Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Operando ultraviolet–visible optical spectroelectrochemistry of surfaces

A Publisher Correction to this article was published on 21 January 2026

This article has been updated

Abstract

Ultraviolet–visible spectroelectrochemistry (SEC) is a powerful and accessible operando technique for investigating redox-active interfaces such as electrodes. Its potential has not been fully realized owing to limitations in sensitivity, acquisition speed and analysis workflows. In this Primer, we describe how recent developments in optics, detection hardware and synchronization methods now allow for high-resolution, data-rich SEC measurements. We focus on practical strategies for building performant SEC set-ups, introduce a formalism based on differential coulometric attenuation for interpreting spectral changes and outline workflows for extracting redox stoichiometries, kinetics and coverage from complex data. Emphasizing process-sensitive over population-sensitive analysis, we show how this approach enables a clearer understanding of dynamic, disordered interfacial systems. Examples are provided from electrocatalysis, particularly the oxygen evolution reaction, but the principles described are broadly applicable. Throughout, we highlight pitfalls, assumptions and design choices to guide researchers looking to implement quantitative SEC in their own work.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A simplified example of overlapping processes that may occur at an interface.
Fig. 2: Typical spectroelectrochemistry experiments and example data.
Fig. 3: Example analysis of synthetic cyclic voltammetry-spectroelectrochemistry data.
Fig. 4: Example analysis of synthetic square-wave voltammetry-spectroelectrochemistry data.
Fig. 5: Example analysis of synthetic potential decay-spectroelectrochemistry data.
Fig. 6: Extraction of the binding and interaction energy from the rate-limiting intermediate for oxygen evolution reaction in iridium oxide.
Fig. 7: Tafel slope reconstruction using optical data in cobalt oxyhydroxide (CoOOH) oxygen evolution reaction catalysts.
Fig. 8: Active state quantification and analysis of charging/discharging kinetics in iron-incorporated nickel oxyhydroxide (NiFOOH) oxygen evolution reaction catalysts.
Fig. 9: Measurement of the spectra of charged ions of materials used in photovoltaics and organic electrochemical transistors.

Similar content being viewed by others

Change history

References

  1. Kim, T., Song, W., Son, D.-Y., Ono, L. K. & Qi, Y. Lithium-ion batteries: outlook on present, future, and hybridized technologies. J. Mater. Chem. A 7, 2942–2964 (2019).

    Article  Google Scholar 

  2. Liu, T. et al. Current challenges and routes forward for nonaqueous lithium-air batteries. Chem. Rev. 120, 6558–6625 (2020).

    Article  Google Scholar 

  3. Burke, M. S., Enman, L. J., Batchellor, A. S., Zou, S. & Boettcher, S. W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: activity trends and design principles. Chem. Mater. 27, 7549–7558 (2015).

    Article  Google Scholar 

  4. Chung, M. et al. Direct propylene epoxidation via water activation over Pd–Pt electrocatalysts. Science 383, 49–55 (2024).

    Article  ADS  Google Scholar 

  5. Chang, W., Jain, A., Rezaie, F. & Manthiram, K. Lithium-mediated nitrogen reduction to ammonia via the catalytic solid–electrolyte interphase. Nat. Catal. 7, 231–241 (2024).

    Article  Google Scholar 

  6. Twight, L. et al. Trace Fe activates perovskite nickelate OER catalysts in alkaline media via redox-active surface Ni species formed during electrocatalysis. J. Catal. 432, 115443 (2024).

    Article  Google Scholar 

  7. Sharpe, L. R., Heineman, W. R. & Elder, R. C. EXAFS spectroelectrochemistry. Chem. Rev. 90, 705–722 (1990).

    Article  Google Scholar 

  8. Zheng, W. Beginner’s guide to Raman spectroelectrochemistry for electrocatalysis study. Chem. Methods 3, e202200042 (2023).

    Article  Google Scholar 

  9. Li, J. et al. Ultrasensitive plasmon‐enhanced infrared spectroelectrochemistry. Angew. Chem. Int. Ed. 63, e202319246 (2024).

    Article  Google Scholar 

  10. Nemes, C. T., Swierk, J. R. & Schmuttenmaer, C. A. A terahertz-transparent electrochemical cell for in situ terahertz spectroelectrochemistry. Anal. Chem. 90, 4389–4396 (2018).

    Article  ADS  Google Scholar 

  11. Colburn, A. W., Levey, K. J., O’Hare, D. & Macpherson, J. V. Lifting the lid on the potentiostat: a beginner’s guide to understanding electrochemical circuitry and practical operation. Phys. Chem. Chem. Phys. 23, 8100–8117 (2021).

    Article  Google Scholar 

  12. Selim, S. et al. Impact of oxygen vacancy occupancy on charge carrier dynamics in BiVO4 photoanodes. J. Am. Chem. Soc. 141, 18791–18798 (2019).

    Article  ADS  Google Scholar 

  13. Barroso, M. et al. Dynamics of photogenerated holes in surface modified α-Fe2O3 photoanodes for solar water splitting. Proc. Natl Acad. Sci. USA 109, 15640–15645 (2012).

    Article  ADS  Google Scholar 

  14. Moss, B. et al. Linking in situ charge accumulation to electronic structure in doped SrTiO3 reveals design principles for hydrogen-evolving photocatalysts. Nat. Mater. 20, 511–517 (2021).

    Article  ADS  Google Scholar 

  15. Astuti, Y. et al. Proton-coupled electron transfer of flavodoxin immobilized on nanostructured tin dioxide electrodes: thermodynamics versus kinetics control of protein redox function. J. Am. Chem. Soc. 126, 8001–8009 (2004).

    Article  ADS  Google Scholar 

  16. Astuti, Y., Topoglidis, E., Cass, A. G. & Durrant, J. R. Direct spectroelectrochemistry of peroxidases immobilised on mesoporous metal oxide electrodes: towards reagentless hydrogen peroxide sensing. Anal. Chim. Acta 648, 2–6 (2009).

    Article  Google Scholar 

  17. Bevan, A. W. et al. Cyclic voltammetry and spectroelectrochemistry of two common thiophene polymers reveals ion diffusion and polaron wave function extent. Chem. Mater. 37, 1949–1960 (2025).

    Article  Google Scholar 

  18. Guo, J., Moss, B. & Clarke, T. M. Quantifying triplet formation in conjugated polymer/non-fullerene acceptor blends. J. Mater. Chem. A 10, 20874–20885 (2022).

    Article  Google Scholar 

  19. Alsufyani, M. et al. The effect of organic semiconductor electron affinity on preventing parasitic oxidation reactions limiting performance of n‐type organic electrochemical transistors. Adv. Mater. 36, e2403911 (2024).

    Article  Google Scholar 

  20. Moss, B. et al. Cooperative effects drive water oxidation catalysis in cobalt electrocatalysts through the destabilization of intermediates. J. Am. Chem. Soc. 146, 8915–8927 (2024).

    Article  ADS  Google Scholar 

  21. Liang, C. et al. Role of electrolyte pH on water oxidation for iridium oxides. J. Am. Chem. Soc. 146, 8928–8938 (2024).

    Article  ADS  Google Scholar 

  22. Rao, R. R. et al. Unraveling the role of particle size and nanostructuring on the oxygen evolution activity of Fe-doped NiO. ACS Catal. 14, 11389–11399 (2024).

    Article  Google Scholar 

  23. Liang, C. et al. Unravelling the effects of active site density and energetics on the water oxidation activity of iridium oxides. Nat. Catal. 7, 763–775 (2024).

    Article  Google Scholar 

  24. Lee, S., Moysiadou, A., Chu, Y.-C., Chen, H. M. & Hu, X. Tracking high-valent surface iron species in the oxygen evolution reaction on cobalt iron (oxy)hydroxides. Energy Environ. Sci. https://doi.org/10.1039/d1ee02999a (2021).

    Article  Google Scholar 

  25. Loos, S., Zaharieva, I., Chernev, P., Lißner, A. & Dau, H. Electromodified NiFe alloys as electrocatalysts for water oxidation: mechanistic implications of time‐resolved UV/Vis tracking of oxidation state changes. ChemSusChem 12, 1966–1976 (2019).

    Article  Google Scholar 

  26. Corby, S. et al. Separating bulk and surface processes in NiOx electrocatalysts for water oxidation. Sustain. Energy Fuels 4, 5024–5030 (2020).

    Article  Google Scholar 

  27. Francàs, L. et al. Spectroelectrochemical study of water oxidation on nickel and iron oxyhydroxide electrocatalysts. Nat. Commun. 10, 5208 (2019).

    Article  ADS  Google Scholar 

  28. Risch, M. et al. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environ. Sci. 8, 661–674 (2015).

    Article  Google Scholar 

  29. Song, J. et al. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 49, 2196–2214 (2020).

    Article  Google Scholar 

  30. Dionigi, F. & Strasser, P. NiFe‐based (oxy)hydroxide catalysts for oxygen evolution reaction in non‐acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016).

    Article  Google Scholar 

  31. Frei, H. Time-resolved vibrational and electronic spectroscopy for understanding how charges drive metal oxide catalysts for water oxidation. J. Phys. Chem. Lett. 13, 7952–7964 (2022).

