Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Macromolecular crystallography

An Author Correction to this article was published on 31 October 2025

This article has been updated

Abstract

Crystallography provides structural evidence of macromolecules in atomic detail. However, the atomic structure is not the direct outcome of the experiment. Diffraction data need to be processed and the phase problem must be solved to visualize the map from which an atomic model of the macromolecule is interpreted and iteratively improved. Despite this complex process from sample to scientific answer, crystallography is widely accessible in biochemical and biological research. Easy access to the experimental set-ups, free software for academic use and complimentary analytical computing, supported by automation and expert assistance, makes crystallography available to non-crystallographers. This Primer offers a practical and rational introduction to macromolecular crystallography, whether to engage directly or to critically assess results, with a focus on understanding the diffraction data, solving the phase problem, building and refining the atomic model, and interpreting the resulting atomic structure. We provide an overview of what crystallography can achieve, the key decisions and trade-offs involved, and how to evaluate outcomes effectively.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the macromolecular crystallography experiment and key fundamental concepts.
Fig. 2: X-ray diffraction patterns with 1° crystal rotation.
Fig. 3: Properties of the Fourier transform and implications for resolution and errors in crystallography.
Fig. 4: Crystallographic structure determination of oligopeptide-binding proteins.
Fig. 5: The importance in visual inspection of crystal structures.

Similar content being viewed by others

Change history

References

  1. Friedrich, W., Knipping, P. & Laue, M. Interferenz-erscheinungen bei röntgenstrahlen. Sitzungsberichte Kgl Bayer. Akad. Wiss. 303–322 (1912).

  2. Smith, T. Early crystals. Nat. Struct. Biol. 6, 411–411 (1999).

    Article  Google Scholar 

  3. Bragg, W. H. & Bragg, W. L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A 88, 428–438 (1913).

    Article  ADS  Google Scholar 

  4. Ewald, P. P. Die Berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. 369, 253–287 (1921).

    Article  Google Scholar 

  5. Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  ADS  Google Scholar 

  6. Helliwell, J. R., Hester, J. R., Kroon-Batenburg, L. M. J., McMahon, B. & Storm, S. L. S. The evolution of raw data archiving and the growth of its importance in crystallography. IUCrJ 11, 464–475 (2024).

    Article  Google Scholar 

  7. Krissinel, E. et al. CCP4 Cloud for structure determination and project management in macromolecular crystallography. Acta Crystallogr. D 78, 1079–1089 (2022).

    Article  ADS  Google Scholar 

  8. Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A. Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. D 61, 449–457 (2005).

    Article  ADS  Google Scholar 

  9. Usón, I., Ballard, C. C., Keegan, R. M. & Read, R. J. Integrated, rational molecular replacement. Acta Crystallogr. D 77, 129–130 (2021).

    Article  ADS  Google Scholar 

  10. Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008). A highly cited article describing the comprehensive crystallography suite, SHELX, used in macromolecular, chemical, mineralogical and materials crystallography.

    Article  ADS  Google Scholar 

  11. Agirre, J. et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. D 79, 449–461 (2023). This paper describes the CCP4 suite of macromolecular crystallography programs.

    Article  ADS  Google Scholar 

  12. Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). This paper describes the Phenix suite of macromolecular crystallography programs.

    Article  ADS  Google Scholar 

  13. Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).

    Article  ADS  Google Scholar 

  14. Schiltz, M. et al. Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Crystallogr. D 60, 1024–1031 (2004).

    Article  ADS  Google Scholar 

  15. McCoy, A. J. Liking likelihood. Acta Crystallogr. D 60, 2169–2183 (2004). A tutorial for mastering the Bayesian statistics that govern modern crystallographic approaches to phasing and refinement.

    Article  ADS  Google Scholar 

  16. Simpkin, A. J. et al. Predicted models and CCP4. Acta Crystallogr. D 79, 806–819 (2023).

    Article  ADS  Google Scholar 

  17. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  ADS  Google Scholar 

  18. Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2024). An important view to the relationship between structural predictions initiated by AlphaFold and RosettaFold, and the experimental methods of structure determination.

    Article  Google Scholar 

  19. Lander, E. S. The new genomics: global views of biology. Science 274, 536–539 (1996).

    Article  ADS  Google Scholar 

  20. Banci, L. et al. Structural proteomics: from the molecule to the system. Nat. Struct. Mol. Biol. 14, 3–4 (2007).

    Article  Google Scholar 

  21. Kim, Y. et al. in Advances in Protein Chemistry and Structural Biology Vol. 75 (ed. Donev, R.) 85–105 (Elsevier, 2008).

  22. Tahara, N. et al. Boosting auto-induction of recombinant proteins in Escherichia coli with glucose and lactose additives. Protein Pept. Lett. 28, 1180–1190 (2021).

    Article  Google Scholar 

  23. Newman, J. et al. Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr. D 61, 1426–1431 (2005).

    Article  ADS  Google Scholar 

  24. Abrahams, G. & Newman, J. Data- and diversity-driven development of a shotgun crystallization screen using the protein data bank. Acta Crystallogr. D 77, 1437–1450 (2021). This paper combines crystallization expertise and modern tools.

    Article  ADS  Google Scholar 

  25. Monferrer, D., Tralau, T., Kertesz, M. A., Panjikar, S. & Usón, I. High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 and data-set analysis for a MIRAS structure-solution approach. Acta Crystallograph. F 64, 764–769 (2008).

    Article  Google Scholar 

  26. Rosa, N., Watkins, C. J. & Newman, J. Moving beyond MARCO. PLoS ONE 18, e0283124 (2023).

    Article  Google Scholar 

  27. Berrow, N. et al. Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey. Eur. Biophys. J. 50, 453–460 (2021).

    Article  Google Scholar 

  28. Moreau, D. W., Atakisi, H. & Thorne, R. E. Ice in biomolecular cryocrystallography. Acta Crystallogr. D 77, 540–554 (2021).

    Article  ADS  Google Scholar 

  29. Panjikar, S. & Tucker, P. A. Phasing possibilities using different wavelengths with a xenon derivative. J. Appl. Crystallogr. 35, 261–266 (2002).

    Article  ADS  Google Scholar 

  30. Colloc’h, N., Carpentier, P., Montemiglio, L. C., Vallone, B. & Prangé, T. Mapping hydrophobic tunnels and cavities in neuroglobin with noble gas under pressure. Biophys. J. 113, 2199–2206 (2017).

    Article  ADS  Google Scholar 

  31. Volkers, G. et al. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr. D 69, 1758–1767 (2013).

    Article  ADS  Google Scholar 

  32. Carpentier, P., Van Der Linden, P. & Mueller-Dieckmann, C. The high-pressure freezing laboratory for macromolecular crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF. Acta Crystallogr. D 80, 80–92 (2024).

    Article  ADS  Google Scholar 

  33. Patel, O. et al. Crystal structure of the putative cell-wall lipoglycan biosynthesis protein LmcA from Mycobacterium smegmatis. Acta Crystallogr. D 78, 494–508 (2022).

    Article  ADS  Google Scholar 

  34. Sprenger, J. et al. Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallogr. D 77, 471–485 (2021).

    Article  ADS  Google Scholar 

  35. Gheyi, T., Rodgers, L., Romero, R., Sauder, J. M. & Burley, S. K. Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. J. Am. Soc. Mass Spectrom. 21, 1795–1801 (2010).

    Article  ADS  Google Scholar 

  36. Hillen, H. S., Morozov, Y. I., Sarfallah, A., Temiakov, D. & Cramer, P. Structural basis of mitochondrial transcription initiation. Cell 171, 1072–1081.e10 (2017).

    Article  Google Scholar 

  37. Blanco, A. G., Canals, A., Bernués, J., Solà, M. & Coll, M. The structure of a transcription activation subcomplex reveals how σ70 is recruited to PhoB promoters: structure of a transcription activation subcomplex. EMBO J. 30, 3776–3785 (2011).

    Article  Google Scholar 

  38. Ericsson, U. B., Hallberg, B. M., DeTitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006).

    Article  Google Scholar 

  39. Jiménez-Menéndez, N. et al. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nat. Struct. Mol. Biol. 17, 891–893 (2010).

    Article  Google Scholar 

  40. Zander, U. et al. Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr. D 72, 454–466 (2016).

    Article  ADS  Google Scholar 

  41. Cornaciu, I. et al. The automated crystallography pipelines at the EMBL HTX facility in grenoble. J. Vis. Exp. 5, 62491 (2021).

    Google Scholar 

  42. Skaist Mehlman, T. et al. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. eLife 12, e84632 (2023).

    Article  Google Scholar 

  43. Nave, C. & Garman, E. F. Towards an understanding of radiation damage in cryocooled macromolecular crystals. J. Synchrotron Radiat. 12, 257–260 (2005).

    Article  Google Scholar 

  44. Garman, E. F. & Schneider, T. R. Macromolecular cryocrystallography. J. Appl. Crystallogr. 30, 211–237 (1997).

    Article  ADS  Google Scholar 

  45. Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012). Introduces CC1/2 and describes rational and practical solutions for deciding which measurements to keep and which to discard.

    Article  ADS  Google Scholar 

  46. Karplus, P. A. & Diederichs, K. Assessing and maximizing data quality in macromolecular crystallography. Curr. Opin. Struct. Biol. 34, 60–68 (2015).

    Article  Google Scholar 

  47. Shelley, K. L. & Garman, E. F. Identifying and avoiding radiation damage in macromolecular crystallography. Acta Crystallogr. D 80, 314–327 (2024). This paper presents the state of the art solution for addressing radiation damage.

    Article  ADS  Google Scholar 

  48. Dickerson, J. L., McCubbin, P. T. N., Brooks‐Bartlett, J. C. & Garman, E. F. Doses for X‐ray and electron diffraction: new features in RADDOSE‐3D including intensity decay models. Protein Sci. 33, e5005 (2024).

    Article  Google Scholar 

  49. Waltersperger, S. et al. PRIGo: a new multi-axis goniometer for macromolecular crystallography. J. Synchrotron Radiat. 22, 895–900 (2015).

    Article  Google Scholar 

  50. Brönnimann, C. & Trüb, P. in Synchrotron Light Sources and Free-Electron Lasers (eds Jaeschke, E. J. et al.) 995–1027 (Springer, 2016).

  51. El Omari, K. et al. Utilizing anomalous signals for element identification in macromolecular crystallography. Acta Crystallogr. D 80, 713–721 (2024). This paper presents the practical use of the extreme long-wavelength macromolecular crystallography in vacuum beamline.

    Article  ADS  Google Scholar 

  52. Wagner, A., Duman, R., Henderson, K. & Mykhaylyk, V. In-vacuum long-wavelength macromolecular crystallography. Acta Crystallogr. D 72, 430–439 (2016).

    Article  ADS  Google Scholar 

  53. Barends, T. R. M., Stauch, B., Cherezov, V. & Schlichting, I. Serial femtosecond crystallography. Nat. Rev. Methods Primer 2, 59 (2022).

    Article  Google Scholar 

  54. Kabsch, W. Processing of X-ray snapshots from crystals in random orientations. Acta Crystallogr. D 70, 2204–2216 (2014).

    Article  ADS  Google Scholar 

  55. White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016).

    Article  ADS  Google Scholar 

  56. Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).

    Article  ADS  Google Scholar 

  57. Meilleur, F. A beginner’s guide to neutron macromolecular crystallography. Biochemist 42, 16–20 (2020). This paper presents an introduction to neutron macromolecular crystallography.

    Article  Google Scholar 

  58. Flot, D. et al. The ID23-2 structural biology microfocus beamline at the ESRF. J. Synchrotron Radiat. 17, 107–118 (2010).

    Article  Google Scholar 

  59. Debreczeni, J. É., Bunkóczi, G., Ma, Q., Blaser, H. & Sheldrick, G. M. In-house measurement of the sulfur anomalous signal and its use for phasing. Acta Crystallogr. D 59, 688–696 (2003).

    Article  ADS  Google Scholar 

  60. Mueller, M., Wang, M. & Schulze-Briese, C. Optimal fine ϕ-slicing for single-photon-counting pixel detectors. Acta Crystallogr. D 68, 42–56 (2012). This paper presents modern data collection methods.

    Article  ADS  Google Scholar 

  61. Owen, R. L., Rudiño-Piñera, E. & Garman, E. F. Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc. Natl. Acad. Sci. USA 103, 4912–4917 (2006).

    Article  ADS  Google Scholar 

  62. Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).

    Article  ADS  Google Scholar 

  63. Delagenière, S. et al. ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27, 3186–3192 (2011).

    Article  Google Scholar 

  64. Mueller, U. et al. MXCuBE3: a new era of MX-beamline control begins. Synchrotron Radiat. N. 30, 22–27 (2017).

    Article  ADS  Google Scholar 

  65. McPhillips, T. M. et al. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406 (2002).

    Article  Google Scholar 

  66. Fodje, M. et al. MxDC and MxLIVE: software for data acquisition, information management and remote access to macromolecular crystallography beamlines. J. Synchrotron Radiat. 19, 274–280 (2012).

    Article  Google Scholar 

  67. Murray, C. W. & Blundell, T. L. Structural biology in fragment-based drug design. Curr. Opin. Struct. Biol. 20, 497–507 (2010).

    Article  Google Scholar 

  68. Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).

    Article  ADS  Google Scholar 

  69. Douangamath, A. et al. Achieving efficient fragment screening at XChem facility at diamond light source. J. Vis. Exp. 29, 62414 (2021).

    Google Scholar 

  70. Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).

    Article  Google Scholar 

  71. Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).

    Article  Google Scholar 

  72. Beyerlein, K. R. et al. Mix-and-diffuse serial synchrotron crystallography. IUCrJ 4, 769–777 (2017).

    Article  Google Scholar 

  73. Zielinski, K. A. et al. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive. IUCrJ 9, 778–791 (2022).

    Article  Google Scholar 

  74. Henkel, A. et al. JINXED: just in time crystallization for easy structure determination of biological macromolecules. IUCrJ 10, 253–260 (2023).

    Article  Google Scholar 

  75. Monteiro, D. C. F. et al. 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow. IUCrJ 7, 207–219 (2020).

    Article  Google Scholar 

  76. Stubbs, J. et al. Droplet microfluidics for time-resolved serial crystallography. IUCrJ 11, 237–248 (2024).

    Article  Google Scholar 

  77. Iglesias‐Juez, A., Chiarello, G. L., Patience, G. S. & Guerrero‐Pérez, M. O. Experimental methods in chemical engineering: X‐ray absorption spectroscopy — XAS, XANES, EXAFS. Can. J. Chem. Eng. 100, 3–22 (2022).

    Article  Google Scholar 

  78. Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).

  79. Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D 66, 133–144 (2010).

    Article  ADS  Google Scholar 

  80. Otwinowski, Z., Minor, W., Borek, D. & Cymborowski, M. in International Tables for Crystallography (eds Arnold, E. et al.) Ch. 11.4 (Wiley, 2012).

  81. Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).

    Article  ADS  Google Scholar 

  82. Diederichs, K. Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr. D 66, 733–740 (2010).

    Article  ADS  Google Scholar 

  83. Nolte, K., Gao, Y., Stäb, S., Kollmannsberger, P. & Thorn, A. Detecting ice artefacts in processed macromolecular diffraction data with machine learning. Acta Crystallogr. D 78, 187–195 (2022).

    Article  ADS  Google Scholar 

  84. Parkhurst, J. M. et al. Background modelling of diffraction data in the presence of ice rings. IUCrJ 4, 626–638 (2017).

    Article  Google Scholar 

  85. Dauter, Z., Botos, I., LaRonde-LeBlanc, N. & Wlodawer, A. Pathological crystallography: case studies of several unusual macromolecular crystals. Acta Crystallogr. D 61, 967–975 (2005).

    Article  ADS  Google Scholar 

  86. Lebedev, A. A. & Isupov, M. N. Space-group and origin ambiguity in macromolecular structures with pseudo-symmetry and its treatment with the program Zanuda. Acta Crystallogr. D 70, 2430–2443 (2014).

    Article  ADS  Google Scholar 

  87. Lovelace, J. J. & Borgstahl, G. E. O. Characterizing pathological imperfections in macromolecular crystals: lattice disorders and modulations. Crystallogr. Rev. 26, 3–50 (2020).

    Article  Google Scholar 

  88. Zwart, P. H., Grosse-Kunstleve, R. W., Lebedev, A. A., Murshudov, G. N. & Adams, P. D. Surprises and pitfalls arising from (pseudo)symmetry. Acta Crystallogr. D 64, 99–107 (2008).

    Article  ADS  Google Scholar 

  89. McCoy, A. J. et al. Phasertng: directed acyclic graphs for crystallographic phasing. Acta Crystallogr. D 77, 1–10 (2021).

    Article  ADS  Google Scholar 

  90. Read, R. J., Adams, P. D. & McCoy, A. J. Intensity statistics in the presence of translational noncrystallographic symmetry. Acta Crystallogr. D 69, 176–183 (2013).

    Article  ADS  Google Scholar 

  91. Knott, G. J. et al. A crystallographic study of human NONO (p54nrb): overcoming pathological problems with purification, data collection and noncrystallographic symmetry. Acta Crystallogr. D 72, 761–769 (2016).

    Article  ADS  Google Scholar 

  92. Brehm, W., Triviño, J., Krahn, J. M., Usón, I. & Diederichs, K. XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO. J. Appl. Crystallogr. 56, 1585–1594 (2023).

    Article  ADS  Google Scholar 

  93. Arndt, U. W., Crowther, R. A. & Mallett, J. F. W. A computer-linked cathode-ray tube microdensitometer for X-ray crystallography. J. Phys. 1, 510–516 (1968).

    ADS  Google Scholar 

  94. Diederichs, K. & Karplus, P. A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269–275 (1997).

    Article  Google Scholar 

  95. Weiss, M. S. & Hilgenfeld, R. On the use of the merging R factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203–205 (1997).

    Article  ADS  Google Scholar 

  96. Diederichs, K. & Karplus, P. A. Better models by discarding data? Acta Crystallogr. D 69, 1215–1222 (2013).

    Article  ADS  Google Scholar 

  97. Read, R. J., Oeffner, R. D. & McCoy, A. J. Measuring and using information gained by observing diffraction data. Acta Crystallogr. D 76, 238–247 (2020).

    Article  ADS  Google Scholar 

  98. Hendrickson, W. A. Facing the phase problem. IUCrJ 10, 521–543 (2023).

    Article  Google Scholar 

  99. Caliandro, R. et al. Phasing at resolution higher than the experimental resolution. Acta Crystallogr. D 61, 556–565 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  100. Usón, I., Stevenson, C. E. M., Lawson, D. M. & Sheldrick, G. M. Structure determination of the O-methyltransferase NovP using the ‘free lunch algorithm’ as implemented in SHELXE. Acta Crystallogr. D 63, 1069–1074 (2007).

    Article  ADS  Google Scholar 

  101. Karle, J. & Hauptman, H. A theory of phase determination for the four types of non-centrosymmetric space groups 1P 222, 2P 22, 3P1 2, 3P2 2. Acta Crystallogr. 9, 635–651 (1956).

    Article  Google Scholar 

  102. Sheldrick, G. M. et al. International Tables for Crystallography Vol. F (eds Arnold, E. et al.) 413–429 (Wiley, 2012). This paper is a primary reference for ab initio phasing.

  103. Usón, I. & Sheldrick, G. M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 643–648 (1999).

    Article  Google Scholar 

  104. Patterson, A. L. A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–376 (1934).

    Article  ADS  Google Scholar 

  105. Tong, L. & Rossmann, M. G. The locked rotation function. Acta Crystallogr. A 46, 783–792 (1990).

    Article  ADS  Google Scholar 

  106. Morris, R. J. & Bricogne, G. Sheldrick’s 1.2 Å rule and beyond. Acta Crystallogr. D 59, 615–617 (2003).

    Article  ADS  Google Scholar 

  107. Fujinaga, M. & Read, R. J. Experiences with a new translation–function program. J. Appl. Crystallogr. 20, 517–521 (1987).

    Article  ADS  Google Scholar 

  108. Usón, I. et al. The 1.2 Å crystal structure of hirustasin reveals the intrinsic flexibility of a family of highly disulphide-bridged inhibitors. Structure 7, 55–63 (1999).

    Article  Google Scholar 

  109. Nimz, O., Geßler, K., Usón, I. & Saenger, W. An orthorhombic crystal form of cyclohexaicosaose, CA26·32.59 H2O: comparison with the triclinic form. Carbohydr. Res. 336, 141–153 (2001).

    Article  Google Scholar 

  110. Rodríguez, D. D. et al. Crystallographic ab initio protein structure solution below atomic resolution. Nat. Methods 6, 651–653 (2009).

    Article  Google Scholar 

  111. Millán, C., Sammito, M. & Usón, I. Macromolecular ab initio phasing enforcing secondary and tertiary structure. IUCrJ 2, 95–105 (2015). This paper generalizes fragment-based ab initio phasing without the need of atomic-resolution data.

    Article  Google Scholar 

  112. Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).

    Article  ADS  Google Scholar 

  113. Cowtan, K. D. & Zhang, K. Y. J. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).

    Article  Google Scholar 

  114. Podjarny, A. D., Rees, B. & Urzhumtsev, A. G. in Crystallographic Methods and Protocols Vol. 56 (eds Jones, C. et al.) 205–226 (Humana,1996).

  115. Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).

    Article  Google Scholar 

  116. Terwilliger, T. C. Reciprocal-space solvent flattening. Acta Crystallogr. D 55, 1863–1871 (1999).

    Article  ADS  Google Scholar 

  117. Wang, B.-C. in Methods in Enzymology Vol. 115 (eds Wyckoff, H. W. et al.) 90–112 (Elsevier, 1985). This paper introduces density modification to macromolecules.

  118. Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D 66, 470–478 (2010).

    Article  ADS  Google Scholar 

  119. Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010).

    Article  ADS  Google Scholar 

  120. Sheldrick, G. M. Macromolecular phasing with SHELXE. Z. Für Krist. Cryst. Mater. 217, 644–650 (2002).

    Article  Google Scholar 

  121. Terwilliger, T. C. Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Crystallogr. D 60, 2144–2149 (2004).

    Article  ADS  Google Scholar 

  122. Urzhumtsev, A. G. Local improvement of electron-density maps. Acta Crystallogr. D 53, 540–543 (1997).

    Article  ADS  Google Scholar 

  123. Dauter, Z., Dauter, M., De La Fortelle, E., Bricogne, G. & Sheldrick, G. M. Can anomalous signal of sulfur become a tool for solving protein crystal structures? J. Mol. Biol. 289, 83–92 (1999).

    Article  Google Scholar 

  124. Usón, I. et al. Locating the anomalous scatterer substructures in halide and sulfur phasing. Acta Crystallogr. D 59, 57–66 (2003).

    Article  ADS  Google Scholar 

  125. Schiltz, M. & Bricogne, G. Exploiting the anisotropy of anomalous scattering boosts the phasing power of SAD and MAD experiments. Acta Crystallogr. D 64, 711–729 (2008).

    Article  ADS  Google Scholar 

  126. Hatti, K. S., McCoy, A. J. & Read, R. J. Likelihood-based estimation of substructure content from single-wavelength anomalous diffraction (SAD) intensity data. Acta Crystallogr. D 77, 880–893 (2021).

    Article  ADS  Google Scholar 

  127. Usón, I. & Sheldrick, G. M. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr. D 74, 106–116 (2018).

    Article  ADS  Google Scholar 

  128. Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).

    Article  ADS  Google Scholar 

  129. Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  ADS  Google Scholar 

  130. Read, R. J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D 57, 1373–1382 (2001).

    Article  ADS  Google Scholar 

  131. Read, R. J. & McCoy, A. J. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error. Acta Crystallogr. D 72, 375–387 (2016).

    Article  ADS  Google Scholar 

  132. McCoy, A. J. et al. Ab initio solution of macromolecular crystal structures without direct methods. Proc. Natl Acad. Sci. USA 114, 3637–3641 (2017). This papers explains the rational use of the phasing method, Phaser, spanning single atoms to ribosomes.

    Article  ADS  Google Scholar 

  133. Oeffner, R. D. et al. The expected log-likelihood gain for decision making in molecular replacement. Acta Crystallogr. A 74, e411–e411 (2018).

    Article  Google Scholar 

  134. McCoy, A. J. et al. Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement. Acta Crystallogr. D 74, 279–289 (2018).

    Article  ADS  Google Scholar 

  135. Millán, C., Jiménez, E., Schuster, A., Diederichs, K. & Usón, I. ALIXE: a phase-combination tool for fragment-based molecular replacement. Acta Crystallogr. D 76, 209–220 (2020).

    Article  ADS  Google Scholar 

  136. Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr. D 65, 1089–1097 (2009). This paper describes the integration of alternative phasing methods to molecular replacement and experimental phasing.

    Article  ADS  Google Scholar 

  137. Medina, A. et al. Verification: model-free phasing with enhanced predicted models in ARCIMBOLDO_SHREDDER. Acta Crystallogr. D 78, 1283–1293 (2022).

    Article  ADS  Google Scholar 

  138. Caballero, I. et al. ARCIMBOLDO on coiled coils. Acta Crystallogr. D 74, 194–204 (2018).

    Article  ADS  Google Scholar 

  139. Richards, L. S. et al. Fragment-based ab initio phasing of peptidic nanocrystals by MicroED. ACS Bio Med. Chem. Au 3, 201–210 (2023).

    Article  Google Scholar 

  140. Caballero, I. et al. ARCIMBOLDO at low resolution: verification for coiled coils and globular proteins. Protein Sci. 33, e5136 (2024). This paper describes a method to conclusively solve difficult coiled coil proteins at low resolution.

    Article  Google Scholar 

  141. Tronrud, D. E. Introduction to macromolecular refinement. Acta Crystallogr. D 60, 2156–2168 (2004).

    Article  ADS  Google Scholar 

  142. Afonine, P. V., Urzhumtsev, A. & Adams, P. D. Macromolecular crystallographic estructure refinement. Arbor 191, a219 (2015).

    Article  Google Scholar 

  143. Urzhumtsev, A. G. & Lunin, V. Y. Introduction to crystallographic refinement of macromolecular atomic models. Crystallogr. Rev. 25, 164–262 (2019). This paper provides an overview of macromolecular crystallography refinement methods.

    Article  Google Scholar 

  144. Sheriff, S. & Hendrickson, W. A. Description of overall anisotropy in diffraction from macromolecular crystals. Acta Crystallogr. A 43, 118–121 (1987).

    Article  ADS  Google Scholar 

  145. Parsons, S. Introduction to twinning. Acta Crystallogr. D 59, 1995–2003 (2003).

    Article  ADS  Google Scholar 

  146. Herbst-Irmer, R. & Sheldrick, G. M. Refinement of twinned structures with SHELXL 97. Acta Crystallogr. B 54, 443–449 (1998).

    Article  ADS  Google Scholar 

  147. Herbst-Irmer, R. & Sheldrick, G. M. Refinement of obverse/reverse twins. Acta Crystallogr. B 58, 477–481 (2002).

    Article  ADS  Google Scholar 

  148. Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. Non-merohedral twinning: from minerals to proteins. Acta Crystallogr. D 75, 1040–1050 (2019). This paper addresses the problem of non-merohedrally twinned data introducing simultaneous refinement against multiple datasets.

    Article  ADS  Google Scholar 

  149. Weichenberger, C. X., Afonine, P. V., Kantardjieff, K. & Rupp, B. The solvent component of macromolecular crystals. Acta Crystallogr. D 71, 1023–1038 (2015).

    Article  ADS  Google Scholar 

  150. Moews, P. C. & Kretsinger, R. H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference fourier analysis. J. Mol. Biol. 91, 201–225 (1975).

    Article  Google Scholar 

  151. Sheldrick, G. M. & Schneider, T. R. in Methods in Enzymology Vol. 277 (eds Carter, C. W. Jr. & Sweet, R. M.) 319–343 (Elsevier, 1997).

  152. Urzhumtsev, A. G. Low-resolution phases: influence on SIR syntheses and retrieval with double-step filtration. Acta Crystallogr. A 47, 794–801 (1991).

    Article  ADS  Google Scholar 

  153. Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallogr. D 69, 625–634 (2013).

    Article  ADS  Google Scholar 

  154. Afonine, P. V., Adams, P. D., Sobolev, O. V. & Urzhumtsev, A. G. Accounting for nonuniformity of bulk‐solvent: a mosaic model. Protein Sci. 33, e4909 (2024).

    Article  Google Scholar 

  155. Schomaker, V. & Trueblood, K. N. On the rigid-body motion of molecules in crystals. Acta Crystallogr. B 24, 63–76 (1968).

    Article  ADS  Google Scholar 

  156. Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).

    Article  ADS  Google Scholar 

  157. Urzhumtsev, A., Afonine, P. V. & Adams, P. D. TLS from fundamentals to practice. Crystallogr. Rev. 19, 230–270 (2013).

    Article  Google Scholar 

  158. Merritt, E. A. To B or not to B: a question of resolution? Acta Crystallogr. D 68, 468–477 (2012).

    Article  ADS  Google Scholar 

  159. Dittrich, B. On modelling disordered crystal structures through restraints from molecule-in-cluster computations, and distinguishing static and dynamic disorder. IUCrJ 8, 305–318 (2021).

    Article  Google Scholar 

  160. Ginn, H. M. Vagabond: bond-based parametrization reduces overfitting for refinement of proteins. Acta Crystallogr. D 77, 424–437 (2021).

    Article  ADS  Google Scholar 

  161. Hendrickson, W. A. & Lattman, E. E. Representation of phase probability distributions for simplified combination of independent phase information. Acta Crystallogr. B 26, 136–143 (1970).

    Article  ADS  Google Scholar 

  162. Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr. D 54, 1285–1294 (1998).

    Article  ADS  Google Scholar 

  163. Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997). This paper introduces maximum-likelihood refinement in macromolecular crystallography.

    Article  ADS  Google Scholar 

  164. Schirò, A. et al. On the complementarity of X-ray and NMR data. J. Struct. Biol. X 4, 100019 (2020).

    Google Scholar 

  165. Usón, I. et al. 1.7 Å structure of the stabilized REI v mutant T39K. Application of local NCS restraints. Acta Crystallogr. D 55, 1158–1167 (1999).

    Article  ADS  Google Scholar 

  166. Headd, J. J. et al. Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement. Acta Crystallogr. D 70, 1346–1356 (2014).

    Article  ADS  Google Scholar 

  167. Evans, P. R. An introduction to stereochemical restraints. Acta Crystallogr. D 63, 58–61 (2007).

    Article  ADS  Google Scholar 

  168. Lebedev, A. A. et al. JLigand: a graphical tool for the CCP 4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).

    Article  ADS  Google Scholar 

  169. Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D 73, 112–122 (2017).

    Article  ADS  Google Scholar 

  170. Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).

    Article  ADS  Google Scholar 

  171. Smart, O. S. et al. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr. D 74, 228–236 (2018).

    Article  ADS  Google Scholar 

  172. Murshudov, G. N. et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).

    Article  ADS  Google Scholar 

  173. Bergmann, J., Oksanen, E. & Ryde, U. Combining crystallography with quantum mechanics. Curr. Opin. Struct. Biol. 72, 18–26 (2022).

    Article  Google Scholar 

  174. Zubatyuk, R. et al. AQuaRef: machine learning accelerated quantum refinement of protein structures. Preprint at bioRxiv https://doi.org/10.1101/2024.07.21.604493 (2024).

  175. Thorn, A., Dittrich, B. & Sheldrick, G. M. Enhanced rigid-bond restraints. Acta Crystallogr. A 68, 448–451 (2012).

    Article  ADS  Google Scholar 

  176. Moriarty, N. W. et al. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix. Acta Crystallogr. D 76, 51–62 (2020).

    Article  ADS  Google Scholar 

  177. Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).

    Article  ADS  Google Scholar 

  178. Sheldrick, G. M. in International Tables for Crystallography (eds Arnold, E. et al.) Ch. 18.9 (Wiley, 2012).

  179. Lunin, V. Y., Afonine, P. V. & Urzhumtsev, A. G. Likelihood-based refinement. I. Irremovable model errors. Acta Crystallogr. A 58, 270–282 (2002).

    Article  ADS  Google Scholar 

  180. Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER–TNT. Acta Crystallogr. D 60, 2210–2221 (2004).

    Article  ADS  Google Scholar 

  181. Booth, A. D. LXXIV. An expression for following the process of refinement in X-ray structure analysis using fourier series. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 609–615 (1945).

    Article  Google Scholar 

  182. Luebben, J. & Gruene, T. New method to compute Rcomplete enables maximum likelihood refinement for small datasets. Proc. Natl Acad. Sci. USA 112, 8999–9003 (2015). This paper extends cross-validation to cases where Rfree cannot be used.

    Article  ADS  Google Scholar 

  183. Pražnikar, J. & Turk, D. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures. Acta Crystallogr. D 70, 3124–3134 (2014).

    Article  ADS  Google Scholar 

  184. Konnert, J. H. A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Crystallogr. A 32, 614–617 (1976).

    Article  ADS  Google Scholar 

  185. Tronrud, D. E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A 48, 912–916 (1992).

    Article  ADS  Google Scholar 

  186. Brunger, A. T., Adams, P. D. & Rice, L. M. in International Tables for Crystallography (eds Arnold, E. et al.) Ch. 18.2 (Wiley, 2012).

  187. Terwilliger, T. C. et al. Model morphing and sequence assignment after molecular replacement. Acta Crystallogr. D 69, 2244–2250 (2013).

    Article  ADS  Google Scholar 

  188. Sheldrick, G. M. & Schneider, T. R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343 (1997).

    Article  Google Scholar 

  189. Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Article  ADS  Google Scholar 

  190. Cruickshank, D. W. J. Remarks about protein structure precision. Acta Crystallogr. D 55, 583–601 (1999). This paper addresses the standard uncertainties in the MX parameters.

    Article  ADS  Google Scholar 

  191. Cowtan, K. & Ten Eyck, L. F. Eigensystem analysis of the refinement of a small metalloprotein. Acta Crystallogr. D 56, 842–856 (2000).

    Article  ADS  Google Scholar 

  192. Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. Refinement of macromolecular structures against neutron data with SHELXL2013. J. Appl. Crystallogr. 47, 462–466 (2014).

    Article  ADS  Google Scholar 

  193. Catapano, L. et al. Neutron crystallographic refinement with REFMAC5 from the CCP4 suite. Acta Crystallogr. D 79, 1056–1070 (2023).

    Article  ADS  Google Scholar 

  194. Diamond, R. A real-space refinement procedure for proteins. Acta Crystallogr. A 27, 436–452 (1971).

    Article  ADS  Google Scholar 

  195. Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo‐microscopy and crystallographic data. Protein Sci. 29, 1055–1064 (2020). This paper describes interactive model building and real-space refinement.

    Article  Google Scholar 

  196. Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).

    Article  ADS  Google Scholar 

  197. Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).

    Article  ADS  Google Scholar 

  198. Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).

    Article  ADS  Google Scholar 

  199. Terwilliger, T. C. et al. Improved AlphaFold modeling with implicit experimental information. Nat. Methods 19, 1376–1382 (2022).

    Article  Google Scholar 

  200. Roversi, P. & Tronrud, D. E. Ten things I ‘hate’ about refinement. Acta Crystallogr. D 77, 1497–1515 (2021).

    Article  ADS  Google Scholar 

  201. Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992). This paper proposed the now universally used cross-validation Rfree method in macromolecular crystallography.

    Article  ADS  Google Scholar 

  202. Urzhumtseva, L., Afonine, P. V., Adams, P. D. & Urzhumtsev, A. Crystallographic model quality at a glance. Acta Crystallogr. D 65, 297–300 (2009).

    Article  ADS  Google Scholar 

  203. Alcorlo, M. et al. Molecular and structural basis of oligopeptide recognition by the Ami transporter system in pneumococci. PLoS Pathog. 20, e1011883 (2024).

    Article  Google Scholar 

  204. Yamashita, K., Wojdyr, M., Long, F., Nicholls, R. A. & Murshudov, G. N. GEMMI and Servalcat restrain REFMAC 5. Acta Crystallogr. D 79, 368–373 (2023).

    Article  ADS  Google Scholar 

  205. Tickle, I. J., Laskowski, R. A. & Moss, D. S. Error estimates of protein structure coordinates and deviations from standard geometry by full-matrix refinement of γ B- and β B2-crystallin. Acta Crystallogr. D 54, 243–252 (1998).

    Article  ADS  Google Scholar 

  206. Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).

    Article  Google Scholar 

  207. Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  ADS  Google Scholar 

  208. Lebedev, A. A., Vagin, A. A. & Murshudov, G. N. Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr. D 64, 33–39 (2008).

    Article  ADS  Google Scholar 

  209. Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010).

    Article  ADS  Google Scholar 

  210. McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  ADS  Google Scholar 

  211. Keegan, R. M. & Winn, M. D. MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr. D 64, 119–124 (2008).

    Article  ADS  Google Scholar 

  212. Keegan, R. M. et al. Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment. Acta Crystallogr. D 74, 167–182 (2018).

    Article  ADS  Google Scholar 

  213. Vagin, A. & Lebedev, A. MoRDa, an automatic molecular replacement pipeline. Acta Crystallogr. A 71, s19–s19 (2015).

    Article  Google Scholar 

  214. Long, F., Vagin, A. A., Young, P. & Murshudov, G. N. BALBES: a molecular-replacement pipeline. Acta Crystallogr. D 64, 125–132 (2008).

    Article  ADS  Google Scholar 

  215. Keegan, R. M. et al. Evaluating the solution from MrBUMP and BALBES. Acta Crystallogr. D 67, 313–323 (2011).

    Article  ADS  Google Scholar 

  216. Sammito, M. et al. ARCIMBOLDO_LITE: single-workstation implementation and use. Acta Crystallogr. D 71, 1921–1930 (2015).

    Article  ADS  Google Scholar 

  217. Sammito, M. et al. Exploiting tertiary structure through local folds for crystallographic phasing. Nat. Methods 10, 1099–1101 (2013).

    Article  Google Scholar 

  218. Sammito, M. et al. Structure solution with ARCIMBOLDO using fragments derived from distant homology models. FEBS J. 281, 4029–4045 (2014).

    Article  Google Scholar 

  219. Millán, C. et al. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination. Acta Crystallogr. D 74, 290–304 (2018).

    Article  ADS  Google Scholar 

  220. Simpkin, A. J. et al. SIMBAD: a sequence-independent molecular-replacement pipeline. Acta Crystallogr. D 74, 595–605 (2018).

    Article  ADS  Google Scholar 

  221. Simpkin, A. J. et al. Using Phaser and ensembles to improve the performance of SIMBAD. Acta Crystallogr. D 76, 1–8 (2020).

    Article  ADS  Google Scholar 

  222. Wojdyr, M., Keegan, R., Winter, G. & Ashton, A. DIMPLE — a pipeline for the rapid generation of difference maps from protein crystals with putatively bound ligands. Acta Crystallogr. A 69, s299–s299 (2013).

    Article  ADS  Google Scholar 

  223. Usón, I. & Sheldrick, G. M. Modes and model building in SHELXE. Acta Crystallogr. D 80, 4–15 (2024).

    Article  ADS  Google Scholar 

  224. Skubák, P. et al. A new MR-SAD algorithm for the automatic building of protein models from low-resolution X-ray data and a poor starting model. IUCrJ 5, 166–171 (2018).

    Article  Google Scholar 

  225. Bond, P. S. & Cowtan, K. D. ModelCraft: an advanced automated model-building pipeline using Buccaneer. Acta Crystallogr. D 78, 1090–1098 (2022).

    Article  ADS  Google Scholar 

  226. Kovalevskiy, O., Nicholls, R. A. & Murshudov, G. N. Automated refinement of macromolecular structures at low resolution using prior information. Acta Crystallogr. D 72, 1149–1161 (2016).

    Article  ADS  Google Scholar 

  227. Joosten, R. P., Joosten, K., Murshudov, G. N. & Perrakis, A. PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr. D 68, 484–496 (2012).

    Article  ADS  Google Scholar 

  228. Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).

    Article  ADS  Google Scholar 

  229. Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).

    Article  ADS  Google Scholar 

  230. Helliwell, J. R. et al. Findable accessible interoperable re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallogr. D 75, 455–457 (2019).

    Article  ADS  Google Scholar 

  231. Wilson, J., Ristic, M., Kirkwood, J., Hargreaves, D. & Newman, J. Predicting the effect of chemical factors on the pH of crystallization trials. iScience 23, 101219 (2020).

    Article  ADS  Google Scholar 

  232. Zheng, H. et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat. Protoc. 9, 156–170 (2014).

    Article  ADS  Google Scholar 

  233. Richardson, J. S., Williams, C. J., Chen, V. B., Prisant, M. G. & Richardson, D. C. The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions. Acta Crystallogr. D 79, 1071–1078 (2023). This paper describes stereochemical validation.

    Article  ADS  Google Scholar 

  234. Dodson, E. The role of validation in macromolecular crystallography. Acta Crystallogr. D 54, 1109–1118 (1998).

    Article  ADS  Google Scholar 

  235. Richardson, J. S. & Richardson, D. C. Amino acid preferences for specific locations at the ends of α helices. Science 240, 1648–1652 (1988).

    Article  ADS  Google Scholar 

  236. Sánchez Rodríguez, F., Simpkin, A. J., Chojnowski, G., Keegan, R. M. & Rigden, D. J. Using deep-learning predictions reveals a large number of register errors in PDB depositions. IUCrJ 11, 938–950 (2024).

    Article  Google Scholar 

  237. Borges, R. J. et al. SEQUENCE SLIDER: integration of structural and genetic data to characterize isoforms from natural sources. Nucleic Acids Res. 50, e50–e50 (2022).

    Article  Google Scholar 

  238. Dialpuri, J. S. et al. Online carbohydrate 3D structure validation with the Privateer web app. Acta Crystallogr. F 80, 30–35 (2024).

    Article  Google Scholar 

  239. Williams, C. J. et al. MolProbity: more and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).

    Article  Google Scholar 

  240. Nicholls, R. A., Long, F. & Murshudov, G. N. Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D 68, 404–417 (2012).

    Article  ADS  Google Scholar 

  241. Gao, Y., Thorn, V. & Thorn, A. Errors in structural biology are not the exception. Acta Crystallogr. D 79, 206–211 (2023).

    Article  ADS  Google Scholar 

  242. Chojnowski, G. Sequence-assignment validation in protein crystal structure models with checkMySequence. Acta Crystallogr. D 79, 559–568 (2023).

    Article  ADS  Google Scholar 

  243. Croll, T. I. et al. Making the invisible enemy visible. Nat. Struct. Mol. Biol. 28, 404–408 (2021). This paper describes a collaborative, macromolecular crystallography effort in the scope of the COVID-19 pandemic.

    Article  Google Scholar 

  244. Thorn, A. Artificial intelligence in the experimental determination and prediction of macromolecular structures. Curr. Opin. Struct. Biol. 74, 102368 (2022).

    Article  Google Scholar 

  245. Croll, T. I., Williams, C. J., Chen, V. B., Richardson, D. C. & Richardson, J. S. Improving SARS-CoV-2 structures: peer review by early coordinate release. Biophys. J. 120, 1085–1096 (2021).

    Article  ADS  Google Scholar 

  246. Tronrud, D. E. & Allen, J. P. Reinterpretation of the electron density at the site of the eighth bacteriochlorophyll in the FMO protein from Pelodictyon phaeum. Photosynth. Res. 112, 71–74 (2012).

    Article  Google Scholar 

  247. von Bulow, R. et al. Defective oligomerization of arylsulfatase a as a cause of its instability in lysosomes and metachromatic leukodystrophy. J. Biol. Chem. 277, 9455–9461 (2002).

    Article  Google Scholar 

  248. Monferrer, D. et al. Structural studies on the full‐length LysR‐type regulator TsaR from Comamonas testosteroni T‐2 reveal a novel open conformation of the tetrameric LTTR fold. Mol. Microbiol. 75, 1199–1214 (2010).

    Article  Google Scholar 

  249. Hungler, A., Momin, A., Diederichs, K. & Arold, S. T. ContaMiner and ContaBase: a webserver and database for early identification of unwantedly crystallized protein contaminants. J. Appl. Crystallogr. 49, 2252–2258 (2016).

    Article  ADS  Google Scholar 

  250. Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970–1979 (2001).

    Article  Google Scholar 

  251. Caballero, I. et al. Detection of translational noncrystallographic symmetry in Patterson functions. Acta Crystallogr. D 77, 131–141 (2021).

    Article  ADS  Google Scholar 

  252. Burnley, B. T., Afonine, P. V., Adams, P. D. & Gros, P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife 1, e00311 (2012).

    Article  Google Scholar 

  253. Holton, J. M., Classen, S., Frankel, K. A. & Tainer, J. A. The R‐factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures. FEBS J. 281, 4046–4060 (2014).

    Article  Google Scholar 

  254. Banari, A. et al. Advancing time-resolved structural biology: latest strategies in cryo-EM and X-ray crystallography. Nat. Methods https://doi.org/10.1038/s41592-025-02659-6 (2025).

    Article  Google Scholar 

  255. Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).

    Article  ADS  Google Scholar 

  256. Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).

    Article  ADS  Google Scholar 

  257. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  ADS  Google Scholar 

  258. Hofer, G., Wang, L., Xu, H. & Zou, X. Advances in protein electron diffraction (3D-ED/microED) sample preparation. Acta Crystallogr. A 79, C391–C391 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the lecturers that have contributed to the Madrid Crystallography School, including M. Martínez-Ripoll, F. X. Gomis-Rüth, J. M. García-Ruiz, R. Kahn, J. Navaza, C. Giacovazzo, P. Emsley, J. M. Mancheño, P. Adams, T. Grüne, I. Muñoz, P. Bernadó, R. Nicholls, R. Marabini, J. M. Carazo, J. Martín-Garcia, R. Fernández-Leiro, R. Boer, A. J. McCoy, B. Herguedas, T. T. Terwilliger, M. Fando, F. Sánchez-Rodríguez, R. Keegan and L. Catapano. They also thank all students for their active participation in discussions and contribution of interesting crystallographic challenges. This work was supported by (Ministry of Science and Innovation/Spanish State Research Agency/European Regional Development Fund/European Union) grants PID2021-128751NB-I00 to I.U., PID2023-153118OB-I00 to J.A.H., PID2023-153108OB-I00 to A.A. and PID2021-129038NB-I00 to M.S.; grant 2021-SGR-00425 (AGAUR) to I.U. and M.S.; grant Horizon Europe ID 101094131 and 101046133 to J.A.M.; The National Institutes of Health (grants R01GM071939, P01GM063210 and R24GM141254), as well as support from the Phenix Industrial Consortium and the US Department of Energy under contract no. DE-AC02-05CH11231 to P.V.A. The German Federal Ministry of Education and Research (grant no. 05K19WWA), Deutsche Forschungsgemeinschaft (project TH2135/2-1) to A.T. The Collaborative Computational Project Number 4 in Protein Crystallography (CCP4) and Biotechnology and Biological Research Council (BBSRC UK) grants BB/Y009991/1, BB/V015591/1 and BB/S007040/1 to E.K.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (A.A., J.A.H., K.D. and I.U.); Experimentation (M.S., J.A.M., S.P., K.D. and I.U.); Results (P.V.A., K.D. and I.U.); Applications (J.A.H., E.K., K.D. and I.U.); Reproducibility and data deposition (A.T., K.D. and I.U.); Limitations and optimizations (K.D. and I.U.); Outlook (K.D. and I.U.); overview of the Primer (K.D. and I.U.).

Corresponding author

Correspondence to Isabel Usón.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Elspeth Garman, José Gavira and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

CCP4 Cloud: https://cloud.ccp4.ac.uk

Crystallographic wiki: https://wiki.uni-konstanz.de/ccp4/index.php/Main_Page

CSIC Crystallography: https://www.xtal.iqfr.csic.es/Cristalografia/index-en.html

Fourier transform animations: http://chango.ibmb.csic.es/colibri

International Union of Crystallography (IUCr) dictionary: https://dictionary.iucr.org

MolProbity analysis: http://molprobity.biochem.duke.edu/

Protein Data Bank: https://www.wwpdb.org

Radiation dose calculation: https://raddo.se/

SBGRID: https://SBGrid.org

The PDBe Knowledge base: https://www.ebi.ac.uk/pdbe/pdbe-kb/

Zenodo: https://zenodo.org

Supplementary information

Glossary

Arcimboldo methods

Phasing approaches that use small model fragments (such as α-helices) combined with density modification and fragment expansion to solve structures.

Asymmetric unit

The simply connected smallest closed part of space from which, by application of all symmetry operations of the space group, the whole space is filled.

Co-crystallization

The process of crystallizing two or more molecules together, often a macromolecule with a ligand or inhibitor to view their interaction; with cryoprotectant to minimize stress on fragile crystals or with heavier elements to modify diffraction.

Conjugate gradient minimization

An optimization algorithm used in structure refinement to minimize the difference between observed and calculated structure factors by adjusting model parameters.

Cryogenic cooling device

An apparatus (usually using liquid nitrogen) to rapidly cryo-cool crystals and/or maintain them at the low temperature required to reduce radiation damage during X-ray exposure.

Crystallization drop

A (sub)microlitre droplet containing protein, buffer and precipitant that is used to grow protein crystals.

Diffraction limit

The maximum resolution (smallest detail) that can be resolved in a crystal structure, determined by the quality of the crystal and data.

Direct methods

A set of computational techniques exploiting statistical relationships among structure factors, used to solve the phase problem ab initio and in experimental phasing.

Electron density distribution

A 3D map of the asymmetric unit showing electron per cubic ångström levels, used to model atomic positions and establish structural features.

Friedel opposites

Pairs of reflections related by inversion in reciprocal space (for example, (h,k,l) and (–h,–k,–l); their intensities are equal in the absence of anomalous scattering.

Goniometer

A precision device that holds the crystal and allows its controlled rotation during X-ray diffraction data collection.

Laue groups

Symmetry classifications based on the diffraction pattern, considering the point group of the crystal without translational symmetry.

Model bias

The electron density map is calculated with experimental amplitudes but phases derived from the current model. Hence, the model influences the map and errors can mask real structural features.

Monochromatic

Radiation of a single wavelength, typically used for high-resolution diffraction experiments.

Mosaicity

A measure of the spread of crystal plane orientations, given by the rotation angle over which the signal corresponding to a Bragg reflection is distributed.

Non-crystallographic symmetry

Occurs when copies of a molecule in the asymmetric unit are related by a rotation or translation that is not a symmetry operation of the crystal space group. Translational non-crystallographic symmetry causes aberrant diffraction and complicates structure solution.

Phase problem

The inability to directly measure the phase component of diffracted X-rays (neutrons or electrons), which is essential for reconstructing electron density maps. Phasing means providing approximate values for enough phases to be able to reconstruct an initial model of the structure in the crystal.

Polychromatic

Radiation composed of multiple wavelengths; often used in Laue diffraction experiments.

Real space

The physical, 3D coordinate system in which atoms and electron densities are located within a crystal structure.

Reciprocal space

An abstract space used in crystallography where diffraction data are represented; each point in a reciprocal space lattice corresponds to a set of planes in real space.

Structure factors

Mathematical complex quantities describing both the amplitude and phase of diffracted X-rays, calculated as a vector sum of atomic contributions within the unit cell.

Systematic grid searches

Automated exploration of crystallization conditions by systematically varying parameters such as pH, temperature and precipitant concentration. Also, automatic exploration of parameters in computational procedures like refinement and molecular replacement.

Voxel

A 3D pixel representing a small volume element in an electron density map.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afonine, P.V., Albert, A., Diederichs, K. et al. Macromolecular crystallography. Nat Rev Methods Primers 5, 64 (2025). https://doi.org/10.1038/s43586-025-00433-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00433-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing