Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Correlative cryogenic light and electron tomography of eukaryotic cells

Abstract

The importance of cryogenic electron tomography (cryo-ET), particularly cryogenic cellular tomography, in uncovering the complexity of eukaryotic cell systems is only beginning to be fully recognized. As the only structural technique capable of generating detailed, three-dimensional visualizations of cellular architecture in situ at sub-nanometre resolution, cryo-ET offers unmatched insights into cell biology and disease mechanisms. Integrating cryo-ET with light microscopy techniques allows researchers to localize specific regions of interest, then directly correlate them with high-resolution structural data, enabling the investigation of cellular components and dynamic processes with a level of precision previously unattainable. Despite its transformative potential, mastering integrative light microscopy techniques and cryo-ET workflows remains highly challenging. These techniques require specialized equipment, extensive hands-on experience and a deep understanding of practical nuances, many of which are acquired only through practice. In this Primer, we highlight key considerations, tips and common pitfalls to help guide newcomers to these approaches as they navigate how to begin and what challenges to anticipate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A combined cryogenic correlative light and electron microscopy and cryogenic electron tomography workflow for adherent eukaryotic cells.
Fig. 2: Cryogenic electron tomography grids and grid tracking.
Fig. 3: Cryogenic electron microscopy substrates and maskless micropatterning do not compromise plasma membrane integrity.
Fig. 4: Cryogenic correlative light and electron microscopy tracking transport vesicles.
Fig. 5: Lamella targeting using cryo-confocal light microscopy.
Fig. 6: Post-milling fluorescence detection of NLR family pyrin domain-containing 3-activated apoptosis-associated speck-like protein complexes.
Fig. 7: Targeting of glutamatergic synapses with post-milling fluorescence.

Similar content being viewed by others

References

  1. Chari, A. & Stark, H. Prospects and limitations of high-resolution single-particle cryo-electron microscopy. Annu. Rev. Biophys. 52, 391–411 (2023).

    Article  Google Scholar 

  2. Bäuerlein, F. J. B. & Baumeister, W. Towards visual proteomics at high resolution. J. Mol. Biol. 433, 167187 (2021).

    Article  Google Scholar 

  3. Beck, M. & Baumeister, W. Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol. 26, 825–837 (2016).

    Article  Google Scholar 

  4. Young, L. N. & Villa, E. Bringing structure to cell biology with cryo-electron tomography. Annu. Rev. Biophys. 52, 573–595 (2023).

    Article  Google Scholar 

  5. Turk, M. & Baumeister, W. The promise and the challenges of cryo-electron tomography. FEBS Lett. 594, 3243–3261 (2020).

    Article  Google Scholar 

  6. Majumder, P. & Zhang, P. In situ cryo-electron microscopy and tomography of cellular and organismal samples. Curr. Opin. Struct. Biol. 93, 103076 (2025).

    Article  Google Scholar 

  7. Nogales, E. & Mahamid, J. Bridging structural and cell biology with cryo-EM. Nature 628, 47–56 (2024).

    Article  ADS  Google Scholar 

  8. Adrian, M., Dubochet, J., Lepault, J. & McDowall, A. W. Cryo-electron microscopy of viruses. Nature 308, 32–36 (1984).

    Article  ADS  Google Scholar 

  9. Dubochet, J. et al. Cryo-electron microscopy of vitrified specimens. Q. Rev. Biophys. 21, 129–228 (1988).

    Article  Google Scholar 

  10. Sartori, A. et al. Correlative microscopy: bridging the gap between fluorescence light microscopy and cryo-electron tomography. J. Struct. Biol. 160, 135–145 (2007).

    Article  Google Scholar 

  11. Godman, G. C., Morgan, C., Breitenfeld, P. M. & Rose, H. M. A correlative study by electron and light microscopy of the development of type 5 adenovirus: II. Light microscopy. J. Exp. Med. 112, 383–402 (1960).

    Article  Google Scholar 

  12. Morgan, C., Godman, G. C., Breitenfeld, P. M. & Rose, H. M. A correlative study by electron and light microscopy of the development of type 5 adenovirus: I. Electron microscopy. J. Exp. Med. 112, 373–382 (1960).

    Article  Google Scholar 

  13. Dow, L. P. et al. Morphological control enables nanometer-scale dissection of cell-cell signaling complexes. Nat. Commun. 13, 7831 (2022).

    Article  ADS  Google Scholar 

  14. Kim, J. Y. et al. Morphological comparison of primary neurons cryo-preserved under varied conditions. Microsc. Microanal. 29, 956–957 (2023).

    Article  Google Scholar 

  15. Rigort, A. & Leis, A. in Cryo-electron Tomography A Journey from Sample Preparation to Data Mining (eds Hanein, D. & Volkmann, N.) 21–60 (Academic Press, 2025).

  16. Toro-Nahuelpan, M. et al. Tailoring cryo-electron microscopy grids by photo-micropatterning for in-cell structural studies. Nat. Methods 17, 50–54 (2020).

    Article  Google Scholar 

  17. Dobro, M. J., Melanson, L. A., Jensen, G. J. & McDowall, A. W. Plunge freezing for electron cryomicroscopy. Methods Enzymol. 481, 63–82 (2010).

    Article  Google Scholar 

  18. Lam, V. & Villa, E. in cryoEM. Methods and Protocols Vol. 2215 (eds Gonen, T. & Nannenga, B.L.) 49–82 (Humana, 2021).

  19. Marston, D. J. et al. High Rac1 activity is functionally translated into cytosolic structures with unique nanoscale cytoskeletal architecture. Proc. Natl Acad. Sci. USA 116, 1267–1272 (2019).

    Article  ADS  Google Scholar 

  20. Fäßler, F., Zens, B., Hauschild, R. & Schur, F. K. M. 3D printed cell culture grid holders for improved cellular specimen preparation in cryo-electron microscopy. J. Struct. Biol. 212, 107633 (2020).

    Article  Google Scholar 

  21. Aebi, U. & Pollard, T. D. A glow discharge unit to render electron microscope grids and other surfaces hydrophilic. J. Electron Microsc. Tech. 7, 29–33 (1987).

    Article  Google Scholar 

  22. Isabell, T. C., Fischione, P. E., O’Keefe, C. & Guruz, M. U. & Dravid, V. P. Plasma cleaning and its applications for electron microscopy. Microsc. Microanal. 5, 126–135 (1999).

    Article  ADS  Google Scholar 

  23. Gaietta, G. et al. Novel cryo-tomography workflow reveals nanometer-scale responses of epithelial cells to matrix stiffness and dimensionality. Mol. Biol. Cell 33, br28 (2022).

    Article  Google Scholar 

  24. Engel, L. et al. Extracellular matrix micropatterning technology for whole cell cryogenic electron microscopy studies. J. Micromech. Microeng. 29, 115018 (2019).

    Article  ADS  Google Scholar 

  25. Kai, F. et al. ECM dimensionality tunes actin tension to modulate endoplasmic reticulum function and spheroid phenotypes of mammary epithelial cells. EMBO J. 41, e109205 (2022).

    Article  Google Scholar 

  26. Wu, G. H. et al. Multi-scale 3D cryo-correlative microscopy for vitrified cells. Structure 28, 1231–1237.e3 (2020).

    Article  Google Scholar 

  27. Moravcová, J., Pinkas, M., Holbová, R. & Nováček, J. Preparation and cryo-FIB micromachining of saccharomyces cerevisiae for cryo-electron tomography. J. Vis. Exp. 2021, e62351 (2021).

    Google Scholar 

  28. Gaietta, G., Swift, M. F., Volkmann, N. & Hanein, D. Rapid tool for cell nanoarchitecture integrity assessment. J. Struct. Biol. 213, 107801 (2021).

    Article  Google Scholar 

  29. Bailey, S. M. & Zasadzinski, J. A. N. Validation of convection-limited cooling of samples for freeze-fracture electron microscopy. J. Microsc. 163, 307–320 (1991).

    Article  Google Scholar 

  30. Sartori, N., Richter, K. & Dubochet, J. Vitrification depth can be increased more than 10-fold by high-pressure freezing. J. Microsc. 172, 55–61 (1993).