    Article  Google Scholar 

  32. Hu, B., Kuo, D.-Y., Paik, H., Schlom, D. G. & Suntivich, J. Enthalpy and entropy of oxygen electroadsorption on RuO2(110) in alkaline media. J. Chem. Phys. 152, 094704 (2020).

    Article  ADS  Google Scholar 

  33. Kuo, D.-Y. et al. Influence of surface adsorption on the oxygen evolution reaction on IrO2(110). J. Am. Chem. Soc. 139, 3473–3479 (2017).

    Article  ADS  Google Scholar 

  34. Laborda, E., García-Martínez, J. & Molina, A. Spectroelectrochemistry for the study of reversible electrode reactions with complex stoichiometries. Electrochem. Commun. 123, 106915 (2021).

    Article  Google Scholar 

  35. Elvers, B. J. et al. Towards operando IR‐ and UV–Vis‐spectro‐electrochemistry: a comprehensive matrix factorisation study on sensitive and transient molybdenum and tungsten mono‐dithiolene complexes. Chem. Methods 1, 22–35 (2021).

    Article  Google Scholar 

  36. Zhai, Y., Zhu, Z., Zhou, S., Zhu, C. & Dong, S. Recent advances in spectroelectrochemistry. Nanoscale 10, 3089–3111 (2018).

    Article  Google Scholar 

  37. Niu, J. & Dong, S. Transmission spectroelectrochemistry. Rev. Anal. Chem. 15, 1–171 (1996).

    Article  Google Scholar 

  38. Goldsmith, Z. K. et al. Characterization of NiFe oxyhydroxide electrocatalysts by integrated electronic structure calculations and spectroelectrochemistry. Proc. Natl Acad. Sci. USA 114, 3050–3055 (2017).

    Article  ADS  Google Scholar 

  39. Boyle, W. S. & Smith, G. E. Charge coupled semiconductor devices. Bell Syst. Tech. J. 49, 587–593 (1970).

    Article  ADS  Google Scholar 

  40. Fossum, E. R. Active pixel sensors: are CCDs dinosaurs? Charg. Coupled Devices Solid State Opt. Sens. https://doi.org/10.1117/12.148585 (1993).

  41. Hirayama, T. The evolution of CMOS image sensors. In 2013 IEEE Asian Solid-State Circuits Conf. (A-SSCC) 5–8 (IEEE, 2013).

  42. Elgrishi, N. et al. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95, 197–206 (2018).

    Article  Google Scholar 

  43. Astuti, Y., Topoglidis, E., Gilardi, G. & Durrant, J. R. Cyclic voltammetry and voltabsorptometry studies of redox proteins immobilised on nanocrystalline tin dioxide electrodes. Bioelectrochemistry 63, 55–59 (2004).

    Article  Google Scholar 

  44. Zheng, W. iR compensation for electrocatalysis studies: considerations and recommendations. ACS Energy Lett. 8, 1952–1958 (2023).

    Article  Google Scholar 

  45. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Article  Google Scholar 

  46. Stevens, M. B., Trang, C. D. M., Enman, L. J., Deng, J. & Boettcher, S. W. Reactive Fe-sites in Ni/Fe (oxy)hydroxide are responsible for exceptional oxygen electrocatalysis activity. J. Am. Chem. Soc. 139, 11361–11364 (2017).

    Article  ADS  Google Scholar 

  47. Conway, B. E. & Bourgault, P. L. The electrochemical behavior of the nickel–nickel oxide electrode. Can. J. Chem. 37, 292–307 (1959).

    Article  ADS  Google Scholar 

  48. Martinson, C. A., van Schoor, G., Uren, K. R. & Bessarabov, D. Characterisation of a PEM electrolyser using the current interrupt method. Int. J. Hydrog. Energy 39, 20865–20878 (2014).

    Article  ADS  Google Scholar 

  49. Watkins, N. B. et al. Resin 3D printing enables accessible electrochemical cell design. Chem. Catal. 4, 101120 (2024).

    Google Scholar 

  50. Benck, J. D., Pinaud, B. A., Gorlin, Y. & Jaramillo, T. F. Substrate selection for fundamental studies of electrocatalysts and photoelectrodes: inert potential windows in acidic, neutral, and basic electrolyte. PLoS ONE 9, e107942 (2014).

    Article  ADS  Google Scholar 

  51. Rao, R. R. et al. Spectroelectrochemical analysis of the water oxidation mechanism on doped nickel oxides. J. Am. Chem. Soc. 144, 7622–7633 (2022).

    Article  ADS  Google Scholar 

  52. Lerner, J. M. Imaging spectrometer fundamentals for researchers in the biosciences — a tutorial. Cytom. Part A 69A, 712–734 (2006).

    Article  Google Scholar 

  53. Vu, P. et al. Design of prototype scientific CMOS image sensors. High Energy Opt. Infrared Detect. Astron. III https://doi.org/10.1117/12.790229 (2008).

    Article  Google Scholar 

  54. Chen, Z., Dinh, H. N. & Miller, E. Photoelectrochemical water splitting. Standards Exp. Methods Protoc. https://doi.org/10.1007/978-1-4614-8298-7 (2013).

    Article  Google Scholar 

  55. Lewandowski, A., Jakobczyk, P., Galinski, M. & Biegun, M. Self-discharge of electrochemical double layer capacitors. Phys. Chem. Chem. Phys. 15, 8692–8699 (2013).

    Article  Google Scholar 

  56. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  ADS  Google Scholar 

  57. Cheng, J. et al. Brønsted−Evans−Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 112, 1308–1311 (2008).

    Article  Google Scholar 

  58. Akhade, S. A., Nidzyn, R. M., Rostamikia, G. & Janik, M. J. Using Brønsted−Evans−Polanyi relations to predict electrode potential-dependent activation energies. Catal. Today 312, 82–91 (2018).

    Article  Google Scholar 

  59. Vojvodic, A. et al. On the behavior of Brønsted–Evans–Polanyi relations for transition metal oxides. J. Chem. Phys. 134, 244509 (2011).

    Article  ADS  Google Scholar 

  60. Rossmeisl, J., Qu, Z.-W., Zhu, H., Kroes, G.-J. & Nørskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  Google Scholar 

  61. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  Google Scholar 

  62. Frydendal, R., Paoli, E. A., Chorkendorff, I., Rossmeisl, J. & Stephens, I. E. L. Toward an active and stable catalyst for oxygen evolution in acidic media: Ti‐stabilized MnO2. Adv. Energy Mater. 5, 1500991 (2015).

    Article  Google Scholar 

  63. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  Google Scholar 

  64. Scott, S. B. et al. The low overpotential regime of acidic water oxidation part I: the importance of O2 detection. Energy Environ. Sci. 15, 1977–1987 (2022).

    Article  Google Scholar 

  65. Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    Article  ADS  Google Scholar 

  66. Aggarwal, S. et al. PyTASER: simulating transient absorption spectroscopy (TAS) for crystals from first principles. J. Open Source Softw. 9, 5999 (2024).

    Article  ADS  Google Scholar 

  67. Guevarra, D. et al. Orchestrating nimble experiments across interconnected labs. Digit. Discov. 2, 1806–1812 (2023).

    Article  Google Scholar 

Download references

Acknowledgements

B.M. acknowledges the Lindemann Trust and Schmidt Sciences for funding. He is also indebted to K. K. Lim and X. Li for thoughtful discussion that clarified many points on this work. J.R.D. and I.E.L.S. acknowledge the BP International Centre for Advanced Materials (bp-ICAM) as well as the EPSRC grant EP/W033232/1, which made this research possible. This project was supported by the Royal Academy of Engineering under the Research Fellowship programme (R.R.R.). C.L. acknowledges the Imperial College London and China Scholarship Council for the IC–CSC joint scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Introduction: B.M., C.L., L.G.V., S.S., R.R.R., I.E.L.S. and J.R.D.; Experimentation: B.M., C.L., A.C., L.G.V., S.S., K.M., R.R.R., I.E.L.S. and J.R.D.; Results: B.M., C.L., A.C., S.S., K.M., A.W., R.R.R., I.E.L.S., J.R.D. and R.J.R.J.; Applications: B.M., C.L., A.C., S.S., K.M., R.R.R., I.E.L.S. and J.R.D.; Reproducibility and data deposition: B.M., C.L., S.S., R.R.R., I.E.L.S. and J.R.D.; Limitations and optimizations: B.M., C.L., A.C., L.G.V., S.S., K.M., A.W., R.R.R., I.E.L.S. and J.R.D.; Outlook: B.M., C.L., A.C., L.G.V., S.S., R.R.R., I.E.L.S. and J.R.D.

Corresponding author

Correspondence to Benjamin Moss.

Ethics declarations

Competing interests

A.C. is an employee of Oxford Instruments Andor (OIA) and contributed his perspective to discussions of the detector technologies with respect to the SEC spectroscopic methodology. No financial or commercial support has been provided by OIA. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Evgenia Dmitrieva, Marcel Risch and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

GitHub archive: https://github.com/BenjaminSMoss/NRMP

ixdat: https://ixdat.readthedocs.io

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moss, B., Liang, C., Carpenter, A. et al. Operando ultraviolet–visible optical spectroelectrochemistry of surfaces. Nat Rev Methods Primers 5, 73 (2025). https://doi.org/10.1038/s43586-025-00445-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00445-4

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing