Abstract
Crystallography provides structural evidence of macromolecules in atomic detail. However, the atomic structure is not the direct outcome of the experiment. Diffraction data need to be processed and the phase problem must be solved to visualize the map from which an atomic model of the macromolecule is interpreted and iteratively improved. Despite this complex process from sample to scientific answer, crystallography is widely accessible in biochemical and biological research. Easy access to the experimental set-ups, free software for academic use and complimentary analytical computing, supported by automation and expert assistance, makes crystallography available to non-crystallographers. This Primer offers a practical and rational introduction to macromolecular crystallography, whether to engage directly or to critically assess results, with a focus on understanding the diffraction data, solving the phase problem, building and refining the atomic model, and interpreting the resulting atomic structure. We provide an overview of what crystallography can achieve, the key decisions and trade-offs involved, and how to evaluate outcomes effectively.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 1 digital issues and online access to articles
$119.00 per year
only $119.00 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Change history
31 October 2025
A Correction to this paper has been published: https://doi.org/10.1038/s43586-025-00449-0
References
Friedrich, W., Knipping, P. & Laue, M. Interferenz-erscheinungen bei röntgenstrahlen. Sitzungsberichte Kgl Bayer. Akad. Wiss. 303–322 (1912).
Smith, T. Early crystals. Nat. Struct. Biol. 6, 411–411 (1999).
Bragg, W. H. & Bragg, W. L. The reflection of X-rays by crystals. Proc. R. Soc. Lond. Ser. A 88, 428–438 (1913).
Ewald, P. P. Die Berechnung optischer und elektrostatischer gitterpotentiale. Ann. Phys. 369, 253–287 (1921).
Berman, H. M. The Protein Data Bank. Nucleic Acids Res. 28, 235–242 (2000).
Helliwell, J. R., Hester, J. R., Kroon-Batenburg, L. M. J., McMahon, B. & Storm, S. L. S. The evolution of raw data archiving and the growth of its importance in crystallography. IUCrJ 11, 464–475 (2024).
Krissinel, E. et al. CCP4 Cloud for structure determination and project management in macromolecular crystallography. Acta Crystallogr. D 78, 1079–1089 (2022).
Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A. Auto-Rickshaw: an automated crystal structure determination platform as an efficient tool for the validation of an X-ray diffraction experiment. Acta Crystallogr. D 61, 449–457 (2005).
Usón, I., Ballard, C. C., Keegan, R. M. & Read, R. J. Integrated, rational molecular replacement. Acta Crystallogr. D 77, 129–130 (2021).
Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. A 64, 112–122 (2008). A highly cited article describing the comprehensive crystallography suite, SHELX, used in macromolecular, chemical, mineralogical and materials crystallography.
Agirre, J. et al. The CCP4 suite: integrative software for macromolecular crystallography. Acta Crystallogr. D 79, 449–461 (2023). This paper describes the CCP4 suite of macromolecular crystallography programs.
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D 75, 861–877 (2019). This paper describes the Phenix suite of macromolecular crystallography programs.
Vonrhein, C. et al. Data processing and analysis with the autoPROC toolbox. Acta Crystallogr. D 67, 293–302 (2011).
Schiltz, M. et al. Phasing in the presence of severe site-specific radiation damage through dose-dependent modelling of heavy atoms. Acta Crystallogr. D 60, 1024–1031 (2004).
McCoy, A. J. Liking likelihood. Acta Crystallogr. D 60, 2169–2183 (2004). A tutorial for mastering the Bayesian statistics that govern modern crystallographic approaches to phasing and refinement.
Simpkin, A. J. et al. Predicted models and CCP4. Acta Crystallogr. D 79, 806–819 (2023).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
Terwilliger, T. C. et al. AlphaFold predictions are valuable hypotheses and accelerate but do not replace experimental structure determination. Nat. Methods 21, 110–116 (2024). An important view to the relationship between structural predictions initiated by AlphaFold and RosettaFold, and the experimental methods of structure determination.
Lander, E. S. The new genomics: global views of biology. Science 274, 536–539 (1996).
Banci, L. et al. Structural proteomics: from the molecule to the system. Nat. Struct. Mol. Biol. 14, 3–4 (2007).
Kim, Y. et al. in Advances in Protein Chemistry and Structural Biology Vol. 75 (ed. Donev, R.) 85–105 (Elsevier, 2008).
Tahara, N. et al. Boosting auto-induction of recombinant proteins in Escherichia coli with glucose and lactose additives. Protein Pept. Lett. 28, 1180–1190 (2021).
Newman, J. et al. Towards rationalization of crystallization screening for small- to medium-sized academic laboratories: the PACT/JCSG+ strategy. Acta Crystallogr. D 61, 1426–1431 (2005).
Abrahams, G. & Newman, J. Data- and diversity-driven development of a shotgun crystallization screen using the protein data bank. Acta Crystallogr. D 77, 1437–1450 (2021). This paper combines crystallization expertise and modern tools.
Monferrer, D., Tralau, T., Kertesz, M. A., Panjikar, S. & Usón, I. High crystallizability under air-exclusion conditions of the full-length LysR-type transcriptional regulator TsaR from Comamonas testosteroni T-2 and data-set analysis for a MIRAS structure-solution approach. Acta Crystallograph. F 64, 764–769 (2008).
Rosa, N., Watkins, C. J. & Newman, J. Moving beyond MARCO. PLoS ONE 18, e0283124 (2023).
Berrow, N. et al. Quality control of purified proteins to improve data quality and reproducibility: results from a large-scale survey. Eur. Biophys. J. 50, 453–460 (2021).
Moreau, D. W., Atakisi, H. & Thorne, R. E. Ice in biomolecular cryocrystallography. Acta Crystallogr. D 77, 540–554 (2021).
Panjikar, S. & Tucker, P. A. Phasing possibilities using different wavelengths with a xenon derivative. J. Appl. Crystallogr. 35, 261–266 (2002).
Colloc’h, N., Carpentier, P., Montemiglio, L. C., Vallone, B. & Prangé, T. Mapping hydrophobic tunnels and cavities in neuroglobin with noble gas under pressure. Biophys. J. 113, 2199–2206 (2017).
Volkers, G. et al. Putative dioxygen-binding sites and recognition of tigecycline and minocycline in the tetracycline-degrading monooxygenase TetX. Acta Crystallogr. D 69, 1758–1767 (2013).
Carpentier, P., Van Der Linden, P. & Mueller-Dieckmann, C. The high-pressure freezing laboratory for macromolecular crystallography (HPMX), an ancillary tool for the macromolecular crystallography beamlines at the ESRF. Acta Crystallogr. D 80, 80–92 (2024).
Patel, O. et al. Crystal structure of the putative cell-wall lipoglycan biosynthesis protein LmcA from Mycobacterium smegmatis. Acta Crystallogr. D 78, 494–508 (2022).
Sprenger, J. et al. Guest-protein incorporation into solvent channels of a protein host crystal (hostal). Acta Crystallogr. D 77, 471–485 (2021).
Gheyi, T., Rodgers, L., Romero, R., Sauder, J. M. & Burley, S. K. Mass spectrometry guided in situ proteolysis to obtain crystals for X-ray structure determination. J. Am. Soc. Mass Spectrom. 21, 1795–1801 (2010).
Hillen, H. S., Morozov, Y. I., Sarfallah, A., Temiakov, D. & Cramer, P. Structural basis of mitochondrial transcription initiation. Cell 171, 1072–1081.e10 (2017).
Blanco, A. G., Canals, A., Bernués, J., Solà, M. & Coll, M. The structure of a transcription activation subcomplex reveals how σ70 is recruited to PhoB promoters: structure of a transcription activation subcomplex. EMBO J. 30, 3776–3785 (2011).
Ericsson, U. B., Hallberg, B. M., DeTitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006).
Jiménez-Menéndez, N. et al. Human mitochondrial mTERF wraps around DNA through a left-handed superhelical tandem repeat. Nat. Struct. Mol. Biol. 17, 891–893 (2010).
Zander, U. et al. Automated harvesting and processing of protein crystals through laser photoablation. Acta Crystallogr. D 72, 454–466 (2016).
Cornaciu, I. et al. The automated crystallography pipelines at the EMBL HTX facility in grenoble. J. Vis. Exp. 5, 62491 (2021).
Skaist Mehlman, T. et al. Room-temperature crystallography reveals altered binding of small-molecule fragments to PTP1B. eLife 12, e84632 (2023).
Nave, C. & Garman, E. F. Towards an understanding of radiation damage in cryocooled macromolecular crystals. J. Synchrotron Radiat. 12, 257–260 (2005).
Garman, E. F. & Schneider, T. R. Macromolecular cryocrystallography. J. Appl. Crystallogr. 30, 211–237 (1997).
Karplus, P. A. & Diederichs, K. Linking crystallographic model and data quality. Science 336, 1030–1033 (2012). Introduces CC1/2 and describes rational and practical solutions for deciding which measurements to keep and which to discard.
Karplus, P. A. & Diederichs, K. Assessing and maximizing data quality in macromolecular crystallography. Curr. Opin. Struct. Biol. 34, 60–68 (2015).
Shelley, K. L. & Garman, E. F. Identifying and avoiding radiation damage in macromolecular crystallography. Acta Crystallogr. D 80, 314–327 (2024). This paper presents the state of the art solution for addressing radiation damage.
Dickerson, J. L., McCubbin, P. T. N., Brooks‐Bartlett, J. C. & Garman, E. F. Doses for X‐ray and electron diffraction: new features in RADDOSE‐3D including intensity decay models. Protein Sci. 33, e5005 (2024).
Waltersperger, S. et al. PRIGo: a new multi-axis goniometer for macromolecular crystallography. J. Synchrotron Radiat. 22, 895–900 (2015).
Brönnimann, C. & Trüb, P. in Synchrotron Light Sources and Free-Electron Lasers (eds Jaeschke, E. J. et al.) 995–1027 (Springer, 2016).
El Omari, K. et al. Utilizing anomalous signals for element identification in macromolecular crystallography. Acta Crystallogr. D 80, 713–721 (2024). This paper presents the practical use of the extreme long-wavelength macromolecular crystallography in vacuum beamline.
Wagner, A., Duman, R., Henderson, K. & Mykhaylyk, V. In-vacuum long-wavelength macromolecular crystallography. Acta Crystallogr. D 72, 430–439 (2016).
Barends, T. R. M., Stauch, B., Cherezov, V. & Schlichting, I. Serial femtosecond crystallography. Nat. Rev. Methods Primer 2, 59 (2022).
Kabsch, W. Processing of X-ray snapshots from crystals in random orientations. Acta Crystallogr. D 70, 2204–2216 (2014).
White, T. A. et al. Recent developments in CrystFEL. J. Appl. Crystallogr. 49, 680–689 (2016).
Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).
Meilleur, F. A beginner’s guide to neutron macromolecular crystallography. Biochemist 42, 16–20 (2020). This paper presents an introduction to neutron macromolecular crystallography.
Flot, D. et al. The ID23-2 structural biology microfocus beamline at the ESRF. J. Synchrotron Radiat. 17, 107–118 (2010).
Debreczeni, J. É., Bunkóczi, G., Ma, Q., Blaser, H. & Sheldrick, G. M. In-house measurement of the sulfur anomalous signal and its use for phasing. Acta Crystallogr. D 59, 688–696 (2003).
Mueller, M., Wang, M. & Schulze-Briese, C. Optimal fine ϕ-slicing for single-photon-counting pixel detectors. Acta Crystallogr. D 68, 42–56 (2012). This paper presents modern data collection methods.
Owen, R. L., Rudiño-Piñera, E. & Garman, E. F. Experimental determination of the radiation dose limit for cryocooled protein crystals. Proc. Natl. Acad. Sci. USA 103, 4912–4917 (2006).
Winter, G. et al. DIALS: implementation and evaluation of a new integration package. Acta Crystallogr. D 74, 85–97 (2018).
Delagenière, S. et al. ISPyB: an information management system for synchrotron macromolecular crystallography. Bioinformatics 27, 3186–3192 (2011).
Mueller, U. et al. MXCuBE3: a new era of MX-beamline control begins. Synchrotron Radiat. N. 30, 22–27 (2017).
McPhillips, T. M. et al. Blu-Ice and the Distributed Control System: software for data acquisition and instrument control at macromolecular crystallography beamlines. J. Synchrotron Radiat. 9, 401–406 (2002).
Fodje, M. et al. MxDC and MxLIVE: software for data acquisition, information management and remote access to macromolecular crystallography beamlines. J. Synchrotron Radiat. 19, 274–280 (2012).
Murray, C. W. & Blundell, T. L. Structural biology in fragment-based drug design. Curr. Opin. Struct. Biol. 20, 497–507 (2010).
Shuker, S. B., Hajduk, P. J., Meadows, R. P. & Fesik, S. W. Discovering high-affinity ligands for proteins: SAR by NMR. Science 274, 1531–1534 (1996).
Douangamath, A. et al. Achieving efficient fragment screening at XChem facility at diamond light source. J. Vis. Exp. 29, 62414 (2021).
Arrowsmith, C. H. et al. The promise and peril of chemical probes. Nat. Chem. Biol. 11, 536–541 (2015).
Bar-Even, A. et al. The moderately efficient enzyme: evolutionary and physicochemical trends shaping enzyme parameters. Biochemistry 50, 4402–4410 (2011).
Beyerlein, K. R. et al. Mix-and-diffuse serial synchrotron crystallography. IUCrJ 4, 769–777 (2017).
Zielinski, K. A. et al. Rapid and efficient room-temperature serial synchrotron crystallography using the CFEL TapeDrive. IUCrJ 9, 778–791 (2022).
Henkel, A. et al. JINXED: just in time crystallization for easy structure determination of biological macromolecules. IUCrJ 10, 253–260 (2023).
Monteiro, D. C. F. et al. 3D-MiXD: 3D-printed X-ray-compatible microfluidic devices for rapid, low-consumption serial synchrotron crystallography data collection in flow. IUCrJ 7, 207–219 (2020).
Stubbs, J. et al. Droplet microfluidics for time-resolved serial crystallography. IUCrJ 11, 237–248 (2024).
Iglesias‐Juez, A., Chiarello, G. L., Patience, G. S. & Guerrero‐Pérez, M. O. Experimental methods in chemical engineering: X‐ray absorption spectroscopy — XAS, XANES, EXAFS. Can. J. Chem. Eng. 100, 3–22 (2022).
Kabsch, W. XDS. Acta Crystallogr. D 66, 125–132 (2010).
Kabsch, W. Integration, scaling, space-group assignment and post-refinement. Acta Crystallogr. D 66, 133–144 (2010).
Otwinowski, Z., Minor, W., Borek, D. & Cymborowski, M. in International Tables for Crystallography (eds Arnold, E. et al.) Ch. 11.4 (Wiley, 2012).
Battye, T. G. G., Kontogiannis, L., Johnson, O., Powell, H. R. & Leslie, A. G. W. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D 67, 271–281 (2011).
Diederichs, K. Quantifying instrument errors in macromolecular X-ray data sets. Acta Crystallogr. D 66, 733–740 (2010).
Nolte, K., Gao, Y., Stäb, S., Kollmannsberger, P. & Thorn, A. Detecting ice artefacts in processed macromolecular diffraction data with machine learning. Acta Crystallogr. D 78, 187–195 (2022).
Parkhurst, J. M. et al. Background modelling of diffraction data in the presence of ice rings. IUCrJ 4, 626–638 (2017).
Dauter, Z., Botos, I., LaRonde-LeBlanc, N. & Wlodawer, A. Pathological crystallography: case studies of several unusual macromolecular crystals. Acta Crystallogr. D 61, 967–975 (2005).
Lebedev, A. A. & Isupov, M. N. Space-group and origin ambiguity in macromolecular structures with pseudo-symmetry and its treatment with the program Zanuda. Acta Crystallogr. D 70, 2430–2443 (2014).
Lovelace, J. J. & Borgstahl, G. E. O. Characterizing pathological imperfections in macromolecular crystals: lattice disorders and modulations. Crystallogr. Rev. 26, 3–50 (2020).
Zwart, P. H., Grosse-Kunstleve, R. W., Lebedev, A. A., Murshudov, G. N. & Adams, P. D. Surprises and pitfalls arising from (pseudo)symmetry. Acta Crystallogr. D 64, 99–107 (2008).
McCoy, A. J. et al. Phasertng: directed acyclic graphs for crystallographic phasing. Acta Crystallogr. D 77, 1–10 (2021).
Read, R. J., Adams, P. D. & McCoy, A. J. Intensity statistics in the presence of translational noncrystallographic symmetry. Acta Crystallogr. D 69, 176–183 (2013).
Knott, G. J. et al. A crystallographic study of human NONO (p54nrb): overcoming pathological problems with purification, data collection and noncrystallographic symmetry. Acta Crystallogr. D 72, 761–769 (2016).
Brehm, W., Triviño, J., Krahn, J. M., Usón, I. & Diederichs, K. XDSGUI: a graphical user interface for XDS, SHELX and ARCIMBOLDO. J. Appl. Crystallogr. 56, 1585–1594 (2023).
Arndt, U. W., Crowther, R. A. & Mallett, J. F. W. A computer-linked cathode-ray tube microdensitometer for X-ray crystallography. J. Phys. 1, 510–516 (1968).
Diederichs, K. & Karplus, P. A. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Biol. 4, 269–275 (1997).
Weiss, M. S. & Hilgenfeld, R. On the use of the merging R factor as a quality indicator for X-ray data. J. Appl. Crystallogr. 30, 203–205 (1997).
Diederichs, K. & Karplus, P. A. Better models by discarding data? Acta Crystallogr. D 69, 1215–1222 (2013).
Read, R. J., Oeffner, R. D. & McCoy, A. J. Measuring and using information gained by observing diffraction data. Acta Crystallogr. D 76, 238–247 (2020).
Hendrickson, W. A. Facing the phase problem. IUCrJ 10, 521–543 (2023).
Caliandro, R. et al. Phasing at resolution higher than the experimental resolution. Acta Crystallogr. D 61, 556–565 (2005).
Usón, I., Stevenson, C. E. M., Lawson, D. M. & Sheldrick, G. M. Structure determination of the O-methyltransferase NovP using the ‘free lunch algorithm’ as implemented in SHELXE. Acta Crystallogr. D 63, 1069–1074 (2007).
Karle, J. & Hauptman, H. A theory of phase determination for the four types of non-centrosymmetric space groups 1P 222, 2P 22, 3P1 2, 3P2 2. Acta Crystallogr. 9, 635–651 (1956).
Sheldrick, G. M. et al. International Tables for Crystallography Vol. F (eds Arnold, E. et al.) 413–429 (Wiley, 2012). This paper is a primary reference for ab initio phasing.
Usón, I. & Sheldrick, G. M. Advances in direct methods for protein crystallography. Curr. Opin. Struct. Biol. 9, 643–648 (1999).
Patterson, A. L. A Fourier series method for the determination of the components of interatomic distances in crystals. Phys. Rev. 46, 372–376 (1934).
Tong, L. & Rossmann, M. G. The locked rotation function. Acta Crystallogr. A 46, 783–792 (1990).
Morris, R. J. & Bricogne, G. Sheldrick’s 1.2 Å rule and beyond. Acta Crystallogr. D 59, 615–617 (2003).
Fujinaga, M. & Read, R. J. Experiences with a new translation–function program. J. Appl. Crystallogr. 20, 517–521 (1987).
Usón, I. et al. The 1.2 Å crystal structure of hirustasin reveals the intrinsic flexibility of a family of highly disulphide-bridged inhibitors. Structure 7, 55–63 (1999).
Nimz, O., Geßler, K., Usón, I. & Saenger, W. An orthorhombic crystal form of cyclohexaicosaose, CA26·32.59 H2O: comparison with the triclinic form. Carbohydr. Res. 336, 141–153 (2001).
Rodríguez, D. D. et al. Crystallographic ab initio protein structure solution below atomic resolution. Nat. Methods 6, 651–653 (2009).
Millán, C., Sammito, M. & Usón, I. Macromolecular ab initio phasing enforcing secondary and tertiary structure. IUCrJ 2, 95–105 (2015). This paper generalizes fragment-based ab initio phasing without the need of atomic-resolution data.
Abrahams, J. P. & Leslie, A. G. W. Methods used in the structure determination of bovine mitochondrial F1 ATPase. Acta Crystallogr. D 52, 30–42 (1996).
Cowtan, K. D. & Zhang, K. Y. J. Density modification for macromolecular phase improvement. Prog. Biophys. Mol. Biol. 72, 245–270 (1999).
Podjarny, A. D., Rees, B. & Urzhumtsev, A. G. in Crystallographic Methods and Protocols Vol. 56 (eds Jones, C. et al.) 205–226 (Humana,1996).
Langer, G., Cohen, S. X., Lamzin, V. S. & Perrakis, A. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3, 1171–1179 (2008).
Terwilliger, T. C. Reciprocal-space solvent flattening. Acta Crystallogr. D 55, 1863–1871 (1999).
Wang, B.-C. in Methods in Enzymology Vol. 115 (eds Wyckoff, H. W. et al.) 90–112 (Elsevier, 1985). This paper introduces density modification to macromolecules.
Cowtan, K. Recent developments in classical density modification. Acta Crystallogr. D 66, 470–478 (2010).
Sheldrick, G. M. Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr. D 66, 479–485 (2010).
Sheldrick, G. M. Macromolecular phasing with SHELXE. Z. Für Krist. Cryst. Mater. 217, 644–650 (2002).
Terwilliger, T. C. Using prime-and-switch phasing to reduce model bias in molecular replacement. Acta Crystallogr. D 60, 2144–2149 (2004).
Urzhumtsev, A. G. Local improvement of electron-density maps. Acta Crystallogr. D 53, 540–543 (1997).
Dauter, Z., Dauter, M., De La Fortelle, E., Bricogne, G. & Sheldrick, G. M. Can anomalous signal of sulfur become a tool for solving protein crystal structures? J. Mol. Biol. 289, 83–92 (1999).
Usón, I. et al. Locating the anomalous scatterer substructures in halide and sulfur phasing. Acta Crystallogr. D 59, 57–66 (2003).
Schiltz, M. & Bricogne, G. Exploiting the anisotropy of anomalous scattering boosts the phasing power of SAD and MAD experiments. Acta Crystallogr. D 64, 711–729 (2008).
Hatti, K. S., McCoy, A. J. & Read, R. J. Likelihood-based estimation of substructure content from single-wavelength anomalous diffraction (SAD) intensity data. Acta Crystallogr. D 77, 880–893 (2021).
Usón, I. & Sheldrick, G. M. An introduction to experimental phasing of macromolecules illustrated by SHELX; new autotracing features. Acta Crystallogr. D 74, 106–116 (2018).
Navaza, J. AMoRe: an automated package for molecular replacement. Acta Crystallogr. A 50, 157–163 (1994).
Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).
Read, R. J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr. D 57, 1373–1382 (2001).
Read, R. J. & McCoy, A. J. A log-likelihood-gain intensity target for crystallographic phasing that accounts for experimental error. Acta Crystallogr. D 72, 375–387 (2016).
McCoy, A. J. et al. Ab initio solution of macromolecular crystal structures without direct methods. Proc. Natl Acad. Sci. USA 114, 3637–3641 (2017). This papers explains the rational use of the phasing method, Phaser, spanning single atoms to ribosomes.
Oeffner, R. D. et al. The expected log-likelihood gain for decision making in molecular replacement. Acta Crystallogr. A 74, e411–e411 (2018).
McCoy, A. J. et al. Gyre and gimble: a maximum-likelihood replacement for Patterson correlation refinement. Acta Crystallogr. D 74, 279–289 (2018).
Millán, C., Jiménez, E., Schuster, A., Diederichs, K. & Usón, I. ALIXE: a phase-combination tool for fragment-based molecular replacement. Acta Crystallogr. D 76, 209–220 (2020).
Panjikar, S., Parthasarathy, V., Lamzin, V. S., Weiss, M. S. & Tucker, P. A. On the combination of molecular replacement and single-wavelength anomalous diffraction phasing for automated structure determination. Acta Crystallogr. D 65, 1089–1097 (2009). This paper describes the integration of alternative phasing methods to molecular replacement and experimental phasing.
Medina, A. et al. Verification: model-free phasing with enhanced predicted models in ARCIMBOLDO_SHREDDER. Acta Crystallogr. D 78, 1283–1293 (2022).
Caballero, I. et al. ARCIMBOLDO on coiled coils. Acta Crystallogr. D 74, 194–204 (2018).
Richards, L. S. et al. Fragment-based ab initio phasing of peptidic nanocrystals by MicroED. ACS Bio Med. Chem. Au 3, 201–210 (2023).
Caballero, I. et al. ARCIMBOLDO at low resolution: verification for coiled coils and globular proteins. Protein Sci. 33, e5136 (2024). This paper describes a method to conclusively solve difficult coiled coil proteins at low resolution.
Tronrud, D. E. Introduction to macromolecular refinement. Acta Crystallogr. D 60, 2156–2168 (2004).
Afonine, P. V., Urzhumtsev, A. & Adams, P. D. Macromolecular crystallographic estructure refinement. Arbor 191, a219 (2015).
Urzhumtsev, A. G. & Lunin, V. Y. Introduction to crystallographic refinement of macromolecular atomic models. Crystallogr. Rev. 25, 164–262 (2019). This paper provides an overview of macromolecular crystallography refinement methods.
Sheriff, S. & Hendrickson, W. A. Description of overall anisotropy in diffraction from macromolecular crystals. Acta Crystallogr. A 43, 118–121 (1987).
Parsons, S. Introduction to twinning. Acta Crystallogr. D 59, 1995–2003 (2003).
Herbst-Irmer, R. & Sheldrick, G. M. Refinement of twinned structures with SHELXL 97. Acta Crystallogr. B 54, 443–449 (1998).
Herbst-Irmer, R. & Sheldrick, G. M. Refinement of obverse/reverse twins. Acta Crystallogr. B 58, 477–481 (2002).
Sevvana, M., Ruf, M., Usón, I., Sheldrick, G. M. & Herbst-Irmer, R. Non-merohedral twinning: from minerals to proteins. Acta Crystallogr. D 75, 1040–1050 (2019). This paper addresses the problem of non-merohedrally twinned data introducing simultaneous refinement against multiple datasets.
Weichenberger, C. X., Afonine, P. V., Kantardjieff, K. & Rupp, B. The solvent component of macromolecular crystals. Acta Crystallogr. D 71, 1023–1038 (2015).
Moews, P. C. & Kretsinger, R. H. Refinement of the structure of carp muscle calcium-binding parvalbumin by model building and difference fourier analysis. J. Mol. Biol. 91, 201–225 (1975).
Sheldrick, G. M. & Schneider, T. R. in Methods in Enzymology Vol. 277 (eds Carter, C. W. Jr. & Sweet, R. M.) 319–343 (Elsevier, 1997).
Urzhumtsev, A. G. Low-resolution phases: influence on SIR syntheses and retrieval with double-step filtration. Acta Crystallogr. A 47, 794–801 (1991).
Afonine, P. V., Grosse-Kunstleve, R. W., Adams, P. D. & Urzhumtsev, A. Bulk-solvent and overall scaling revisited: faster calculations, improved results. Acta Crystallogr. D 69, 625–634 (2013).
Afonine, P. V., Adams, P. D., Sobolev, O. V. & Urzhumtsev, A. G. Accounting for nonuniformity of bulk‐solvent: a mosaic model. Protein Sci. 33, e4909 (2024).
Schomaker, V. & Trueblood, K. N. On the rigid-body motion of molecules in crystals. Acta Crystallogr. B 24, 63–76 (1968).
Winn, M. D., Isupov, M. N. & Murshudov, G. N. Use of TLS parameters to model anisotropic displacements in macromolecular refinement. Acta Crystallogr. D 57, 122–133 (2001).
Urzhumtsev, A., Afonine, P. V. & Adams, P. D. TLS from fundamentals to practice. Crystallogr. Rev. 19, 230–270 (2013).
Merritt, E. A. To B or not to B: a question of resolution? Acta Crystallogr. D 68, 468–477 (2012).
Dittrich, B. On modelling disordered crystal structures through restraints from molecule-in-cluster computations, and distinguishing static and dynamic disorder. IUCrJ 8, 305–318 (2021).
Ginn, H. M. Vagabond: bond-based parametrization reduces overfitting for refinement of proteins. Acta Crystallogr. D 77, 424–437 (2021).
Hendrickson, W. A. & Lattman, E. E. Representation of phase probability distributions for simplified combination of independent phase information. Acta Crystallogr. B 26, 136–143 (1970).
Pannu, N. S., Murshudov, G. N., Dodson, E. J. & Read, R. J. Incorporation of prior phase information strengthens maximum-likelihood structure refinement. Acta Crystallogr. D 54, 1285–1294 (1998).
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D 53, 240–255 (1997). This paper introduces maximum-likelihood refinement in macromolecular crystallography.
Schirò, A. et al. On the complementarity of X-ray and NMR data. J. Struct. Biol. X 4, 100019 (2020).
Usón, I. et al. 1.7 Å structure of the stabilized REI v mutant T39K. Application of local NCS restraints. Acta Crystallogr. D 55, 1158–1167 (1999).
Headd, J. J. et al. Flexible torsion-angle noncrystallographic symmetry restraints for improved macromolecular structure refinement. Acta Crystallogr. D 70, 1346–1356 (2014).
Evans, P. R. An introduction to stereochemical restraints. Acta Crystallogr. D 63, 58–61 (2007).
Lebedev, A. A. et al. JLigand: a graphical tool for the CCP 4 template-restraint library. Acta Crystallogr. D 68, 431–440 (2012).
Long, F. et al. AceDRG: a stereochemical description generator for ligands. Acta Crystallogr. D 73, 112–122 (2017).
Moriarty, N. W., Grosse-Kunstleve, R. W. & Adams, P. D. Electronic ligand builder and optimization workbench (eLBOW): a tool for ligand coordinate and restraint generation. Acta Crystallogr. D 65, 1074–1080 (2009).
Smart, O. S. et al. Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallogr. D 74, 228–236 (2018).
Murshudov, G. N. et al. REFMAC 5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D 67, 355–367 (2011).
Bergmann, J., Oksanen, E. & Ryde, U. Combining crystallography with quantum mechanics. Curr. Opin. Struct. Biol. 72, 18–26 (2022).
Zubatyuk, R. et al. AQuaRef: machine learning accelerated quantum refinement of protein structures. Preprint at bioRxiv https://doi.org/10.1101/2024.07.21.604493 (2024).
Thorn, A., Dittrich, B. & Sheldrick, G. M. Enhanced rigid-bond restraints. Acta Crystallogr. A 68, 448–451 (2012).
Moriarty, N. W. et al. Improved chemistry restraints for crystallographic refinement by integrating the Amber force field into Phenix. Acta Crystallogr. D 76, 51–62 (2020).
Brünger, A. T. et al. Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr. D 54, 905–921 (1998).
Sheldrick, G. M. in International Tables for Crystallography (eds Arnold, E. et al.) Ch. 18.9 (Wiley, 2012).
Lunin, V. Y., Afonine, P. V. & Urzhumtsev, A. G. Likelihood-based refinement. I. Irremovable model errors. Acta Crystallogr. A 58, 270–282 (2002).
Blanc, E. et al. Refinement of severely incomplete structures with maximum likelihood in BUSTER–TNT. Acta Crystallogr. D 60, 2210–2221 (2004).
Booth, A. D. LXXIV. An expression for following the process of refinement in X-ray structure analysis using fourier series. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36, 609–615 (1945).
Luebben, J. & Gruene, T. New method to compute Rcomplete enables maximum likelihood refinement for small datasets. Proc. Natl Acad. Sci. USA 112, 8999–9003 (2015). This paper extends cross-validation to cases where Rfree cannot be used.
Pražnikar, J. & Turk, D. Free kick instead of cross-validation in maximum-likelihood refinement of macromolecular crystal structures. Acta Crystallogr. D 70, 3124–3134 (2014).
Konnert, J. H. A restrained-parameter structure-factor least-squares refinement procedure for large asymmetric units. Acta Crystallogr. A 32, 614–617 (1976).
Tronrud, D. E. Conjugate-direction minimization: an improved method for the refinement of macromolecules. Acta Crystallogr. A 48, 912–916 (1992).
Brunger, A. T., Adams, P. D. & Rice, L. M. in International Tables for Crystallography (eds Arnold, E. et al.) Ch. 18.2 (Wiley, 2012).
Terwilliger, T. C. et al. Model morphing and sequence assignment after molecular replacement. Acta Crystallogr. D 69, 2244–2250 (2013).
Sheldrick, G. M. & Schneider, T. R. SHELXL: high-resolution refinement. Methods Enzymol. 277, 319–343 (1997).
Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).
Cruickshank, D. W. J. Remarks about protein structure precision. Acta Crystallogr. D 55, 583–601 (1999). This paper addresses the standard uncertainties in the MX parameters.
Cowtan, K. & Ten Eyck, L. F. Eigensystem analysis of the refinement of a small metalloprotein. Acta Crystallogr. D 56, 842–856 (2000).
Gruene, T., Hahn, H. W., Luebben, A. V., Meilleur, F. & Sheldrick, G. M. Refinement of macromolecular structures against neutron data with SHELXL2013. J. Appl. Crystallogr. 47, 462–466 (2014).
Catapano, L. et al. Neutron crystallographic refinement with REFMAC5 from the CCP4 suite. Acta Crystallogr. D 79, 1056–1070 (2023).
Diamond, R. A real-space refinement procedure for proteins. Acta Crystallogr. A 27, 436–452 (1971).
Casañal, A., Lohkamp, B. & Emsley, P. Current developments in Coot for macromolecular model building of electron cryo‐microscopy and crystallographic data. Protein Sci. 29, 1055–1064 (2020). This paper describes interactive model building and real-space refinement.
Croll, T. I. ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps. Acta Crystallogr. D 74, 519–530 (2018).
Brown, A. et al. Tools for macromolecular model building and refinement into electron cryo-microscopy reconstructions. Acta Crystallogr. D 71, 136–153 (2015).
Afonine, P. V. et al. Real-space refinement in PHENIX for cryo-EM and crystallography. Acta Crystallogr. D 74, 531–544 (2018).
Terwilliger, T. C. et al. Improved AlphaFold modeling with implicit experimental information. Nat. Methods 19, 1376–1382 (2022).
Roversi, P. & Tronrud, D. E. Ten things I ‘hate’ about refinement. Acta Crystallogr. D 77, 1497–1515 (2021).
Brünger, A. T. Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355, 472–475 (1992). This paper proposed the now universally used cross-validation Rfree method in macromolecular crystallography.
Urzhumtseva, L., Afonine, P. V., Adams, P. D. & Urzhumtsev, A. Crystallographic model quality at a glance. Acta Crystallogr. D 65, 297–300 (2009).
Alcorlo, M. et al. Molecular and structural basis of oligopeptide recognition by the Ami transporter system in pneumococci. PLoS Pathog. 20, e1011883 (2024).
Yamashita, K., Wojdyr, M., Long, F., Nicholls, R. A. & Murshudov, G. N. GEMMI and Servalcat restrain REFMAC 5. Acta Crystallogr. D 79, 368–373 (2023).
Tickle, I. J., Laskowski, R. A. & Moss, D. S. Error estimates of protein structure coordinates and deviations from standard geometry by full-matrix refinement of γ B- and β B2-crystallin. Acta Crystallogr. D 54, 243–252 (1998).
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
Davis, I. W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).
Lebedev, A. A., Vagin, A. A. & Murshudov, G. N. Model preparation in MOLREP and examples of model improvement using X-ray data. Acta Crystallogr. D 64, 33–39 (2008).
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D 66, 22–25 (2010).
McCoy, A. J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).
Keegan, R. M. & Winn, M. D. MrBUMP: an automated pipeline for molecular replacement. Acta Crystallogr. D 64, 119–124 (2008).
Keegan, R. M. et al. Recent developments in MrBUMP: better search-model preparation, graphical interaction with search models, and solution improvement and assessment. Acta Crystallogr. D 74, 167–182 (2018).
Vagin, A. & Lebedev, A. MoRDa, an automatic molecular replacement pipeline. Acta Crystallogr. A 71, s19–s19 (2015).
Long, F., Vagin, A. A., Young, P. & Murshudov, G. N. BALBES: a molecular-replacement pipeline. Acta Crystallogr. D 64, 125–132 (2008).
Keegan, R. M. et al. Evaluating the solution from MrBUMP and BALBES. Acta Crystallogr. D 67, 313–323 (2011).
Sammito, M. et al. ARCIMBOLDO_LITE: single-workstation implementation and use. Acta Crystallogr. D 71, 1921–1930 (2015).
Sammito, M. et al. Exploiting tertiary structure through local folds for crystallographic phasing. Nat. Methods 10, 1099–1101 (2013).
Sammito, M. et al. Structure solution with ARCIMBOLDO using fragments derived from distant homology models. FEBS J. 281, 4029–4045 (2014).
Millán, C. et al. Exploiting distant homologues for phasing through the generation of compact fragments, local fold refinement and partial solution combination. Acta Crystallogr. D 74, 290–304 (2018).
Simpkin, A. J. et al. SIMBAD: a sequence-independent molecular-replacement pipeline. Acta Crystallogr. D 74, 595–605 (2018).
Simpkin, A. J. et al. Using Phaser and ensembles to improve the performance of SIMBAD. Acta Crystallogr. D 76, 1–8 (2020).
Wojdyr, M., Keegan, R., Winter, G. & Ashton, A. DIMPLE — a pipeline for the rapid generation of difference maps from protein crystals with putatively bound ligands. Acta Crystallogr. A 69, s299–s299 (2013).
Usón, I. & Sheldrick, G. M. Modes and model building in SHELXE. Acta Crystallogr. D 80, 4–15 (2024).
Skubák, P. et al. A new MR-SAD algorithm for the automatic building of protein models from low-resolution X-ray data and a poor starting model. IUCrJ 5, 166–171 (2018).
Bond, P. S. & Cowtan, K. D. ModelCraft: an advanced automated model-building pipeline using Buccaneer. Acta Crystallogr. D 78, 1090–1098 (2022).
Kovalevskiy, O., Nicholls, R. A. & Murshudov, G. N. Automated refinement of macromolecular structures at low resolution using prior information. Acta Crystallogr. D 72, 1149–1161 (2016).
Joosten, R. P., Joosten, K., Murshudov, G. N. & Perrakis, A. PDB_REDO: constructive validation, more than just looking for errors. Acta Crystallogr. D 68, 484–496 (2012).
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D 66, 486–501 (2010).
Morin, A. et al. Collaboration gets the most out of software. eLife 2, e01456 (2013).
Helliwell, J. R. et al. Findable accessible interoperable re-usable (FAIR) diffraction data are coming to protein crystallography. Acta Crystallogr. D 75, 455–457 (2019).
Wilson, J., Ristic, M., Kirkwood, J., Hargreaves, D. & Newman, J. Predicting the effect of chemical factors on the pH of crystallization trials. iScience 23, 101219 (2020).
Zheng, H. et al. Validation of metal-binding sites in macromolecular structures with the CheckMyMetal web server. Nat. Protoc. 9, 156–170 (2014).
Richardson, J. S., Williams, C. J., Chen, V. B., Prisant, M. G. & Richardson, D. C. The bad and the good of trends in model building and refinement for sparse-data regions: pernicious forms of overfitting versus good new tools and predictions. Acta Crystallogr. D 79, 1071–1078 (2023). This paper describes stereochemical validation.
Dodson, E. The role of validation in macromolecular crystallography. Acta Crystallogr. D 54, 1109–1118 (1998).
Richardson, J. S. & Richardson, D. C. Amino acid preferences for specific locations at the ends of α helices. Science 240, 1648–1652 (1988).
Sánchez Rodríguez, F., Simpkin, A. J., Chojnowski, G., Keegan, R. M. & Rigden, D. J. Using deep-learning predictions reveals a large number of register errors in PDB depositions. IUCrJ 11, 938–950 (2024).
Borges, R. J. et al. SEQUENCE SLIDER: integration of structural and genetic data to characterize isoforms from natural sources. Nucleic Acids Res. 50, e50–e50 (2022).
Dialpuri, J. S. et al. Online carbohydrate 3D structure validation with the Privateer web app. Acta Crystallogr. F 80, 30–35 (2024).
Williams, C. J. et al. MolProbity: more and better reference data for improved all‐atom structure validation. Protein Sci. 27, 293–315 (2018).
Nicholls, R. A., Long, F. & Murshudov, G. N. Low-resolution refinement tools in REFMAC5. Acta Crystallogr. D 68, 404–417 (2012).
Gao, Y., Thorn, V. & Thorn, A. Errors in structural biology are not the exception. Acta Crystallogr. D 79, 206–211 (2023).
Chojnowski, G. Sequence-assignment validation in protein crystal structure models with checkMySequence. Acta Crystallogr. D 79, 559–568 (2023).
Croll, T. I. et al. Making the invisible enemy visible. Nat. Struct. Mol. Biol. 28, 404–408 (2021). This paper describes a collaborative, macromolecular crystallography effort in the scope of the COVID-19 pandemic.
Thorn, A. Artificial intelligence in the experimental determination and prediction of macromolecular structures. Curr. Opin. Struct. Biol. 74, 102368 (2022).
Croll, T. I., Williams, C. J., Chen, V. B., Richardson, D. C. & Richardson, J. S. Improving SARS-CoV-2 structures: peer review by early coordinate release. Biophys. J. 120, 1085–1096 (2021).
Tronrud, D. E. & Allen, J. P. Reinterpretation of the electron density at the site of the eighth bacteriochlorophyll in the FMO protein from Pelodictyon phaeum. Photosynth. Res. 112, 71–74 (2012).
von Bulow, R. et al. Defective oligomerization of arylsulfatase a as a cause of its instability in lysosomes and metachromatic leukodystrophy. J. Biol. Chem. 277, 9455–9461 (2002).
Monferrer, D. et al. Structural studies on the full‐length LysR‐type regulator TsaR from Comamonas testosteroni T‐2 reveal a novel open conformation of the tetrameric LTTR fold. Mol. Microbiol. 75, 1199–1214 (2010).
Hungler, A., Momin, A., Diederichs, K. & Arold, S. T. ContaMiner and ContaBase: a webserver and database for early identification of unwantedly crystallized protein contaminants. J. Appl. Crystallogr. 49, 2252–2258 (2016).
Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970–1979 (2001).
Caballero, I. et al. Detection of translational noncrystallographic symmetry in Patterson functions. Acta Crystallogr. D 77, 131–141 (2021).
Burnley, B. T., Afonine, P. V., Adams, P. D. & Gros, P. Modelling dynamics in protein crystal structures by ensemble refinement. eLife 1, e00311 (2012).
Holton, J. M., Classen, S., Frankel, K. A. & Tainer, J. A. The R‐factor gap in macromolecular crystallography: an untapped potential for insights on accurate structures. FEBS J. 281, 4046–4060 (2014).
Banari, A. et al. Advancing time-resolved structural biology: latest strategies in cryo-EM and X-ray crystallography. Nat. Methods https://doi.org/10.1038/s41592-025-02659-6 (2025).
Amunts, A. et al. Structure of the yeast mitochondrial large ribosomal subunit. Science 343, 1485–1489 (2014).
Kühlbrandt, W. The resolution revolution. Science 343, 1443–1444 (2014).
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).
Hofer, G., Wang, L., Xu, H. & Zou, X. Advances in protein electron diffraction (3D-ED/microED) sample preparation. Acta Crystallogr. A 79, C391–C391 (2023).
Acknowledgements
The authors thank all the lecturers that have contributed to the Madrid Crystallography School, including M. Martínez-Ripoll, F. X. Gomis-Rüth, J. M. García-Ruiz, R. Kahn, J. Navaza, C. Giacovazzo, P. Emsley, J. M. Mancheño, P. Adams, T. Grüne, I. Muñoz, P. Bernadó, R. Nicholls, R. Marabini, J. M. Carazo, J. Martín-Garcia, R. Fernández-Leiro, R. Boer, A. J. McCoy, B. Herguedas, T. T. Terwilliger, M. Fando, F. Sánchez-Rodríguez, R. Keegan and L. Catapano. They also thank all students for their active participation in discussions and contribution of interesting crystallographic challenges. This work was supported by (Ministry of Science and Innovation/Spanish State Research Agency/European Regional Development Fund/European Union) grants PID2021-128751NB-I00 to I.U., PID2023-153118OB-I00 to J.A.H., PID2023-153108OB-I00 to A.A. and PID2021-129038NB-I00 to M.S.; grant 2021-SGR-00425 (AGAUR) to I.U. and M.S.; grant Horizon Europe ID 101094131 and 101046133 to J.A.M.; The National Institutes of Health (grants R01GM071939, P01GM063210 and R24GM141254), as well as support from the Phenix Industrial Consortium and the US Department of Energy under contract no. DE-AC02-05CH11231 to P.V.A. The German Federal Ministry of Education and Research (grant no. 05K19WWA), Deutsche Forschungsgemeinschaft (project TH2135/2-1) to A.T. The Collaborative Computational Project Number 4 in Protein Crystallography (CCP4) and Biotechnology and Biological Research Council (BBSRC UK) grants BB/Y009991/1, BB/V015591/1 and BB/S007040/1 to E.K.
Author information
Authors and Affiliations
Contributions
Introduction (A.A., J.A.H., K.D. and I.U.); Experimentation (M.S., J.A.M., S.P., K.D. and I.U.); Results (P.V.A., K.D. and I.U.); Applications (J.A.H., E.K., K.D. and I.U.); Reproducibility and data deposition (A.T., K.D. and I.U.); Limitations and optimizations (K.D. and I.U.); Outlook (K.D. and I.U.); overview of the Primer (K.D. and I.U.).
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Methods Primers thanks Elspeth Garman, José Gavira and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Related links
CCP4 Cloud: https://cloud.ccp4.ac.uk
Crystallographic wiki: https://wiki.uni-konstanz.de/ccp4/index.php/Main_Page
CSIC Crystallography: https://www.xtal.iqfr.csic.es/Cristalografia/index-en.html
Fourier transform animations: http://chango.ibmb.csic.es/colibri
International Union of Crystallography (IUCr) dictionary: https://dictionary.iucr.org
MolProbity analysis: http://molprobity.biochem.duke.edu/
Protein Data Bank: https://www.wwpdb.org
Radiation dose calculation: https://raddo.se/
SBGRID: https://SBGrid.org
The PDBe Knowledge base: https://www.ebi.ac.uk/pdbe/pdbe-kb/
Zenodo: https://zenodo.org
Supplementary information
Glossary
- Arcimboldo methods
-
Phasing approaches that use small model fragments (such as α-helices) combined with density modification and fragment expansion to solve structures.
- Asymmetric unit
-
The simply connected smallest closed part of space from which, by application of all symmetry operations of the space group, the whole space is filled.
- Co-crystallization
-
The process of crystallizing two or more molecules together, often a macromolecule with a ligand or inhibitor to view their interaction; with cryoprotectant to minimize stress on fragile crystals or with heavier elements to modify diffraction.
- Conjugate gradient minimization
-
An optimization algorithm used in structure refinement to minimize the difference between observed and calculated structure factors by adjusting model parameters.
- Cryogenic cooling device
-
An apparatus (usually using liquid nitrogen) to rapidly cryo-cool crystals and/or maintain them at the low temperature required to reduce radiation damage during X-ray exposure.
- Crystallization drop
-
A (sub)microlitre droplet containing protein, buffer and precipitant that is used to grow protein crystals.
- Diffraction limit
-
The maximum resolution (smallest detail) that can be resolved in a crystal structure, determined by the quality of the crystal and data.
- Direct methods
-
A set of computational techniques exploiting statistical relationships among structure factors, used to solve the phase problem ab initio and in experimental phasing.
- Electron density distribution
-
A 3D map of the asymmetric unit showing electron per cubic ångström levels, used to model atomic positions and establish structural features.
- Friedel opposites
-
Pairs of reflections related by inversion in reciprocal space (for example, (h,k,l) and (–h,–k,–l); their intensities are equal in the absence of anomalous scattering.
- Goniometer
-
A precision device that holds the crystal and allows its controlled rotation during X-ray diffraction data collection.
- Laue groups
-
Symmetry classifications based on the diffraction pattern, considering the point group of the crystal without translational symmetry.
- Model bias
-
The electron density map is calculated with experimental amplitudes but phases derived from the current model. Hence, the model influences the map and errors can mask real structural features.
- Monochromatic
-
Radiation of a single wavelength, typically used for high-resolution diffraction experiments.
- Mosaicity
-
A measure of the spread of crystal plane orientations, given by the rotation angle over which the signal corresponding to a Bragg reflection is distributed.
- Non-crystallographic symmetry
-
Occurs when copies of a molecule in the asymmetric unit are related by a rotation or translation that is not a symmetry operation of the crystal space group. Translational non-crystallographic symmetry causes aberrant diffraction and complicates structure solution.
- Phase problem
-
The inability to directly measure the phase component of diffracted X-rays (neutrons or electrons), which is essential for reconstructing electron density maps. Phasing means providing approximate values for enough phases to be able to reconstruct an initial model of the structure in the crystal.
- Polychromatic
-
Radiation composed of multiple wavelengths; often used in Laue diffraction experiments.
- Real space
-
The physical, 3D coordinate system in which atoms and electron densities are located within a crystal structure.
- Reciprocal space
-
An abstract space used in crystallography where diffraction data are represented; each point in a reciprocal space lattice corresponds to a set of planes in real space.
- Structure factors
-
Mathematical complex quantities describing both the amplitude and phase of diffracted X-rays, calculated as a vector sum of atomic contributions within the unit cell.
- Systematic grid searches
-
Automated exploration of crystallization conditions by systematically varying parameters such as pH, temperature and precipitant concentration. Also, automatic exploration of parameters in computational procedures like refinement and molecular replacement.
- Voxel
-
A 3D pixel representing a small volume element in an electron density map.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Afonine, P.V., Albert, A., Diederichs, K. et al. Macromolecular crystallography. Nat Rev Methods Primers 5, 64 (2025). https://doi.org/10.1038/s43586-025-00433-8
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s43586-025-00433-8