    Article  Google Scholar 

  31. Zhao, D. Y. et al. Autophagy preferentially degrades non-fibrillar polyQ aggregates. Mol. Cell 84, 1980–1994.e8 (2024).

    Article  Google Scholar 

  32. Hsieh, C. E., Leith, A. D., Mannella, C. A., Frank, J. & Marko, M. Towards high-resolution three-dimensional imaging of native mammalian tissue: electron tomography of frozen-hydrated rat liver sections. J. Struct. Biol. 153, 1–13 (2006).

    Article  Google Scholar 

  33. Kodera, C. et al. A systematic approach of vitrification by high pressure freezing. Methods Microsc. 1, 31–48 (2024).

    Article  Google Scholar 

  34. Kelley, K. et al. Waffle method: a general and flexible approach for improving throughput in FIB-milling. Nat. Commun. 13, 1857 (2022).

    Article  ADS  Google Scholar 

  35. Rubino, S. et al. A site-specific focused-ion-beam lift-out method for cryo transmission electron microscopy. J. Struct. Biol. 180, 572–576 (2012).

    Article  Google Scholar 

  36. Schiøtz, O. H. et al. Serial lift-out: sampling the molecular anatomy of whole organisms. Nat. Methods 21, 1684–1692 (2024).

    Article  Google Scholar 

  37. Hanein, D. & Volkmann, N. Correlative light-electron microscopy. Adv. Protein Chem. Struct. Biol. 82, 91–99 (2011).

    Article  Google Scholar 

  38. Delorme-Walker, V. et al. Toxofilin upregulates the host cortical actin cytoskeleton dynamics, facilitating Toxoplasma invasion. J. Cell Sci. 125, 4333–4342 (2012).

    Google Scholar 

  39. Plitzko, J. M., Rigort, A. & Leis, A. Correlative cryo-light microscopy and cryo-electron tomography: from cellular territories to molecular landscapes. Curr. Opin. Biotechnol. 20, 83–89 (2009).

    Article  Google Scholar 

  40. Schwartz, C. L., Sarbash, V. I., Ataullakhanov, F. I., McIntosh, J. R. & Nicastro, D. Cryo-fluorescence microscopy facilitates correlations between light and cryo-electron microscopy and reduces the rate of photobleaching. J. Microsc. 227, 98–109 (2007).

    Article  MathSciNet  Google Scholar 

  41. Dahlberg, P. D. & Moerner, W. E. Cryogenic super-resolution fluorescence and electron microscopy correlated at the nanoscale. Annu. Rev. Phys. Chem. 72, 253–278 (2021).

    Article  Google Scholar 

  42. Chang, Y. W. et al. Correlated cryogenic photoactivated localization microscopy and electron cryotomography. Nat. Methods 11, 737–739 (2014).

    Article  Google Scholar 

  43. Perez, D. et al. Exploring transient states of PAmKate to enable improved cryogenic single-molecule imaging. J. Am. Chem. Soc. 146, 28707–28716 (2024).

    Article  ADS  Google Scholar 

  44. Sartor, A. M., Dahlberg, P. D., Perez, D. & Moerner, W. E. Characterization of mApple as a red fluorescent protein for cryogenic single-molecule imaging with turn-off and turn-on active control mechanisms. J. Phys. Chem. B 127, 2690–2700 (2023).

    Article  Google Scholar 

  45. Carter, S. D. et al. Distinguishing signal from autofluorescence in cryogenic correlated light and electron microscopy of mammalian cells. J. Struct. Biol. 201, 15–25 (2018).

    Article  Google Scholar 

  46. Yu, P. S., Kim, C. U. & Lee, J. B. Cryogenic single-molecule fluorescence imaging. BMB Rep. 58, 2–7 (2025).

    Article  Google Scholar 

  47. Szöllösi, J., Lockett, S. J., Balázs, M. & Waldman, F. M. Autofluorescence correction for fluorescence in situ hybridization. Cytometry 20, 356–361 (1995).

    Article  Google Scholar 

  48. Mansfield, J. R., Gossage, K. W., Hoyt, C. C. & Levenson, R. M. Autofluorescence removal, multiplexing, and automated analysis methods for in-vivo fluorescence imaging. J. Biomed. Opt. 10, 41207 (2005).

    Article  Google Scholar 

  49. Fung, H. K. H. et al. Genetically encoded multimeric tags for subcellular protein localization in cryo-EM. Nat. Methods 20, 1900–1908 (2023).

    Article  Google Scholar 

  50. Silvester, E. et al. DNA origami signposts for identifying proteins on cell membranes by electron cryotomography. Cell 184, 1110–1121.e16 (2021).

    Article  Google Scholar 

  51. Sigmund, F. et al. Genetically encoded barcodes for correlative volume electron microscopy. Nat. Biotechnol. 41, 1734–1745 (2023).

    Article  Google Scholar 

  52. Lim, S. D., Huang, Q. & Seibel, E. J. Evaluation of formalin fixation for tissue biopsies using shear wave laser speckle imaging system. IEEE J. Transl. Eng. Health Med. 7, 1500110 (2019).

    Article  Google Scholar 

  53. Tuijtel, M. W., Koster, A. J., Jakobs, S., Faas, F. G. A. & Sharp, T. H. Correlative cryo super-resolution light and electron microscopy on mammalian cells using fluorescent proteins. Sci. Rep. 9, 1369 (2019).

    Article  ADS  Google Scholar 

  54. Last, M. G. F., Tuijtel, M. W., Voortman, L. M. & Sharp, T. H. Selecting optimal support grids for super-resolution cryogenic correlated light and electron microscopy. Sci. Rep. 13, 8270 (2023).

    Article  ADS  Google Scholar 

  55. Waldchen, S., Lehmann, J., Klein, T., Van De Linde, S. & Sauer, M. Light-induced cell damage in live-cell super-resolution microscopy. Sci. Rep. 5, 15348 (2015).

    Article  ADS  Google Scholar 

  56. Alghamdi, R. A., Exposito-Rodriguez, M., Mullineaux, P. M., Brooke, G. N. & Laissue, P. P. Assessing phototoxicity in a mammalian cell line: how low levels of blue light affect motility in PC3 cells. Front. Cell Dev. Biol. 9, 738786 (2021).

    Article  Google Scholar 

  57. Henglein, A. Reactivity of free radicals at ambient and low temperatures. Ultramicroscopy 14, 195–200 (1984).

    Article  Google Scholar 

  58. Dahlberg, P. D., Perez, D., Hecksel, C. W., Chiu, W. & Moerner, W. E. Metallic support films reduce optical heating in cryogenic correlative light and electron tomography. J. Struct. Biol. 214, 107901 (2022).

    Article  Google Scholar 

  59. Hagen, W. J. H. Light ‘em up: efficient screening of gold foil grids in cryo-EM. Front. Mol. Biosci. 9, 912363 (2022).

    Article  Google Scholar 

  60. Schorb, M. & Briggs, J. A. G. Correlated cryo-fluorescence and cryo-electron microscopy with high spatial precision and improved sensitivity. Ultramicroscopy 143, 24–32 (2014).

    Article  Google Scholar 

  61. Koning, R. I. et al. Correlative cryo-fluorescence light microscopy and cryo-electron tomography of Streptomyces. Methods Cell Biol. 124, 217–239 (2014).

    Article  Google Scholar 

  62. Anderson, K. L., Page, C., Swift, M. F., Hanein, D. & Volkmann, N. Marker-free method for accurate alignment between correlated light, cryo-light, and electron cryo-microscopy data using sample support features. J. Struct. Biol. 201, 46–51 (2018).

    Article  Google Scholar 

  63. Yang, J. E., Larson, M. R., Sibert, B. S., Shrum, S. & Wright, E. R. CorRelator: interactive software for real-time high precision cryo-correlative light and electron microscopy. J. Struct. Biol. 213, 107709 (2021).

    Article  Google Scholar 

  64. McDowall, A. W. et al. Electron microscopy of frozen hydrated sections of vitreous ice and vitrified biological samples. J. Microsc. 131, 1–9 (1983).

    Article  Google Scholar 

  65. Al-Amoudi, A., Norlen, L. P. O. & Dubochet, J. Cryo-electron microscopy of vitreous sections of native biological cells and tissues. J. Struct. Biol. 148, 131–135 (2004).

    Article  Google Scholar 

  66. Li, S. et al. HOPE-SIM, a cryo-structured illumination fluorescence microscopy system for accurately targeted cryo-electron tomography. Commun. Biol. 6, 474 (2023).

    Article  Google Scholar 

  67. de Beer, M. et al. Precise targeting for 3D cryo-correlative light and electron microscopy volume imaging of tissues using a FinderTOP. Commun. Biol. 6, 510 (2023).

    Article  Google Scholar 

  68. de Beer, M. et al. Visualizing biological tissues: a multiscale workflow from live imaging to 3D Cryo-CLEM. Microsc. Microanal. 27, 11–12 (2021).

    Article  Google Scholar 

  69. Kapteijn, R. et al. Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nat. Commun. 13, 5524 (2022).

    Article  ADS  Google Scholar 

  70. Faul, N. et al. Cryo-iCLEM: cryo correlative light and electron microscopy with immersion objectives. J. Struct. Biol. 217, 108179 (2025).

    Article  Google Scholar 

  71. Li, S. et al. ELI trifocal microscope: a precise system to prepare target cryo-lamellae for in situ cryo-ET study. Nat. Methods 20, 276–283 (2023).

    Article  Google Scholar 

  72. Li, W. et al. Integrated multimodality microscope for accurate and efficient target-guided cryo-lamellae preparation. Nat. Methods 20, 268–275 (2023).

    Article  Google Scholar 

  73. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).

    Article  Google Scholar 

  74. Schellenberger, P. et al. High-precision correlative fluorescence and electron cryo microscopy using two independent alignment markers. Ultramicroscopy 143, 41–51 (2014).

    Article  Google Scholar 

  75. Rodríguez de Francisco, B., Bezault, A., Xu, X. P., Hanein, D. & Volkmann, N. MEPSi: a tool for simulating tomograms of membrane-embedded proteins. J. Struct. Biol. 214, 107921 (2022).

    Article  Google Scholar 

  76. Chua, E. Y. D. et al. Better, faster, cheaper: recent advances in cryo–electron microscopy. Annu. Rev. Biochem. 91, 1–32 (2022).

    Article  Google Scholar 

  77. Kak, A. C. & Slaney, M. Principles of Computerized Tomographic Imaging (SIAM, 2001).

  78. Radermacher, M. Three-dimensional reconstruction of single particles from random and nonrandom tilt series. J. Electron Microsc. Tech. 9, 359–394 (1988).

    Article  Google Scholar 

  79. De Rosier, D. J. & Klug, A. Reconstruction of three dimensional structures from electron micrographs. Nature 217, 130–134 (1968).

    Article  ADS  Google Scholar 

  80. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    Article  ADS  Google Scholar 

  81. Uddin, M. R., Dip, S. A., Jha, R. A., Zeng, X. & Xu, M. in Cryo-electron Tomography: A Journey from Sample Preparation to Data Mining (eds Hanein, D. & Volkmann, N.) 173–215 (Academic Press, 2025).

  82. Förster, F. Subtomogram analysis: the sum of a tomogram’s particles reveals molecular structure in situ. J. Struct. Biol. X 6, 100063 (2022).

    Google Scholar 

  83. Tegunov, D., Xue, L., Dienemann, C., Cramer, P. & Mahamid, J. Multi-particle cryo-EM refinement with M visualizes ribosome-antibiotic complex at 3.5 Å in cells. Nat. Methods 18, 186–193 (2021).

    Article  Google Scholar 

  84. Xue, L. et al. Visualizing translation dynamics at atomic detail inside a bacterial cell. Nature 610, 205–211 (2022).

    Article  ADS  Google Scholar 

  85. Volkmann, N. in Cryo-electron Tomography: A Journey from Sample Preparation to Data Mining (eds Hanein, D. & Volkmann, N.) 117–144 (Academic Press, 2025).

  86. Anderson, K. L. et al. Nano-scale actin-network characterization of fibroblast cells lacking functional Arp2/3 complex. J. Struct. Biol. 197, 312–321 (2017).

    Article  Google Scholar 

  87. Mageswaran, S. K., Yang, W. Y., Chakrabarty, Y., Oikonomou, C. M. & Jensen, G. J. A cryo-electron tomography workflow reveals protrusion-mediated shedding on injured plasma membrane. Sci. Adv. 7, eabc6345 (2021).

    Article  ADS  Google Scholar 

  88. Kumar, A. et al. Local tension on talin in focal adhesions correlates with F-actin alignment at the nanometer scale. Biophys. J. 115, 1569–1579 (2018).

    Article  ADS  Google Scholar 

  89. Suraneni, P. et al. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex. Mol. Biol. Cell 26, 901–912 (2015).

    Article  Google Scholar 

  90. Suraneni, P. et al. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 197, 239–251 (2012).

    Article  Google Scholar 

  91. Wolff, G. et al. A molecular pore spans the double membrane of the coronavirus replication organelle. Science 369, 1395–1398 (2020).

    Article  ADS  Google Scholar 

  92. Liu, J. et al. The palisade layer of the poxvirus core is composed of flexible A10 trimers. Nat. Struct. Mol. Biol. 31, 1105–1113 (2024).

    Article  Google Scholar 

  93. Mageswaran, S. K. et al. Nanoscale details of mitochondrial constriction revealed by cryoelectron tomography. Biophys. J. 122, 3768–3782 (2023).

    Article  ADS  Google Scholar 

  94. Hou, Z., Nightingale, F., Zhu, Y., MacGregor-Chatwin, C. & Zhang, P. Structure of native chromatin fibres revealed by Cryo-ET in situ. Nat. Commun. 14, 6324 (2023).

    Article  ADS  Google Scholar 

  95. Zhang, X. et al. Molecular mechanisms of stress-induced reactivation in mumps virus condensates. Cell 186, 1877–1894.e27 (2023).

    Article  Google Scholar 

  96. Arnold, J. et al. Site-specific cryo-focused ion beam sample preparation guided by 3D correlative microscopy. Biophys. J. 110, 860 (2016).

    Article  ADS  Google Scholar 

  97. Liu, Y. et al. Cryo-electron tomography of NLRP3-activated ASC complexes reveals organelle co-localization. Nat. Commun. 14, 7246 (2023).

    Article  ADS  Google Scholar 

  98. Matsui, A. et al. Cryo-electron tomographic investigation of native hippocampal glutamatergic synapses. eLife 13, RP98458 (2024).

    Article  Google Scholar 

  99. Chiu, W., Schmid, M. F., Pintilie, G. D. & Lawson, C. L. Evolution of standardization and dissemination of cryo-EM structures and data jointly by the community, PDB, and EMDB. J. Biol. Chem. 296, 100560 (2021).

    Article  Google Scholar 

  100. Bialy, N. et al. Harmonizing the Generation and Pre-publication Stewardship of FAIR Image Data. Preprint at https://doi.org/10.48550/arXiv.2401.13022 (2024).

  101. Lawson, C. L. et al. EMDataBank unified data resource for 3DEM. Nucleic Acids Res. 44, D396–D403 (2016).

    Article  Google Scholar 

  102. Berman, H. M. et al. The protein data bank. Nucleic Acids Res. 28, 235–242 (2000).

    Article  ADS  Google Scholar 

  103. Iudin, A. et al. EMPIAR: the electron microscopy public image archive. Nucleic Acids Res. 51, D1503–D1511 (2023).

    Article  Google Scholar 

  104. Hartley, M. et al. The bioimage archive - building a home for life-sciences microscopy data. J. Mol. Biol. 434, 167505 (2022).

    Article  Google Scholar 

  105. Klumpe, S. et al. A modular platform for automated cryo-FIB workflows. eLife 10, e70506 (2021).

    Article  Google Scholar 

  106. Cleeve, P. et al. OpenFIBSEM: a universal API for FIBSEM control. J. Struct. Biol. 215, 107967 (2023).

    Article  Google Scholar 

  107. Zachs, T. et al. Fully automated, sequential focused ion beam milling for cryo-electron tomography. eLife 9, e52286 (2020).

    Article  Google Scholar 

  108. Buckley, G. et al. Automated cryo-lamella preparation for high-throughput in-situ structural biology. J. Struct. Biol. 210, 107488 (2020).

    Article  Google Scholar 

  109. Kuba, J. et al. Advanced cryo-tomography workflow developments – correlative microscopy, milling automation and cryo-lift-out. J. Microsc. 281, 112–124 (2021).

    Article  Google Scholar 

  110. Tacke, S. et al. A streamlined workflow for automated cryo focused ion beam milling. J. Struct. Biol. 213, 107743 (2021).

    Article  Google Scholar 

  111. Berger, C. et al. Plasma FIB milling for the determination of structures in situ. Nat. Commun. 14, 629 (2023).

    Article  ADS  Google Scholar 

  112. Burnett, T. L. et al. Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy 161, 119–129 (2016).

    Article  Google Scholar 

  113. Weiner, A. et al. Vitrification of thick samples for soft X-ray cryo-tomography by high pressure freezing. J. Struct. Biol. 181, 77–81 (2013).

    Article  Google Scholar 

  114. Zhu, H., Li, M., Li, M., Li, X. & Ou, G. Cryo-electron tomography elucidates annular intraluminal configurations in Caenorhabditis elegans microtubules. Biol. Cell 116, e2400064 (2024).

    Article  Google Scholar 

  115. Parmenter, C. D. J., Fay, M. W., Hartfield, C. & Eltaher, H. M. Making the practically impossible “merely difficult”—cryogenic FIB lift-out for “damage free” soft matter imaging. Microsc. Res. Tech. 79, 298–303 (2016).

    Article  Google Scholar 

  116. Woods, E. V. et al. A versatile and reproducible cryo-sample preparation methodology for atom probe studies. Microsc. Microanal. 29, 1992–2003 (2023).

    Article  ADS  Google Scholar 

  117. Nguyen, H. T. D. et al. Serialized on-grid lift-in sectioning for tomography (SOLIST) enables a biopsy at the nanoscale. Nat. Methods 21, 1693–1701 (2024).

    Article  Google Scholar 

  118. Xing, H. et al. Translation dynamics in human cells visualized at high resolution reveal cancer drug action. Science 381, 70–75 (2023).

    Article  ADS  Google Scholar 

  119. Schiøtz, O. H., Klumpe, S., Plitzko, J. M. & Kaiser, C. J. O. Cryo-electron tomography: en route to the molecular anatomy of organisms and tissues. Biochem. Soc. Trans. 52, 2415–2425 (2024).

    Article  Google Scholar 

  120. Berger, C. et al. Cryo-electron tomography on focused ion beam lamellae transforms structural cell biology. Nat. Methods 20, 499–511 (2023).

    Article  Google Scholar 

  121. Fuest, M. et al. In situ microfluidic cryofixation for cryo focused ion beam milling and cryo electron tomography. Sci. Rep. 9, 19133 (2019).

    Article  ADS  Google Scholar 

  122. Yoniles, J. et al. Time-resolved cryogenic electron tomography for the study of transient cellular processes. Mol. Biol. Cell 35, mr4 (2024).

    Article  Google Scholar 

  123. Voss, J. M., Harder, O. F., Olshin, P. K., Drabbels, M. & Lorenz, U. J. Rapid melting and revitrification as an approach to microsecond time-resolved cryo-electron microscopy. Chem. Phys. Lett. 778, 138812 (2021).

    Article  Google Scholar 

  124. Dumoux, M. et al. Cryo-plasma FIB/SEM volume imaging of biological specimens. eLife 12, e83623 (2023).

    Article  Google Scholar 

  125. Klumpe, S. et al. In-cell structure and snapshots of copia retrotransposons in intact tissue by cryo-ET. Cell 188, 2094–2110.e18 (2025).

    Article  Google Scholar 

  126. Eisenstein, F. et al. Parallel cryo electron tomography on in situ lamellae. Nat. Methods 20, 131–138 (2022).

    Article  Google Scholar 

  127. Feldmüller, M. et al. Stepwise assembly and release of Tc toxins from Yersinia entomophaga. Nat. Microbiol. 9, 405–420 (2024).

    Article  Google Scholar 

  128. Singh, D. et al. The molecular architecture of the nuclear basket. Cell 187, 5267–5281.e13 (2024).

    Article  Google Scholar 

  129. Huang, Y. et al. Molecular architecture of coronavirus double-membrane vesicle pore complex. Nature 633, 224–231 (2024).

    Article  ADS  Google Scholar 

  130. Eisenstein, F., Fukuda, Y. & Danev, R. Smart parallel automated cryo-electron tomography. Nat. Methods 21, 1612–1615 (2024).

    Article  Google Scholar 

  131. Paul-Gilloteaux, P. et al. eC-CLEM: flexible multidimensional registration software for correlative microscopies. Nat. Methods 14, 102–103 (2017).

    Article  Google Scholar 

  132. Kremer, J. R., Mastronarde, D. N. & McIntosh, J. R. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116, 71–76 (1996).

    Article  Google Scholar 

  133. Zheng, S. et al. AreTomo: an integrated software package for automated marker-free, motion-corrected cryo-electron tomographic alignment and reconstruction. J. Struct. Biol. X 6, 100068 (2022).

    Google Scholar 

  134. Tang, G. et al. EMAN2: an extensible image processing suite for electron microscopy. J. Struct. Biol. 157, 38–46 (2007).

    Article  Google Scholar 

  135. Agulleiro, J. I. & Fernandez, J. J. Fast tomographic reconstruction on multicore computers. Bioinformatics 27, 582–583 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank M. Lemos and A. Bezault (Institut Pasteur) for their contributions to parts of the data presented here. D.H. acknowledges funding from the US Army Research Office under contract W911NF-19-D-0001 for the Institute for Collaborative Biotechnologies award. C.S. thanks the ANR-FRANCE (French National Research Agency) for its financial support, project no. ANR-22-CPJ2-0040-01. The authors acknowledge funding from the Institut Pasteur and the CNRS (D.H. and N.V.), and the NanoImaging Core (NCF) at Institut Pasteur for the provision of the equipment (Vitrobot, and cryo-electron microscopes). NanoImaging Core was created with the help of a grant from the French Government’s Investissements d’Avenir program (EQUIPEX CACSICE - Centre d’analyse de systèmes complexes dans les environements complexes, ANR-11-EQPX-0008).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (C.S., N.V. and D.H.); Experimentation (C.S., P.V.B., A.H., N.V., and D.H.); Results (C.S., P.V.B., A.H., N.V. and D.H.); Applications (C.S., P.V.B., A.H., N.V. and D.H.); Reproducibility and data deposition (C.S., N.V. and D.H.); Limitations and optimization (C.S., N.V. and D.H.); Outlook (C.S., N.V. and D.H.).

Corresponding author

Correspondence to Dorit Hanein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Peter Dahlberg and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Bioimage Archive: https://www.ebi.ac.uk/bioimage-archive

EMDB: https://www.ebi.ac.uk/emdb

EMPIAR: https://www.ebi.ac.uk/empiar

Protein Data Bank (PDB): https://www.rcsb.org/

Supplementary information

Glossary

Correlative light and electron microscopy

(CLEM). Workflows that combine or integrate light and electron microscopy to precisely localize and correlate dynamic cellular events with structural snapshots.

Cryogenic focused ion beam milling

(Cryo-FIB milling). Process implemented to prepare lamellae at specific locations by ablating excess cellular material from the top and bottom of the sample.

Devitrification

Transition of water from the vitreous (amorphous) state to crystalline ice or liquid water.

Grids

Electron microscope supports made up of 3.05 mm-diameter circles, each consisting of a metal mesh coated with a thin film onto which samples are deposited for imaging.

Holey carbon film

Film support made from carbon that contains perforations of defined size and spacing.

Vitrification

Process of rapidly freezing water into its vitreous (amorphous) state, thereby preventing the formation of ice crystals.

Waffle freezing

Cryogenic electron tomography freezing method that consists of using a high-pressure-freezing machine and allowing to freeze thicker samples for subsequent cryogenic electron tomography experiments.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sauvanet, C., Van Blerkom, P., Hatipoglu, A. et al. Correlative cryogenic light and electron tomography of eukaryotic cells. Nat Rev Methods Primers 5, 77 (2025). https://doi.org/10.1038/s43586-025-00447-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00447-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing