensing
npj Biosensing (2026)
-
Imaging single ion channels via their Rayleigh scattering
Nature Photonics (2025)
-
Label-free single-molecule optical detection
npj Biosensing (2025)


