Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Continuous flow chemistry for molecular synthesis

Abstract

Continuous flow techniques have become important tools for molecular synthesis, both in academia and across the fine chemicals industry. The success of these methods has been in part due to their interdisciplinary nature, bringing together chemists and engineers to design and construct creative solutions for the novel synthesis and scale-up of molecules, with applications in pharmaceuticals, agrochemistry, materials chemistry and crystallization. The advantages of flow chemistry include the high surface-area-to-volume ratio of narrow tubing, which improves temperature control, and the ability to scale by increasing reaction time rather than vessel volume. Further, the use of flow enables improved safety protocols, reduces waste and has the potential to telescope downstream work-up processes. Perceptions of flow chemistry as a field with a high barrier to entry remain, and these techniques have not yet become a standard option for most chemists owing to the lack of exposure in academic settings. To help reduce this barrier, this Primer introduces the field, covering the fundamental considerations of assembling a lab-scale flow experiment, using literature examples to illustrate their practical application. We conclude with an outlook for the field, highlighting opportunities for potential and existing users of the technique alike.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Comparisons between batch and flow chemistry.
Fig. 2: Various fundamentals of flow reactors.
Fig. 3: Examples of flow set-ups described in the ‘Experimentation’ section with relevant apparatuses.
Fig. 4: Recent examples of flow set-ups demonstrating capabilities in organic synthesis.
Fig. 5: Recent examples of flow set-ups demonstrating capabilities in industrial applications.
Fig. 6: Recent examples of flow set-ups demonstrating capabilities in materials applications.

Similar content being viewed by others

References

  1. Günther, A., Jhunjhunwala, M., Thalmann, M., Schmidt, M. A. & Jensen, K. F. Micromixing of miscible liquids in segmented gas-liquid flow. Langmuir 21, 1547–1555 (2005).

    Article  Google Scholar 

  2. Straathof, N. J. W., Su, Y., Hessel, V. & Noël, T. Accelerated gas–liquid visible light photoredox catalysis with continuous-flow photochemical microreactors. Nat. Protoc. 11, 10–21 (2016).

    Article  Google Scholar 

  3. Polyzos, A., O’Brien, M., Petersen, T. P., Baxendale, I. R. & Ley, S. V. The continuous-flow synthesis of carboxylic acids using CO2 in a tube-in-tube gas permeable membrane reactor. Angew. Chem. Int. Ed. 50, 1190–1193 (2011).

    Article  Google Scholar 

  4. Bolt, R. R. A., Leitch, J. A., Jones, A. C., Nicholson, W. I. & Browne, D. L. Continuous flow mechanochemistry: reactive extrusion as an enabling technology in organic synthesis. Chem. Soc. Rev. 51, 4243–4260 (2022).

    Article  Google Scholar 

  5. Britton, J. & Raston, C. L. Multi-step continuous-flow synthesis. Chem. Soc. Rev. 46, 1250–1271 (2017).

    Article  Google Scholar 

  6. Bogdan, A. R. & Sach, N. W. The use of copper flow reactor technology for the continuous synthesis of 1,4-disubstituted 1,2,3-triazoles. Adv. Synth. Catal. 351, 849–854 (2009).

    Article  Google Scholar 

  7. Elliott, L. D. et al. A small-footprint, high-capacity flow reactor for UV photochemical synthesis on the kilogram scale. Org. Process. Res. Dev. 20, 1806–1811 (2016). This article provides an early perspective on scaling-up photochemistry by flow methods.

    Article  Google Scholar 

  8. Hafner, A. et al. A simple scale-up strategy for organolithium chemistry in flow mode: from feasibility to kilogram quantities. Org. Process. Res. Dev. 20, 1833–1837 (2016). This article explores the scaling-up of organolithium chemistry by continuous flow in an industrial setting.

    Article  Google Scholar 

  9. Brock, S. et al. Development of an enantioselective, kilogram-scale, rhodium-catalysed 1,4-addition. Org. Process. Res. Dev. 12, 496–502 (2008).

    Article  Google Scholar 

  10. Lv, Y., Yu, Z. & Su, W. A continuous kilogram-scale process for the manufacture of 7-ethyltryptophol. Org. Process. Res. Dev. 15, 471–475 (2011).

    Article  Google Scholar 

  11. Hartman, R. L., McMullen, J. P. & Jensen, K. F. Deciding whether to go with the flow: evaluating the merits of flow reactors for synthesis. Angew. Chem. Int. Ed. 50, 7502–7519 (2011). This article provides a merit-based discussion on batch or flow.

    Article  Google Scholar 

  12. Kim, H. et al. Submillisecond organic synthesis: outpacing Fries rearrangement through microfluidic rapid mixing. Science 352, 691–694 (2016). A key example of flash chemistry.

    Article  Google Scholar 

  13. Baxendale, I. R. et al. A flow process for the multi-step synthesis of the alkaloid natural product oxomaritidine: a new paradigm for molecular assembly. Chem. Commun. 28, 2566–2568 (2006). An early example of the power of flow chemistry for chemical synthesis.

    Article  Google Scholar 

  14. Ley, S. V., Schucht, O., Thomas, A. W. & Murray, P. J. Synthesis of the alkaloids (±)-oxomaritidine and (±)-epimaritidine using an orchestrated multi-step sequence of polymer supported reagents. J. Chem. Soc. Perkin Trans. 9, 1251–1252 (1999).

    Article  Google Scholar 

  15. Plutschack, M. B., Pieber, B., Gilmore, K. & Seeberger, P. H. The hitchhiker’s guide to flow chemistry. Chem. Rev. 117, 11796–11893 (2017). A thorough overview of flow chemistry.

    Article  Google Scholar 

  16. Capaldo, L., Wen, Z. & Noël, T. A field guide to flow chemistry for synthetic organic chemists. Chem. Sci. 14, 4230–4247 (2023). Suggested next reading, many synthesis examples and impact of flow clearly identified in each example.

    Article  Google Scholar 

  17. Laybourn, A., Robertson, K. & Slater, A. G. Quid pro flow. J. Am. Chem. Soc. 145, 4355–4365 (2023).

    Article  Google Scholar 

  18. Britton, J. & Jamison, T. F. The assembly and use of continuous flow systems for chemical synthesis. Nat. Protoc. 12, 2423–2446 (2017). A visual and written description of how to assemble various flow systems.

    Article  Google Scholar 

  19. Hessel, V., Kralisch, D., Kockmann, N., Noël, T. & Wang, Q. Novel process windows for enabling, accelerating, and uplifting flow chemistry. ChemSusChem 6, 746–789 (2013). An article describing how flow systems permit access to atypical temperatures and pressures.

    Article  Google Scholar 

  20. Hayes, H. L. D. & Mallia, C. J. Continuous flow chemistry with solids: a review. Org. Process. Res. Dev. 28, 1327–1354 (2024).

    Article  Google Scholar 

  21. Britton, J., Majumdar, S. & Weiss, G. A. Continuous flow biocatalysis. Chem. Soc. Rev. 47, 5891–5918 (2018).

    Article  Google Scholar 

  22. Baumann, M., Moody, T. S., Smyth, M. & Wharry, S. Overcoming the hurdles and challenges associated with developing continuous industrial processes. Eur. J. Org. Chem. 2020, 7398–7406 (2020).

    Article  Google Scholar 

  23. Wan, L. et al. Flow chemistry in the multi-step synthesis of natural products. Green Synth. Catal. 3, 243–258 (2022).

    Article  Google Scholar 

  24. Pastre, J. C., Browne, D. L. & Ley, S. V. Flow chemistry syntheses of natural products. Chem. Soc. Rev. 42, 8849–8869 (2013).

    Article  Google Scholar 

  25. Burange, A. S., Osman, S. M. & Luque, R. Understanding flow chemistry for the production of active pharmaceutical ingredients. iScience 25, 103892 (2022).

    Article  Google Scholar 

  26. Alfano, A. I., García-Lacuna, J., Griffiths, O. M., Ley, S. V. & Baumann, M. Continuous flow synthesis enabling reaction discovery. Chem. Sci. 15, 4618–4630 (2024).

    Article  Google Scholar 

  27. Coley, C. W. et al. A robotic platform for flow synthesis of organic compounds informed by AI planning. Science 365, 557 (2019). A look into the potential future of chemical synthesis, artifical intelligence and continuous flow.

    Article  Google Scholar 

  28. Hawbaker, N., Wittgrove, E., Christensen, B., Sach, N. & Blackmond, D. G. Dispersion in compartmentalized flow systems: influence of flow patterns on reactivity. Org. Process. Res. Dev. 20, 465–473 (2016).

    Article  Google Scholar 

  29. Murray, P. R. D. et al. Continuous flow-processing of organometallic reagents using an advanced peristaltic pumping system and the telescoped flow synthesis of (E/Z)-tamoxifen. Org. Process. Res. Dev. 17, 1192–1208 (2013). An early example showing various organometallic reactions in telescoped continuous flow reactors, including the synthesis of an antic-cancer compound.

    Article  Google Scholar 

  30. Dallinger, D. & Kappe, C. O. Lab-scale production of anhydrous diazomethane using membrane separation technology. Nat. Protoc. 12, 2138–2147 (2017).

    Article  Google Scholar 

  31. Jones, R. V. et al. Continuous-flow high pressure hydrogenation reactor for optimization and high-throughput synthesis. J. Comb. Chem. 8, 110–116 (2006).

    Article  Google Scholar 

  32. Yoshida, J. I., Takahashi, Y. & Nagaki, A. Flash chemistry: flow chemistry that cannot be done in batch. Chem. Commun. 49, 9896–9904 (2013). An overview of flash chemistry.

    Article  Google Scholar 

  33. Okwundu, O. S., Fuseini, M., El-Shazly, A. H. & Elkady, M. F. Comparison of mixing performances of T, Y and arrow-shaped micromixers using Villermaux–Dushman protocol at low Reynolds number. J. Serbian Chem. Soc. 85, 381–394 (2020).

    Article  Google Scholar 

  34. Ward, K. & Fan, Z. H. Mixing in microfluidic devices and enhancement methods. J. Micromech. Microeng. 25, 094001 (2015).

    Article  Google Scholar 

  35. Woitalka, A., Kuhn, S. & Jensen, K. F. Scalability of mass transfer in liquid-liquid flow. Chem. Eng. Sci. 116, 1–8 (2014).

    Article  Google Scholar 

  36. Reichart, B., Kappe, C. O. & Glasnov, T. N. Phase-transfer catalysis: mixing effects in continuous-flow liquid/liquid O-and S-alkylation processes. Synlett 24, 2393–2396 (2013).

    Article  Google Scholar 

  37. Paul, E. L., Atiemo-Obeng, V. A. & Kresta, S. M. Handbook of Industrial Mixing: Science and Practice (eds Paul, E. L. et al.) (Wiley, 2003).

  38. Nagy, K. D., Shen, B., Jamison, T. F. & Jensen, K. F. Mixing and dispersion in small-scale flow systems. Org. Process. Res. Dev. 16, 976–981 (2012).

    Article  Google Scholar 

  39. Epps, R. W., Volk, A. A., Abdel-Latif, K. & Abolhasani, M. An automated flow chemistry platform to decouple mixing and reaction times. React. Chem. Eng. 5, 1212–1217 (2020).

    Article  Google Scholar 

  40. Nagaki, A. et al. Control of extremely fast competitive consecutive reactions using micromixing. Selective Friedel–Crafts aminoalkylation. J. Am. Chem. Soc. 127, 11666–11675 (2005).

    Article  Google Scholar 

  41. Wu, Y., Chen, Y. & Cheng, Y. Building an arduino-based open-source programmable multichannel syringe pump: a useful tool for fluid delivery in microfluidics and flow chemistry. J. Chem. Educ. 101, 1951–1958 (2024).

    Article  Google Scholar 

  42. Berton, M., Huck, L. & Alcázar, J. On-demand synthesis of organozinc halides under continuous flow conditions. Nat. Protoc. 13, 324–334 (2018).

    Article  Google Scholar 

  43. Glasnov, T. Continuous-Flow Chemistry in the Research Laboratory: Modern Organic Chemistry in Dedicated Reactors at the Dawn of the 21st Century (Springer, 2016).

  44. Huck, L., De La Hoz, A., Díaz-Ortiz, A. & Alcázar, J. Grignard reagents on a tab: direct magnesium insertion under flow conditions. Org. Lett. 19, 3747–3750 (2017).

    Article  Google Scholar 

  45. Russell, M. G. & Jamison, T. F. Seven-step continuous flow synthesis of linezolid without intermediate purification. Angew. Chem. Int. Ed. 58, 7678–7681 (2019). A seven-step telescoped flow synthesis of a blockbuster antibacterial compound in flow.

    Article  Google Scholar 

  46. Frost, C. G. & Mutton, L. Heterogeneous catalytic synthesis using microreactor technology. Green Chem. 12, 1687–1703 (2010).

    Article  Google Scholar 

  47. Irfan, M., Glasnov, T. N. & Kappe, C. O. Heterogeneous catalytic hydrogenation reactions in continuous-flow reactors. ChemSusChem 4, 300–316 (2011).

    Article  Google Scholar 

  48. Munirathinam, R., Huskens, J. & Verboom, W. Supported catalysis in continuous-flow microreactors. Adv. Synth. Catal. 357, 1093–1123 (2015).

    Article  Google Scholar 

  49. De Santis, P., Meyer, L. E. & Kara, S. The rise of continuous flow biocatalysis — fundamentals, very recent developments and future perspectives. React. Chem. Eng. 5, 2155–2184 (2020).

    Article  Google Scholar 

  50. García-Lacuna, J. & Baumann, M. Inline purification in continuous flow synthesis — opportunities and challenges. Beilstein J. Org. Chem. 18, 1720–1740 (2022).

    Article  Google Scholar 

  51. Lei, Z., Ang, H. T. & Wu, J. Advanced in-line purification technologies in multistep continuous flow pharmaceutical synthesis. Org. Process. Res. Dev. 28, 1355–1368 (2024).

    Article  Google Scholar 

  52. Desai, A. A., Molitor, E. J. & Anderson, J. E. Process intensification via reaction telescoping and a preliminary cost model to rapidly establish value. Org. Process. Res. Dev. 16, 160–165 (2012).

    Article  Google Scholar 

  53. Hsueh, N., Clarkson, G. J. & Shipman, M. Generation and ring opening of aziridines in telescoped continuous flow processes. Org. Lett. 17, 3632–3635 (2015).

    Article  Google Scholar 

  54. Baumann, M., Moody, T. S., Smyth, M. & Wharry, S. A perspective on continuous flow chemistry in the pharmaceutical industry. Org. Process. Res. Dev. 24, 1802–1813 (2020).

    Article  Google Scholar 

  55. Ferstl, W. et al. Inline analysis in microreaction technology: a suitable tool for process screening and optimization. Chem. Eng. Technol. 30, 370–378 (2007).

    Article  Google Scholar 

  56. Sagmeister, P. et al. Advanced real-time process analytics for multistep synthesis in continuous flow. Angew. Chem. Int. Ed. 60, 8139–8148 (2021). An overview of the use of process analytics for flow chemistry applications.

    Article  Google Scholar 

  57. Sambiagio, C. & Noël, T. Flow photochemistry: shine some light on those tubes! Trends Chem. 2, 92–106 (2020).

    Article  Google Scholar 

  58. Rehm, T. H. Flow photochemistry as a tool in organic synthesis. Chem. Eur. J. 26, 16952–16974 (2020).

    Article  Google Scholar 

  59. Williams, J. D. & Kappe, C. O. Recent advances toward sustainable flow photochemistry. Curr. Opin. Green Sustain. Chem. 25, 100351 (2020).

    Article  Google Scholar 

  60. Rehm, T. H. Reactor technology concepts for flow photochemistry. ChemPhotoChem 4, 235–254 (2020).

    Article  Google Scholar 

  61. Moschetta, E. G. et al. Photochemistry in pharmaceutical development: a survey of strategies and approaches to industry-wide implementation. Org. Process. Res. Dev. 28, 831–846 (2024).

    Article  Google Scholar 

  62. Maljuric, S., Jud, W., Kappe, C. O. & Cantillo, D. Translating batch electrochemistry to single-pass continuous flow conditions: an organic chemist’s guide. J. Flow Chem. 10, 181–190 (2020).

    Article  Google Scholar 

  63. Tanbouza, N., Ollevier, T. & Lam, K. Bridging lab and industry with flow electrochemistry. iScience 23, 101720 (2020).

    Article  Google Scholar 

  64. Filipponi, P. et al. Fouling of flow reactors in organolithium mediated transformations: experience on scale-up and proposed solution. Chimia 73, 809–816 (2019).

    Article  Google Scholar 

  65. Hessel, V. et al. Quantitative sustainability assessment of flow chemistry-from simple metrics to holistic assessment. ACS Sustain. Chem. Eng. 9, 9508–9540 (2021).

    Article  Google Scholar 

  66. Peschke, T. et al. Self-immobilizing biocatalysts maximize space-time yields in flow reactors. Catalysts 9, 164 (2019).

    Article  Google Scholar 

  67. Lehmann, H., Ruppen, T. & Knoepfel, T. Scale-up of diazonium salts and azides in a three-step continuous flow sequence. Org. Process. Res. Dev. 26, 1308–1317 (2022).

    Article  Google Scholar 

  68. McMullen, J. P. et al. Development and scale-up of a continuous reaction for production of an active pharmaceutical ingredient intermediate. Org. Process. Res. Dev. 22, 1208–1213 (2018).

    Article  Google Scholar 

  69. Dong, Z., Wen, Z., Zhao, F., Kuhn, S. & Noël, T. Scale-up of micro- and milli-reactors: an overview of strategies, design principles and applications. Chem. Eng. Sci. X 10, (2021).

  70. Rao, Z. X. et al. 3D-printed polypropylene continuous-flow column reactors: exploration of reactor utility in SNAr reactions and the synthesis of bicyclic and tetracyclic heterocycles. Eur. J. Org. Chem. 2017, 6499–6504 (2017).

    Article  Google Scholar 

  71. Wilson, N. S., Sarko, C. R. & Roth, G. P. Development and applications of a practical continuous flow microwave cell. Org. Process. Res. Dev. 8, 535–538 (2004).

    Article  Google Scholar 

  72. Wiles, C. & Watts, P. Translation of microwave methodology to continuous flow for the efficient synthesis of diaryl ethers via a base-mediated SNAr reaction. Beilstein J. Org. Chem. 7, 1360–1371 (2011).

    Article  Google Scholar 

  73. Petersen, T. P., Larsen, A. F., Ritzén, A. & Ulven, T. Continuous flow nucleophilic aromatic substitution with dimethylamine generated in situ by decomposition of DMF. J. Org. Chem. 78, 4190–4195 (2013).

    Article  Google Scholar 

  74. Razzaq, T. & Kappe, C. O. Continuous flow organic synthesis under high-temperature/pressure: conditions. Chem. Asian J. 5, 1274–1289 (2010).

    Article  Google Scholar 

  75. Browne, D. L., Baumann, M., Harji, B. H., Baxendale, I. R. & Ley, S. V. A new enabling technology for convenient laboratory scale continuous flow processing at low temperatures. Org. Lett. 13, 3312–3315 (2011).

    Article  Google Scholar 

  76. Thaisrivongs, D. A., Naber, J. R., Rogus, N. J. & Spencer, G. Development of an organometallic flow chemistry reaction at pilot-plant scale for the manufacture of Verubecestat. Org. Process. Res. Dev. 22, 403–408 (2018).

    Article  Google Scholar 

  77. Power, M., Alcock, E. & McGlacken, G. P. Organolithium bases in flow chemistry: a review. Org. Process. Res. Dev. 24, 1814–1838 (2020).

    Article  Google Scholar 

  78. Laudadio, G. et al. Selective C(sp3)−H aerobic oxidation enabled by decatungstate photocatalysis in flow. Angew. Chem. Int. Ed. 57, 4078–4082 (2018). The combination of gases, photo and flow chemistry to achieve selective C–H oxidation.

    Article  Google Scholar 

  79. O’Brien, M., Taylor, N., Polyzos, A., Baxendale, I. R. & Ley, S. V. Hydrogenation in flow: homogeneous and heterogeneous catalysis using Teflon AF-2400 to effect gas-liquid contact at elevated pressure. Chem. Sci. 2, 1250–1257 (2011). A key article on the use of permeable membranes to introduce gases into flow systems and monitoring systems with USB cameras.

    Article  Google Scholar 

  80. Maurya, R. A., Park, C. P., Lee, J. H. & Kim, D. P. Continuous in situ generation, separation, and reaction of diazomethane in a dual-channel microreactor. Angew. Chem. Int. Ed. 50, 5952–5955 (2011).

    Article  Google Scholar 

  81. Harsanyi, A. et al. One-step continuous flow synthesis of antifungal WHO essential medicine flucytosine using fluorine. Org. Process. Res. Dev. 21, 273–276 (2017).

    Article  Google Scholar 

  82. Naber, J. R. & Buchwald, S. L. Packed-bed reactors for continuous-flow C–N cross-coupling. Angew. Chem. Int. Ed. 49, 9469–9474 (2010).

    Article  Google Scholar 

  83. Jönsson, D., Warrington, B. H. & Ladlow, M. Automated flow-through synthesis of heterocyclic thioethers. J. Comb. Chem. 6, 584–595 (2004).

    Article  Google Scholar 

  84. Bonner, A., Naik, P., Crawford, R. & Baumann, M. Recent advances exploiting reactive intermediates generated via continuous flow chemistry. Curr. Opin. Green Sustain. Chem. 47, 100907 (2024).

    Article  Google Scholar 

  85. Dallinger, D., Gutmann, B. & Kappe, C. O. The concept of chemical generators: on-site on-demand production of hazardous reagents in continuous flow. Acc. Chem. Res. 53, 1330–1341 (2020). An account describing the generation and use of hazardous materials in flow.

    Article  Google Scholar 

  86. Movsisyan, M. et al. Taming hazardous chemistry by continuous flow technology. Chem. Soc. Rev. 45, 4892–4928 (2016).

    Article  Google Scholar 

  87. Deadman, B. J., Collins, S. G. & Maguire, A. R. Taming hazardous chemistry in flow: the continuous processing of diazo and diazonium compounds. Chem. Eur. J. 21, 2298–2308 (2015).

    Article  Google Scholar 

  88. Chen, Y., Renson, S. & Monbaliu, J. C. M. On demand flow platform for the generation of anhydrous dinitrogen trioxide and its further use in N-nitrosative reactions. Angew. Chem. Int. Ed. 61, e202210146 (2022).

    Article  Google Scholar 

  89. Browne, D. L. & Harrity, J. P. A. Recent developments in the chemistry of sydnones. Tetrahedron 66, 553–568 (2010).

    Article  Google Scholar 

  90. Liu, Y., Okada, I. & Tsuda, A. Flow photo-on-demand phosgenation reactions with chloroform. Org. Process. Res. Dev. 26, 3336–3344 (2022).

    Article  Google Scholar 

  91. Nagy, B. S., Fu, G., Hone, C. A., Kappe, C. O. & Ötvös, S. B. Harnessing a continuous-flow persulfuric acid generator for direct oxidative aldehyde esterifications. ChemSusChem 16, e202201868 (2023).

    Article  Google Scholar 

  92. Mittal, A. K. et al. Continuous flow synthesis of tert-butyl nitrite and its applications as nitrating agent. Org. Process. Res. Dev. 28, 1510–1514 (2024).

    Article  Google Scholar 

  93. Colella, M. et al. Development of a continuous flow synthesis of 2-substituted azetines and 3-substituted azetidines by using a common synthetic precursor. J. Org. Chem. 86, 13943–13954 (2021).

    Article  Google Scholar 

  94. Musci, P. et al. Flow microreactor technology for taming highly reactive chloroiodomethyllithium carbenoid: direct and chemoselective synthesis of α-chloroaldehydes. Org. Lett. 22, 3623–3627 (2020).

    Article  Google Scholar 

  95. Raymenants, F., Masson, T. M., Sanjosé-Orduna, J. & Noël, T. Efficient C(sp3)-H carbonylation of light and heavy hydrocarbons with carbon monoxide via hydrogen atom transfer photocatalysis in flow.Angew. Chem. Int. Ed. 62, e202308563 (2023).

    Article  Google Scholar 

  96. Bottecchia, C. et al. Manufacturing process development for belzutifan, part 2: a continuous flow visible-light-induced benzylic bromination. Org. Process. Res. Dev. 26, 516–524 (2022).

    Article  Google Scholar 

  97. Elliott, L. D., Booker-Milburn, K. I. & Lennox, A. J. J. Daisy-chaining photo- and thermal chemistry: multistep continuous flow synthesis of visible-light-mediated photochemistry with a high-temperature cascade reaction. Org. Process. Res. Dev. 25, 1943–1949 (2021).

    Article  Google Scholar 

  98. Alfano, A. I. et al. Multiphase photochemistry in flow mode via an integrated continuous stirred tank reactor (CSTR) approach. Chem. Commun. 60, 7037–7040 (2024).

    Article  Google Scholar 

  99. Long, H., Chen, T. S., Song, J., Zhu, S. & Xu, H. C. Electrochemical aromatic C–H hydroxylation in continuous flow. Nat. Commun. 13, 3945 (2022).

    Article  Google Scholar 

  100. Chen, T. S., Long, H., Gao, Y. & Xu, H. C. Continuous flow electrochemistry enables practical and site-selective C–H oxidation. Angew. Chem. Int. Ed. 62, e202310138 (2023).

    Article  Google Scholar 

  101. Chen, P. Y. et al. Unlocking the potential of oxidative asymmetric catalysis with continuous flow electrochemistry. J. Am. Chem. Soc. 146, 7178–7184 (2024).

    Article  Google Scholar 

  102. Sagmeister, P. et al. Intensified continuous flow synthesis and workup of 1,5-disubstituted tetrazoles enhanced by real-time process analytics. Org. Process. Res. Dev. 25, 1206–1214 (2021).

    Article  Google Scholar 

  103. Battilocchio, C. et al. Continuous preparation and use of dibromoformaldoxime as a reactive intermediate for the synthesis of 3-bromoisoxazolines. Org. Process. Res. Dev. 21, 1588–1594 (2017).

    Article  Google Scholar 

  104. Ley, S. V. et al. A comment on continuous flow technologies within the agrochemical industry. Org. Process. Res. Dev. 25, 713–720 (2021).

    Article  Google Scholar 

  105. Cole, K. P. et al. Kilogram-scale prexasertib monolactate monohydrate synthesis under continuous-flow CGMP conditions. Science 356, 1144–1150 (2017).

    Article  Google Scholar 

  106. Mallia, C. J. et al. Development and manufacture of a curtius rearrangement using continuous flow towards the large-scale manufacture of AZD7648. Org. Process. Res. Dev. 26, 3312–3322 (2022).

    Article  Google Scholar 

  107. Gauthier, D. R. et al. Highly efficient synthesis of hiv nnrti doravirine. Org. Lett. 17, 1353–1356 (2015).

    Article  Google Scholar 

  108. Marsini, M. A. et al. Development of a concise, scalable synthesis of a CCR1 antagonist utilizing a continuous flow Curtius rearrangement. Green Chem. 19, 1454–1461 (2017).

    Article  Google Scholar 

  109. Slater, A. G. & Cooper, A. I. Function-led design of new porous materials. Science 348, aaa8075 (2015).

    Article  Google Scholar 

  110. Konnerth, H. et al. Metal-organic framework (MOF)-derived catalysts for fine chemical production. Coord. Chem. Rev. 416, 213319 (2020).

    Article  Google Scholar 

  111. Zhi, Y., Wang, Z., Zhang, H. L. & Zhang, Q. Recent progress in metal-free covalent organic frameworks as heterogeneous catalysts. Small 16, 2001070 (2020).

    Article  Google Scholar 

  112. Fang, Y. et al. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 48, 4707–4730 (2019).

    Article  Google Scholar 

  113. Yang, X., Ullah, Z., Stoddart, J. F. & Yavuz, C. T. Porous organic cages. Chem. Rev. 123, 4602–4634 (2023).

    Article  Google Scholar 

  114. Wang, W., Su, K. & Yuan, D. Porous organic cages for gas separations. Mater. Chem. Front. 7, 5247–5262 (2023).

    Article  Google Scholar 

  115. Wu, M. X. & Yang, Y. W. Applications of covalent organic frameworks (COFs): from gas storage and separation to drug delivery. Chin. Chem. Lett. 28, 1135–1143 (2017).

    Article  Google Scholar 

  116. Furukawa, H. & Yaghi, O. M. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications. J. Am. Chem. Soc. 131, 8875–8883 (2009).

    Article  Google Scholar 

  117. Natraj, A. et al. Single-crystalline imine-linked two-dimensional covalent organic frameworks separate benzene and cyclohexane efficiently. J. Am. Chem. Soc. 144, 6366–6378 (2022).

    Article  Google Scholar 

  118. Wang, Z., Zhang, S., Chen, Y., Zhang, Z. & Ma, S. Covalent organic frameworks for separation applications. Chem. Soc. Rev. 49, 708–735 (2020).

    Article  Google Scholar 

  119. Li, J. et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49, 3565–3604 (2020).

    Article  Google Scholar 

  120. Kumar, P., Bansal, V., Kim, K. H. & Kwon, E. E. Metal–organic frameworks (MOFs) as futuristic options for wastewater treatment. J. Ind. Eng. Chem. 62, 130–145 (2018).

    Article  Google Scholar 

  121. Li, R. L. et al. Controlled growth of imine-linked two-dimensional covalent organic framework nanoparticles. Chem. Sci. 10, 3796–3801 (2019).

    Article  Google Scholar 

  122. Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science 283, 1148–1150 (1999).

    Article  Google Scholar 

  123. Zhang, G. & Mastalerz, M. Organic cage compounds-from shape-persistency to function. Chem. Soc. Rev. 43, 1934–1947 (2014).

    Article  Google Scholar 

  124. Durot, S., Taesch, J. & Heitz, V. Multiporphyrinic cages: architectures and functions. Chem. Rev. 114, 8542–8578 (2014).

    Article  Google Scholar 

  125. Hasell, T. & Cooper, A. I. Porous organic cages: soluble, modular and molecular pores. Nat. Rev. Mater. 1, 16053 (2016).

    Article  Google Scholar 

  126. Li, Y., Chen, W., Xing, G., Jiang, D. & Chen, L. New synthetic strategies toward covalent organic frameworks. Chem. Soc. Rev. 49, 2852–2868 (2020).

    Article  Google Scholar 

  127. Pobłocki, K., Drzeżdżon, J., Gawdzik, B. & Jacewicz, D. Latest trends in the large-scale production of MOFs in accordance with the principles of green chemistry. Green Chem. 24, 9402–9427 (2022).

    Article  Google Scholar 

  128. Bisbey, R. P., DeBlase, C. R., Smith, B. J. & Dichtel, W. R. Two-dimensional covalent organic framework thin films grown in flow. J. Am. Chem. Soc. 138, 11433–11436 (2016).

    Article  Google Scholar 

  129. Chanchaona, N. & Lau, C. H. Analyzing environmental impacts of hypercrosslinked polymers produced from continuous flow synthesis for water treatment. Ind. Eng. Chem. Res. 62, 9046–9053 (2023).

    Article  Google Scholar 

  130. Guo, J. et al. Conjugated organic framework with three-dimensionally ordered stable structure and delocalized π clouds. Nat. Commun. 4, 2736 (2013).

    Article  Google Scholar 

  131. Dogru, M. et al. A photoconductive thienothiophene-based covalent organic framework showing charge transfer towards included fullerene. Angew. Chem. Int. Ed. 52, 2920–2924 (2013).

    Article  Google Scholar 

  132. Kitchin, M. et al. Continuous flow synthesis of a carbon-based molecular cage macrocycle via a three-fold homocoupling reaction. Chem. Commun. 51, 14231–14234 (2015).

    Article  Google Scholar 

  133. Briggs, M. E. et al. Dynamic flow synthesis of porous organic cages. Chem. Commun. 51, 17390–17393 (2015). An early example of the use of continuous flow for the preparation of materials.

    Article  MathSciNet  Google Scholar 

  134. Jones, C. D. et al. High-yielding flow synthesis of a macrocyclic molecular hinge. J. Am. Chem. Soc. 143, 7553–7565 (2021).

    Article  Google Scholar 

  135. Morin, É. et al. Synthesis of a renewable macrocyclic musk: evaluation of batch, microwave, and continuous flow strategies. Org. Process. Res. Dev. 23, 283–287 (2019).

    Article  Google Scholar 

  136. Liu, Z., Zhu, J., Peng, C., Wakihara, T. & Okubo, T. Continuous flow synthesis of ordered porous materials: from zeolites to metal–organic frameworks and mesoporous silica. React. Chem. Eng. 4, 1699–1720 (2019).

    Article  Google Scholar 

  137. Chanchaona, N. et al. Flow synthesis of hypercrosslinked polymers with additional microporosity that enhances CO2/N2 separation. J. Mater. Chem. A 11, 9859–9867 (2023).

    Article  Google Scholar 

  138. Senthil Raja, D. & Tsai, D. H. Recent advances in continuous flow synthesis of metal–organic frameworks and their composites. Chem. Commun. 60, 8497–8515 (2024).

    Article  Google Scholar 

  139. Lee, A. P. & Hung, L.-H. Microfluidic devices for the synthesis of nanoparticles and biomaterials. J. Med. Biol. Eng. 27, 1–6 (2006).

    Google Scholar 

  140. Shahbazali, E., Hessel, V., Noël, T. & Wang, Q. Metallic nanoparticles made in flow and their catalytic applications in organic synthesis. Nanotechnol. Rev. 3, 65–86 (2014).

    Article  Google Scholar 

  141. Kusada, K. & Kitagawa, H. Continuous-flow syntheses of alloy nanoparticles. Mater. Horiz. 9, 547–558 (2022).

    Article  Google Scholar 

  142. Panariello, L. et al. Highly reproducible, high-yield flow synthesis of gold nanoparticles based on a rational reactor design exploiting the reduction of passivated Au(iii). React. Chem. Eng. 5, 663–676 (2020).

    Article  Google Scholar 

  143. Kumar, D. V. R. et al. Continuous flow synthesis of functionalized silver nanoparticles using bifunctional biosurfactants. Green Chem. 12, 609–661 (2010).

    Article  Google Scholar 

  144. Bagi, S., Yuan, S., Rojas-Buzo, S., Shao-Horn, Y. & Román-Leshkov, Y. A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808. Green Chem. 23, 9982–9991 (2021).

    Article  Google Scholar 

  145. Zang, H. Y. et al. Discovery of gigantic molecular nanostructures using a flow reaction array as a search engine. Nat. Commun. 5, 3715 (2014).

    Article  Google Scholar 

  146. O’Shaughnessy, M. et al. Controlling the crystallisation and hydration state of crystalline porous organic Salts. Chem. Eur. J. 29, e202302420 (2023).

    Article  Google Scholar 

  147. Du, C., Padgham, A. C., Slater, A. G. & Zhang, L. Efficient flow synthesis of a Star of David [2]catenane and a pentafoil knot. Chem 11, 102328 (2024).

    Article  Google Scholar 

  148. Allen, F. H. et al. The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information. Acta Cryst. 35, 2331–2339 (1979).

    Article  Google Scholar 

  149. Goodman, J. Computer software review: reaxys. J. Chem. Inf. Model. 49, 2897–2898 (2009).

    Article  Google Scholar 

  150. Garritano, J. R. Evolution of SciFinder, 2011-2013: new features, new content. Sci. Technol. Libr. 32, 346–371 (2013).

    Article  Google Scholar 

  151. Plehiers, P. P. et al. Artificial intelligence for computer-aided synthesis in flow: analysis and selection of reaction components. Front. Chem. Eng. 2, 5 (2020).

    Article  Google Scholar 

  152. Pijper, B. et al. Addressing reproducibility challenges in high-throughput photochemistry. JACS Au 4, 2585–2595 (2024).

    Article  Google Scholar 

  153. Hone, C. A. & Kappe, C. O. Towards the standardization of flow chemistry protocols for organic reactions. Chem.–Methods 1, 454–467 (2021).

    Article  Google Scholar 

  154. Epstein, N. Thinking about heat transfer fouling: a 5 × 5 matrix. Heat. Transf. Eng. 4, 43–56 (1983).

    Article  Google Scholar 

  155. Hartman, R. L., Naber, J. R., Zaborenko, N., Buchwald, S. L. & Jensen, K. F. Overcoming the challenges of solid bridging and constriction during Pd-catalyzed C–N bond formation in microreactors. Org. Process. Res. Dev. 14, 1347–1357 (2010).

    Article  Google Scholar 

  156. Horie, T. et al. Photodimerization of maleic anhydride in a microreactor without clogging. Org. Process. Res. Dev. 14, 405–410 (2010).

    Article  Google Scholar 

  157. Noêl, T. et al. Palladium-catalyzed amination reactions in flow: overcoming the challenges of clogging via acoustic irradiation. Chem. Sci. 2, 287–290 (2011).

    Article  Google Scholar 

  158. Sedelmeier, J., Ley, S. V., Baxendale, I. R. & Baumann, M. KMnO4-mediated oxidation as a continuous flow process. Org. Lett. 12, 3618–3621 (2010).

    Article  Google Scholar 

  159. Song, H., Chen, D. L. & Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem. Int. Ed. 45, 7336–7356 (2006).

    Article  Google Scholar 

  160. Schoenitz, M., Grundemann, L., Augustin, W. & Scholl, S. Fouling in microstructured devices: a review. Chem. Commun. 51, 8213–8228 (2015).

    Article  Google Scholar 

  161. Takagi, M., Maki, T., Miyahara, M. & Mae, K. Production of titania nanoparticles by using a new microreactor assembled with same axle dual pipe. Chem. Eng. J. 101, 269–276 (2004).

    Article  Google Scholar 

  162. Grundemann, L. & Scholl, S. Ecological and economic assessment of micro-/milli-continuous campaign manufacturing: the case of writing ink. Processes 2, 238–264 (2014).

    Article  Google Scholar 

  163. Dragone, V., Sans, V., Rosnes, M. H., Kitson, P. J. & Cronin, L. 3D-printed devices for continuous-flow organic chemistry. Beilstein J. Org. Chem. 9, 951–959 (2013).

    Article  Google Scholar 

  164. Chapman, M. R. et al. Simple and versatile laboratory scale CSTR for multiphasic continuous-flow chemistry and long residence times. Org. Process. Res. Dev. 21, 1294–1301 (2017). An early example of a simple design and application for lab-scale CSTRs.

    Article  Google Scholar 

  165. Penny, M. R. & Hilton, S. T. Design and development of 3D printed catalytically-active stirrers for chemical synthesis. React. Chem. Eng. 5, 853–858 (2020).

    Article  Google Scholar 

  166. Mascia, S. et al. End-to-end continuous manufacturing of pharmaceuticals: integrated synthesis, purification, and final dosage formation. Angew. Chem. Int. Ed. 52, 12359–12363 (2013). An example of synthesis and formulation (tabletting) of drugs using a compact continuous flow device.

    Article  Google Scholar 

  167. Durand, T. et al. Thermolysis of 1,3-dioxin-4-ones: fast generation of kinetic data using in-line analysis under flow. React. Chem. Eng. 1, 82–89 (2016).

    Article  Google Scholar 

  168. Schrecker, L. et al. A comparative study of transient flow rate steps and ramps for the efficient collection of kinetic data. React. Chem. Eng. 9, 1077–1086 (2024).

    Article  Google Scholar 

  169. Hone, C. A., Holmes, N., Akien, G. R., Bourne, R. A. & Muller, F. L. Rapid multistep kinetic model generation from transient flow data. React. Chem. Eng. 2, 103–108 (2017). An example of generating kinetic data from a continuous flow system.

    Article  Google Scholar 

  170. Henry, C. et al. Generation and trapping of ketenes in flow. Eur. J. Org. Chem. 2015, 1491–1499 (2015).

    Article  Google Scholar 

  171. Van Herck, J. & Junkers, T. Rapid kinetic screening via transient timesweep experiments in continuous flow reactors. Chem. Methods 2, e202100090 (2022).

    Article  Google Scholar 

  172. Taylor, C. J. et al. Modern advancements in continuous-flow aided kinetic analysis. React. Chem. Eng. 7, 1037–1046 (2022).

    Article  Google Scholar 

  173. Drelinkiewicz, D., Alston, S. T., Durand, T. & Whitby, R. J. The switch-off method: rapid investigation of flow photochemical reactions. React. Chem. Eng. 8, 2134–2140 (2023).

    Article  Google Scholar 

  174. Wagner, F. L. et al. Self-optimizing flow reactions for sustainability: an experimental bayesian optimization study. ACS Sustain. Chem. Eng. 12, 10002–10010 (2024).

    Article  Google Scholar 

  175. Taylor, C. J. et al. Accelerated chemical reaction optimization using multi-task learning. ACS Cent. Sci. 9, 957–968 (2023).

    Article  Google Scholar 

  176. Slattery, A. et al. Automated self-optimization, intensification, and scale-up of photocatalysis in flow. Science 383, eadj1817 (2024). The combination of closed-loop Bayesian optimization, flow chemistry, photo chemistry, robotics and scale up.

    Article  Google Scholar 

  177. Chatterjee, S., Guidi, M., Seeberger, P. H. & Gilmore, K. Automated radial synthesis of organic molecules. Nature 579, 379–384 (2020).

    Article  Google Scholar 

  178. Romero-Fernandez, M. & Paradisi, F. Biocatalytic access to betazole using a one-pot multienzymatic system in continuous flow. Green Chem. 23, 4594–4603 (2021).

    Article  Google Scholar 

  179. Benítez-Mateos, A. I., Contente, M. L., Roura Padrosa, D. & Paradisi, F. Flow biocatalysis 101: design, development and applications. React. Chem. Eng. 6, 599–611 (2021).

    Article  Google Scholar 

  180. Cao, Q., Crawford, D. E., Shi, C. & James, S. L. Greener dye synthesis: continuous, solvent-free synthesis of commodity perylene diimides by twin-screw extrusion. Angew. Chem. Int. Ed. 59, 4478 (2020).

    Article  Google Scholar 

  181. Andersen, J., Starbuck, H., Current, T., Martin, S. & Mack, J. Milligram-scale, temperature-controlled ball milling to provide an informed basis for scale-up to reactive extrusion. Green Chem. 23, 8501–8509 (2021).

    Article  Google Scholar 

  182. Guiao, K. S., Gupta, A., Tzoganakis, C. & Mekonnen, T. H. Reactive extrusion as a sustainable alternative for the processing and valorization of biomass components. J. Clean. Prod. 355, 131840 (2022).

    Article  Google Scholar 

  183. Bolt, R. R. A., Raby-Buck, S., Ingram, K., Leitch, J. A. & Browne, D. L. Temperature‐controlled mechanochemistry for the nickel‐catalyzed Suzuki‐Miyaura‐type coupling of aryl sulfamates via ball milling and twin‐screw extrusion. Angew. Chem. Int. Ed. 61, e202210508 (2022).

    Article  Google Scholar 

Download references

Acknowledgements

We dedicate this article to S. V. Ley on the celebration of his 80th year, with gratitude for his enduring contributions, guidance and inspiration in this field.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (D.L.B. and S.E.R.-B.); Experimentation (D.L.B. and S.R-B.); Results (D.L.B., A.P. and S.E.R.-B.); Applications (C.B., M.B., J.D., P.G. and A.G.S.); Reproducibility and data deposition (P.G. and A.G.S.); Limitations and optimizations (D.L.B and A.P.); Outlook (D.L.B., C.B., M.B., P.G., S.E.R.-B. and A.G.S.).

Corresponding author

Correspondence to Duncan L. Browne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Anita Rose Maguire, who co-reviewed with Jacob Turner-Dore; Rodrigo Octavio Mendonça Alves De Souza; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Asynt: https://www.asynt.com/products/flow-chemistry

ChemDraw flow symbols: https://github.com/itc/chemdraw-templates

Reaxys: https://www.reaxys.com/#/search/quick/query

Scifinder: https://scifinder-n.cas.org/

Step-by-step flow tutorials and videos: https://www.youtube.com/watch?v=sx5VR6oJWaY&list=PLX53bZT1uB5lPl_5kWw40hWeIYNU5rnih

Syrris: https://www.syrris.com

Thalesnano: https://thalesnano.com

Vapourtec: https://www.vapourtec.com

Glossary

Catch-and-release

A technique where a molecule is temporarily adhered to a solid support (caught), allowing impurities to be washed away. The desired molecule is then released allowing further derivatization or work-up.

Continuous stirred tank reactor

(CSTR; also known as a vat or back mix reactor). CSTRs are large tanks with inlet and outlets connected to the flow system. The material in the tank is continuously stirred by an agitator as the reaction mixture flows through. They allow the use of stoichiometric solids in the flow system by confining them to the stirred reactor tank.

Ferrules

Small ring or cap-shaped components, which allow the formation of secure leak-free joins between tubes and other reactor components.

Flash chemistry

Extremely fast chemical reactions enabled by the high degree of control over reaction parameters possible in flow reactors.

Laminar flow

A type of flow where the fluid moves along in smooth parallel layers.

Mass flow controller

(MFC). A device that precisely controls the flow rate of a fluid.

Mass-transfer limited

A reaction where the rate is primarily limited by the movement of the reagent to the reaction site, meaning mixing or diffusion becomes the limiting factor.

Pulsing

Changes in flow pressure fluctuating around a non-zero mean value.

Residence time

The average time a reagent molecule spends in the reactor, calculated from the flow rate and the reactor volume.

Segment

The discrete sections in segmented flow are referred to as segments, slugs or plugs.

Segmented flow

A technique where reactions are run in discrete sections carried along in a carrier fluid.

Split-and-recombine-shaped mixers

This shape of mixer works by splitting the reaction down into smaller streams, increasing the surface-area-to-volume ratio between reagents. The smaller streams are then recombined back into one tube.

Turbulent flow

A type of flow characterized by chaotic changes in pressure and flow velocity leading to the fluid moving in a swirling pattern instead of parallel layers.

Union

A fitting with thread on the inside that allows it to join tubing and other components of the flow reactor by screwing on to nuts.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raby-Buck, S.E., Devlin, J., Gupta, P. et al. Continuous flow chemistry for molecular synthesis. Nat Rev Methods Primers 5, 44 (2025). https://doi.org/10.1038/s43586-025-00414-x

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00414-x

This article is cited by

  • Flow biocatalysis

    • Emmanouil Broumidis
    • Pablo Díaz-Kruik
    • Francesca Paradisi

    Nature Reviews Methods Primers (2025)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing