Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Fluidic force microscopy

Abstract

Fluidic force microscopy is a versatile bionanotechnology platform that integrates atomic force microscopy with microfluidic probes. This hybrid approach enables precise measurement and application of forces across sub-nanonewton to micronewton ranges while simultaneously dispensing or sampling sub-femtolitre to picolitre volumes, all with real-time optical visualization at sub-micrometre resolution. In recent years, fluidic force microscopy has emerged as an enabling tool for minimally invasive single-cell manipulation, subcellular analysis and high-resolution nanoprinting applications. This Primer describes the fundamental principles underlying the combination of atomic force microscopy with microchannelled cantilevers, providing a comprehensive framework for understanding the unique capabilities of fluidic force microscopy and its rapidly expanding range of applications in biological research and nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Basic principles of FluidFM.
Fig. 2: Scanning electron micrographs of FluidFM probe tips.
Fig. 3: Calibration of the FluidFM system.
Fig. 4: FluidFM operating modes.
Fig. 5: Example of experimental results.
Fig. 6: Local dispensing experiments.
Fig. 7: Indentation and adhesion experiments.
Fig. 8: Injection, extraction and transplantation experiments.
Fig. 9: Ionic current experiments.

References

  1. Meister, A. et al. FluidFM: combining atomic force microscopy and nanofluidics in a universal liquid delivery system for single cell applications and beyond. Nano Lett. 9, 2501–2507 (2009).

    Article  ADS  Google Scholar 

  2. Barber, M. A. A new method of isolating micro-organisms. J. Kans. Med. Soc. 4, 489–494 (1904).

    Google Scholar 

  3. Korzh, V. & Strähle, U. Marshall Barber and the century of microinjection: from cloning of bacteria to cloning of everything. Differentiation 70, 221–226 (2002).

    Article  Google Scholar 

  4. Thomas, K. R. & Capecchi, M. R. Introduction of homologous DNA sequences into mammalian cells induces mutations in the cognate gene. Nature 324, 34–38 (1986).

    Article  ADS  Google Scholar 

  5. Eberwine, J., Sul, J.-Y., Bartfai, T. & Kim, J. The promise of single-cell sequencing. Nat. Methods 11, 25–27 (2014).

    Article  Google Scholar 

  6. Marcuccio, F. et al. Single-cell nanobiopsy enables multigenerational longitudinal transcriptomics of cancer cells. Sci. Adv. 10, eadl0515 (2024).

    Article  Google Scholar 

  7. Neher, E. & Sakmann, B. Single-channel currents recorded from membrane of denervated frog muscle fibres. Nature 260, 799–802 (1976).

    Article  ADS  Google Scholar 

  8. Momotenko, D., Page, A., Adobes-Vidal, M. & Unwin, P. R. Write–read 3D patterning with a dual-channel nanopipette. ACS Nano 10, 8871–8878 (2016).

    Article  Google Scholar 

  9. Hengsteler, J. et al. Bringing electrochemical three-dimensional printing to the nanoscale. Nano Lett. 21, 9093–9101 (2021).

    Article  ADS  Google Scholar 

  10. Xu, X. et al. The new era of high-throughput nanoelectrochemistry. Anal. Chem. 95, 319–356 (2023).

    Article  ADS  Google Scholar 

  11. Hansma, P. K., Drake, B., Marti, O., Gould, S. A. C. & Prater, C. B. The scanning ion-conductance microscope. Science 243, 641–643 (1989).

    Article  ADS  Google Scholar 

  12. Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion conductance microscopy of living cells. Biophys. J. 73, 653–658 (1997).

    Article  Google Scholar 

  13. Novak, P. et al. Nanoscale live-cell imaging using hopping probe ion conductance microscopy. Nat. Methods 6, 279–281 (2009).

    Article  Google Scholar 

  14. Long, B., Li, L., Knoblich, U., Zeng, H. & Peng, H. 3D image-guided automatic pipette positioning for single cell experiments in vivo. Sci. Rep. 5, 18426 (2015).

    Article  ADS  Google Scholar 

  15. Proksch, R., Lal, R., Hansma, P. K., Morse, D. & Stucky, G. Imaging the internal and external pore structure of membranes in fluid: tappingmode scanning ion conductance microscopy. Biophys. J. 71, 2155–2157 (1996).

    Article  Google Scholar 

  16. Lewis, A. et al. Fountain pen nanochemistry: atomic force control of chrome etching. Appl. Phys. Lett. 75, 2689–2691 (1999).

    Article  ADS  Google Scholar 

  17. Drake, B., Randall, C., Bridges, D. & Hansma, P. K. A new ion sensing deep atomic force microscope. Rev. Sci. Instrum. 85, 083706 (2014).

    Article  ADS  Google Scholar 

  18. Lu, Z., Chen, P. C. Y., Nam, J., Ge, R. & Lin, W. A micromanipulation system with dynamic force-feedback for automatic batch microinjection. J. Micromech. Microeng. 17, 314 (2007).

    Article  ADS  Google Scholar 

  19. Ito, S. & Iwata, F. Nanometer-scale deposition of metal plating using a nanopipette probe in liquid condition. Jpn. J. Appl. Phys. 50, 08LB15 (2011).

    Article  Google Scholar 

  20. An, S. et al. Nanopipette combined with quartz tuning fork-atomic force microscope for force spectroscopy/microscopy and liquid delivery-based nanofabrication. Rev. Sci. Instrum. 85, 033702 (2014).

    Article  ADS  Google Scholar 

  21. Ma, Y. et al. Label-free robotic mitochondrial biopsy. Sci. Adv. 11, eadx4289 (2025).

    Article  ADS  Google Scholar 

  22. Binnig, G., Quate, C. F. & Gerber, C. H. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  ADS  Google Scholar 

  23. Bian, K. et al. Scanning probe microscopy. Nat. Rev. Methods Primers 1, 36 (2021).

    Article  Google Scholar 

  24. Voigtländer, B. Atomic Force Microscopy 2nd edn (Springer, 2019).

  25. Wendel, M. et al. Nanolithography with an atomic force microscope. Superlattices Microstruct. 20, 349–356 (1996).

    Article  ADS  Google Scholar 

  26. Jaschke, M. & Butt, H.-J. Deposition of organic material by the tip of a scanning force microscope. Langmuir 11, 1061–1064 (1995).

    Article  Google Scholar 

  27. Piner, R. D., Zhu, J., Xu, F., Hong, S. & Mirkin, C. A. ‘Dip-pen’ nanolithography. Science 283, 661–663 (1999).

    Article  ADS  Google Scholar 

  28. Meister, A. et al. Nanoscale dispensing of liquids through cantilevered probes. Microelectron. Eng. 67–68, 644–650 (2003).

    Article  Google Scholar 

  29. Meister, A., Liley, M., Brugger, J., Pugin, R. & Heinzelmann, H. Nanodispenser for attoliter volume deposition using atomic force microscopy probes modified by focused-ion-beam milling. Appl. Phys. Lett. 85, 6260–6262 (2004).

    Article  ADS  Google Scholar 

  30. Deladi, S. et al. Micromachined fountain pen for atomic force microscope-based nanopatterning. Appl. Phys. Lett. 85, 5361–5363 (2004).

    Article  ADS  Google Scholar 

  31. Moldovan, N., Kim, K.-H. & Espinosa, H. D. Design and fabrication of a novel microfluidic nanoprobe. J. Microelectromechanical Syst. 15, 204–213 (2006).

    Article  ADS  Google Scholar 

  32. Hug, T. S., Biss, T., de Rooij, N. F. & Staufer, U. Generic fabrication technology for transparent and suspended microfluidic and nanofluidic channels. In Proc. 13th International Conference on Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS ‘05, Vol. 2 1191–1194 (IEEE, 2005).

  33. Kato, N., Kawashima, T., Shibata, T., Mineta, T. & Makino, E. Micromachining of a newly designed AFM probe integrated with hollow microneedle for cellular function analysis. Microelectron. Eng. 87, 1185–1189 (2010).

    Article  Google Scholar 

  34. Delamarche, E. & Kaigala, G. V. (eds) Open-Space Microfluidics: Concepts, Implementations, Applications 1st edn (Wiley-VCH, 2018).

  35. Ossola, D. et al. Force-controlled patch clamp of beating cardiac cells. Nano Lett. 15, 1743–1750 (2015).

    Article  ADS  Google Scholar 

  36. Hirt, L. et al. Local surface modification via confined electrochemical deposition with FluidFM. RSC Adv. 5, 84517–84522 (2015).

    Article  ADS  Google Scholar 

  37. Saftics, A. et al. Biomimetic dextran-based hydrogel layers for cell micropatterning over large areas using the FluidFM BOT technology. Langmuir 35, 2412–2421 (2019).

    Article  Google Scholar 

  38. Sztilkovics, M. et al. Single-cell adhesion force kinetics of cell populations from combined label-free optical biosensor and robotic fluidic force microscopy. Sci. Rep. 10, 61 (2020).

    Article  ADS  Google Scholar 

  39. Nagy, Á. G. et al. Population distributions of single-cell adhesion parameters during the cell cycle from high-throughput robotic fluidic force microscopy. Sci. Rep. 12, 7747 (2022).

    Article  ADS  Google Scholar 

  40. Nagy, Á. G., Székács, I., Bonyár, A. & Horvath, R. Cell-substratum and cell-cell adhesion forces and single-cell mechanical properties in mono- and multilayer assemblies from robotic fluidic force microscopy. Eur. J. Cell Biol. 101, 151273 (2022).

    Article  Google Scholar 

  41. Kovács, K. D. et al. Nanoinjection of extracellular vesicles to single live cells by robotic fluidic force microscopy. J. Extracell. Vesicles 12, e12388 (2023).

    Article  Google Scholar 

  42. Gerecsei, T. et al. Adhesion force measurements on functionalized microbeads: An in-depth comparison of computer controlled micropipette and fluidic force microscopy. J. Colloid Interface Sci. 555, 245–253 (2019).

    Article  ADS  Google Scholar 

  43. Ungai-Salánki, R. et al. Single-cell adhesion strength and contact density drops in the M phase of cancer cells. Sci. Rep. 11, 18500 (2021).

    Article  ADS  Google Scholar 

  44. Lelek, M. et al. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1, 39 (2021).

    Article  Google Scholar 

  45. Meyer, G. & Amer, N. M. Novel optical approach to atomic force microscopy. Appl. Phys. Lett. 53, 1045–1047 (1988).

    Article  ADS  Google Scholar 

  46. Roder, P. & Hille, C. A multifunctional frontloading approach for repeated recycling of a pressure-controlled AFM micropipette. PLoS ONE 10, e0144157 (2015).

    Article  Google Scholar 

  47. Zare-Eelanjegh, E., Lewis, R. T., Lüchtefeld, I., Kutay, U. & Zambelli, T. Quantifying intracellular mechanosensitive response upon spatially defined mechano-chemical triggering. eLife https://doi.org/10.7554/eLife.107220.1 (2025).

    Article  Google Scholar 

  48. Kenausis, G. L. et al. Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces: attachment mechanism and effects of polymer architecture on resistance to protein adsorption. J. Phys. Chem. B 104, 3298–3309 (2000).

    Article  Google Scholar 

  49. Huang, N.-P. et al. Poly(l-lysine)-g-poly(ethylene glycol) layers on metal oxide surfaces:  surface-analytical characterization and resistance to serum and fibrinogen adsorption. Langmuir 17, 489–498 (2001).

    Article  Google Scholar 

  50. Weydert, S. et al. Easy to apply polyoxazoline-based coating for precise and long-term control of neural patterns. Langmuir 33, 8594–8605 (2017).

    Article  Google Scholar 

  51. Guillaume-Gentil, O. et al. Force-controlled fluidic injection into single cell nuclei. Small 9, 1904–1907 (2013).

    Article  Google Scholar 

  52. Guillaume-Gentil, O. et al. Injection into and extraction from single fungal cells. Commun. Biol. 5, 180 (2022).

    Article  Google Scholar 

  53. Potthoff, E. et al. Rapid and serial quantification of adhesion forces of yeast and mammalian cells. PLoS ONE 7, e52712 (2012).

    Article  ADS  Google Scholar 

  54. Guillaume-Gentil, O., Zambelli, T. & Vorholt, J. A. Isolation of single mammalian cells from adherent cultures by fluidic force microscopy. Lab Chip 14, 402–414 (2014).

    Article  Google Scholar 

  55. Dehullu, J. et al. Fluidic force microscopy demonstrates that homophilic adhesion by Candida albicans Als proteins is mediated by amyloid bonds between cells. Nano Lett. 19, 3846–3853 (2019).

    Article  ADS  Google Scholar 

  56. Potthoff, E., Ossola, D., Zambelli, T. & Vorholt, J. A. Bacterial adhesion force quantification by fluidic force microscopy. Nanoscale 7, 4070–4079 (2015).

    Article  ADS  Google Scholar 

  57. Guo, Y. et al. Matrix stiffness modulates tip cell formation through the p-PXN-Rac1-YAP signaling axis. Bioact. Mater. 7, 364–376 (2022).

    Google Scholar 

  58. Chala, N. et al. 4D force detection of cell adhesion and contractility. Nano Lett. 23, 2467–2475 (2023).

    Article  ADS  Google Scholar 

  59. Ernst, C. et al. Direct Salmonella injection into enteroid cells allows the study of host–pathogen interactions in the cytosol with high spatiotemporal resolution. PLoS Biol. 22, e3002597 (2024).

    Article  Google Scholar 

  60. Antony, J. S. et al. Accelerated generation of gene-engineered monoclonal CHO cell lines using FluidFM nanoinjection and CRISPR/Cas9. Biotechnol. J. 19, e2300505 (2024).

    Article  Google Scholar 

  61. Giger, G. H. et al. Inducing novel endosymbioses by implanting bacteria in fungi. Nature 635, 415–422 (2024).

    Article  ADS  Google Scholar 

  62. Pan, F. et al. Uncoupling bacterial attachment on and detachment from polydimethylsiloxane surfaces through empirical and simulation studies. J. Colloid Interface Sci. 622, 419–430 (2022).

    Article  ADS  Google Scholar 

  63. Potthoff, E. et al. Toward a rational design of surface textures promoting endothelialization. Nano Lett. 14, 1069–1079 (2014).

    Article  ADS  Google Scholar 

  64. Mathelié-Guinlet, M. et al. Single-cell fluidic force microscopy reveals stress-dependent molecular interactions in yeast mating. Commun. Biol. 4, 33 (2021).

    Article  Google Scholar 

  65. D’Costa, N. P. & Hoh, J. H. Calibration of optical lever sensitivity for atomic force microscopy. Rev. Sci. Instrum. 66, 5096–5097 (1995).

    Article  ADS  Google Scholar 

  66. Nagy, Á. G., Kámán, J., Horváth, R. & Bonyár, A. Spring constant and sensitivity calibration of FluidFM micropipette cantilevers for force spectroscopy measurements. Sci. Rep. 9, 10287 (2019).

    Article  ADS  Google Scholar 

  67. Viljoen, A. et al. Force spectroscopy of single cells using atomic force microscopy. Nat. Rev. Methods Primers 1, 63 (2021).

    Article  Google Scholar 

  68. Sader, J. E. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. J. Appl. Phys. 84, 64–76 (1998).

    Article  ADS  Google Scholar 

  69. Sader, J. E. et al. Spring constant calibration of atomic force microscope cantilevers of arbitrary shape. Rev. Sci. Instrum. 83, 103705 (2012).

    Article  ADS  Google Scholar 

  70. Payam, A. F., Trewby, W. & Voïtchovsky, K. Determining the spring constant of arbitrarily shaped cantilevers in viscous environments. Appl. Phys. Lett. 112, 083101 (2018).

    Article  ADS  Google Scholar 

  71. Bonyár, A., Nagy, Á. G., Gunstheimer, H., Fläschner, G. & Horvath, R. Hydrodynamic function and spring constant calibration of FluidFM micropipette cantilevers. Microsyst. Nanoeng. 10, 26 (2024).

    Article  ADS  Google Scholar 

  72. Helfricht, N., Mark, A., Dorwling-Carter, L., Zambelli, T. & Papastavrou, G. Extending the limits of direct force measurements: colloidal probes from sub-micron particles. Nanoscale 9, 9491–9501 (2017).

    Article  Google Scholar 

  73. Sittl, S., Helfricht, N. & Papastavrou, G. Contactless calibration of microchanneled AFM cantilevers for fluidic force microscopy. View 5, 20230063 (2024).

    Article  Google Scholar 

  74. Mark, A., Helfricht, N., Rauh, A., Karg, M. & Papastavrou, G. The next generation of colloidal probes: a universal approach for soft and ultra-small particles. Small 15, 1902976 (2019).

    Article  Google Scholar 

  75. Mittelviefhaus, M., Müller, D. B., Zambelli, T. & Vorholt, J. A. A modular atomic force microscopy approach reveals a large range of hydrophobic adhesion forces among bacterial members of the leaf microbiota. ISME J. 13, 1878–1882 (2019).

    Article  Google Scholar 

  76. Hofherr, L., Müller-Renno, C. & Ziegler, C. FluidFM as a tool to study adhesion forces of bacteria - optimization of parameters and comparison to conventional bacterial probe scanning force spectroscopy. PLoS ONE 15, e0227395 (2020).

    Article  Google Scholar 

  77. Manoharan, G. et al. FluidFM deposition of semicondutor quantum dots from aqueous dispersions. Nano Select 6, e70011 (2025).

    Article  Google Scholar 

  78. Dörig, P. et al. Exchangeable colloidal AFM probes for the quantification of irreversible and long-term interactions. Biophys. J. 105, 463–472 (2013).

    Article  ADS  Google Scholar 

  79. Specht, A., Krämer, D., Helfricht, N. & Papastavrou, G. How much data are enough? Toward statistically robust adhesion experiments by atomic force microscopy. Langmuir 41, 6515–6527 (2025).

    Article  Google Scholar 

  80. Guillaume-Gentil, O. et al. Tunable single-cell extraction for molecular analyses. Cell 166, 506–516 (2016).

    Article  Google Scholar 

  81. Chen, W. et al. Live-seq enables temporal transcriptomic recording of single cells. Nature 608, 733–740 (2022).

    Article  ADS  Google Scholar 

  82. Gäbelein, C. G. et al. Mitochondria transplantation between living cells. PLoS Biol. 20, e3001576 (2022).

    Article  Google Scholar 

  83. Mark, A. et al. Electrokinetics in micro-channeled cantilevers: extending the toolbox for reversible colloidal probes and AFM-based nanofluidics. Sci. Rep. 9, 20294 (2019).

    Article  ADS  Google Scholar 

  84. Aramesh, M. et al. Localized detection of ions and biomolecules with a force-controlled scanning nanopore microscope. Nat. Nanotechnol. 14, 791–798 (2019).

    Article  ADS  Google Scholar 

  85. Rosenbluth, M. J., Lam, W. A. & Fletcher, D. A. Force microscopy of nonadherent cells: a comparison of leukemia cell deformability. Biophys. J. 90, 2994–3003 (2006).

    Article  ADS  Google Scholar 

  86. Feng, Y. & Li, M. Micropipette-assisted atomic force microscopy for single-cell 3D manipulations and nanomechanical measurements. Nanoscale 15, 13346–13358 (2023).

    Article  Google Scholar 

  87. Lüchtefeld, I. et al. Dissecting cell membrane tension dynamics and its effect on Piezo1-mediated cellular mechanosensitivity using force-controlled nanopipettes. Nat. Methods 21, 1063–1073 (2024).

    Article  Google Scholar 

  88. Hertz, H. Über die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1882).

    Article  MathSciNet  Google Scholar 

  89. Guz, N., Dokukin, M., Kalaparthi, V. & Sokolov, I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575 (2014).

    Article  ADS  Google Scholar 

  90. Krieg, M. et al. Atomic force microscopy-based mechanobiology. Nat. Rev. Phys. 1, 41–57 (2019).

    Article  Google Scholar 

  91. Kontomaris, S. V., Georgakopoulos, A., Malamou, A. & Stylianou, A. The average Young’s modulus as a physical quantity for describing the depth-dependent mechanical properties of cells. Mech. Mater. 158, 103846 (2021).

    Article  Google Scholar 

  92. Kontomaris, S. V., Malamou, A. & Stylianou, A. The hertzian theory in AFM nanoindentation experiments regarding biological samples: overcoming limitations in data processing. Micron 155, 103228 (2022).

    Article  Google Scholar 

  93. Mendová, K., Otáhal, M., Drab, M. & Daniel, M. Size matters: rethinking Hertz model interpretation for cell mechanics using AFM. Int. J. Mol. Sci. 25, 7186 (2024).

    Article  Google Scholar 

  94. Garcia, R. Nanomechanical mapping of soft materials with the atomic force microscope: methods, theory and applications. Chem. Soc. Rev. 49, 5850–5884 (2020).

    Article  Google Scholar 

  95. Lin, D. C., Dimitriadis, E. K. & Horkay, F. Robust strategies for automated AFM force curve analysis—i. non-adhesive indentation of soft, inhomogeneous materials. J. Biomech. Eng. 129, 430–440 (2007).

    Article  Google Scholar 

  96. Crick, S. L. & Yin, F. C.-P. Assessing micromechanical properties of cells with atomic force microscopy: importance of the contact point. Biomech. Model. Mechanobiol. 6, 199–210 (2007).

    Article  Google Scholar 

  97. Gavara, N. Combined strategies for optimal detection of the contact point in AFM force-indentation curves obtained on thin samples and adherent cells. Sci. Rep. 6, 21267 (2016).

    Article  ADS  Google Scholar 

  98. Lüchtefeld, I. et al. Elasticity spectra as a tool to investigate actin cortex mechanics. J. Nanobiotechnology 18, 147 (2020).

    Article  Google Scholar 

  99. Helenius, J., Heisenberg, C.-P., Gaub, H. E. & Muller, D. J. Single-cell force spectroscopy. J. Cell Sci. 121, 1785–1791 (2008).

    Article  Google Scholar 

  100. Franz, C. M. & Puech, P.-H. Atomic force microscopy: a versatile tool for studying cell morphology, adhesion and mechanics. Cell. Mol. Bioeng. 1, 289–300 (2008).

    Article  Google Scholar 

  101. Moreno-Cencerrado, A. et al. Investigating cell-substrate and cell–cell interactions by means of single-cell-probe force spectroscopy. Microsc. Res. Tech. 80, 124–130 (2017).

    Article  Google Scholar 

  102. Grüter, R. R., Vörös, J. & Zambelli, T. FluidFM as a lithography tool in liquid: spatially controlled deposition of fluorescent nanoparticles. Nanoscale 5, 1097–1104 (2013).

    Article  ADS  Google Scholar 

  103. Zhang, X. et al. Multimodal mapping of electrical and mechanical latency of human-induced pluripotent stem cell-derived cardiomyocyte layers. ACS Nano 18, 24060–24075 (2024).

    Article  Google Scholar 

  104. Andreassen, P. R. et al. NAIP/NLRC4 inflammasome dynamics in murine enteroids are tuned by NAIP ligand concentration and epithelial cell differentiation. Cell Rep. 44, 116143 (2025).

    Article  Google Scholar 

  105. Gäbelein, C. G., Reiter, M. A., Ernst, C., Giger, G. H. & Vorholt, J. A. Engineering endosymbiotic growth of E. coli in mammalian cells. ACS Synth. Biol. 11, 3388–3396 (2022).

    Article  Google Scholar 

  106. Guillaume-Gentil, O. et al. Single-cell mass spectrometry of metabolites extracted from live cells by fluidic force microscopy. Anal. Chem. 89, 5017–5023 (2017).

    Article  ADS  Google Scholar 

  107. Xu, S., Miller, S., Laibinis, P. E. & Liu, G. Fabrication of nanometer scale patterns within self-assembled monolayers by nanografting. Langmuir 15, 7244–7251 (1999).

    Article  Google Scholar 

  108. Xu, S., Amro, N. A. & Liu, G.-Y. Characterization of AFM tips using nanografting. Appl. Surf. Sci. 175–176, 649–655 (2001).

    Article  ADS  Google Scholar 

  109. Liu, J.-F., Cruchon-Dupeyrat, S., Garno, J. C., Frommer, J. & Liu, G.-Y. Three-dimensional nanostructure construction via nanografting:  positive and negative pattern transfer. Nano Lett. 2, 937–940 (2002).

    Article  ADS  Google Scholar 

  110. Hong, S., Zhu, J. & Mirkin, C. A. Multiple ink nanolithography: toward a multiple-pen nano-plotter. Science 286, 523–525 (1999).

    Article  Google Scholar 

  111. Fang, A., Dujardin, E. & Ondarçuhu, T. Control of droplet size in liquid nanodispensing. Nano Lett. 6, 2368–2374 (2006).

    Article  ADS  Google Scholar 

  112. Fabié, L. & Ondarçuhu, T. Writing with liquid using a nanodispenser: spreading dynamics at the sub-micron scale. Soft Matter 8, 4995–5001 (2012).

    Article  ADS  Google Scholar 

  113. Fabié, L. et al. Direct patterning of nanoparticles and biomolecules by liquid nanodispensing. Nanoscale 7, 4497–4504 (2015).

    Article  ADS  Google Scholar 

  114. Dermutz, H. et al. Local polymer replacement for neuron patterning and in situ neurite guidance. Langmuir 30, 7037–7046 (2014).

    Article  Google Scholar 

  115. Grüter, R. R., Dielacher, B., Hirt, L., Vörös, J. & Zambelli, T. Patterning gold nanoparticles in liquid environment with high ionic strength for local fabrication of up to 100 μm long metallic interconnections. Nanotechnology 26, 175301 (2015).

    Article  ADS  Google Scholar 

  116. Zhang, J. et al. Controlled molecular assembly via dynamic confinement of solvent. J. Phys. Chem. Lett. 9, 6232–6237 (2018).

    Article  Google Scholar 

  117. Zhang, J. et al. New means to control molecular assembly. J. Phys. Chem. C 124, 6405–6412 (2020).

    Article  Google Scholar 

  118. Berganza, E. & Hirtz, M. Direct-write patterning of biomimetic lipid membranes in situ with FluidFM. ACS Appl. Mater. Interfaces 13, 50774–50784 (2021).

    Article  Google Scholar 

  119. Apte, G., Hirtz, M. & Nguyen, T.-H. FluidFM-based fabrication of nanopatterns: promising surfaces for platelet storage application. ACS Appl. Mater. Interfaces 14, 24133–24143 (2022).

    Article  Google Scholar 

  120. Helfricht, N. et al. Writing with fluid: structuring hydrogels with micrometer precision by AFM in combination with nanofluidics. Small 13, 1700962 (2017).

    Article  Google Scholar 

  121. Hirt, L. et al. Template-free 3D microprinting of metals using a force-controlled nanopipette for layer-by-layer electrodeposition. Adv. Mater. 28, 2311–2315 (2016).

    Article  Google Scholar 

  122. Ercolano, G. et al. Additive manufacturing of sub-micron to sub-mm metal structures with hollow AFM cantilevers. Micromachines 11, 6 (2020).

    Article  Google Scholar 

  123. Ercolano, G. et al. Multiscale additive manufacturing of metal microstructures. Adv. Eng. Mater. 22, 1900961 (2020).

    Article  Google Scholar 

  124. van Nisselroy, C., Shen, C., Zambelli, T. & Momotenko, D. Electrochemical 3D printing of silver and nickel microstructures with FluidFM. Addit. Manuf. 53, 102718 (2022).

    Google Scholar 

  125. Shen, C. et al. Electrochemical 3D printing of Ni–Mn and Ni–Co alloy with FluidFM. Nanotechnology 33, 265301 (2022).

    Article  ADS  Google Scholar 

  126. Pratama, K. et al. From 2D to 3D electrochemical microfabrication of nickel architectures at room temperature: Synthesis and characterization of microstructure and mechanical properties. Addit. Manuf. 88, 104251 (2024).

    Google Scholar 

  127. Ventrici de Souza, J. et al. Three-dimensional nanoprinting via direct delivery. J. Phys. Chem. B 122, 956–962 (2018).

    Article  Google Scholar 

  128. Huang, Y. et al. Controlled assembly of lipid molecules via regulating transient spatial confinement. Chemistry 6, 1287–1300 (2024).

    Article  Google Scholar 

  129. Stiefel, P. et al. Cooperative vaccinia infection demonstrated at the single-cell level using FluidFM. Nano Lett. 12, 4219–4227 (2012).

    Article  ADS  Google Scholar 

  130. Aebersold, M. J. et al. Local chemical stimulation of neurons with the fluidic force microscope (FluidFM). ChemPhysChem 19, 1234–1244 (2018).

    Article  Google Scholar 

  131. Mulder, E. J., Moser, B., Delgado, J., Steinhardt, R. C. & Esser-Kahn, A. P. Evidence of collective influence in innate sensing using fluidic force microscopy. Front. Immunol. 15, 1340384 (2024).

    Article  Google Scholar 

  132. Senden, T. J. Force microscopy and surface interactions. Curr. Opin. Colloid Interface Sci. 6, 95–101 (2001).

    Article  Google Scholar 

  133. Butt, H.-J., Cappella, B. & Kappl, M. Force measurements with the atomic force microscope: technique, interpretation and applications. Surf. Sci. Rep. 59, 1–152 (2005).

    Article  ADS  Google Scholar 

  134. Butt, H.-J. et al. Steric forces measured with the atomic force microscope at various temperatures. Langmuir 15, 2559–2565 (1999).

    Article  Google Scholar 

  135. VanLandingham, M. R., Villarrubia, J. S., Guthrie, W. F. & Meyers, G. F. Nanoindentation of polymers: an overview. Macromol. Symp. 167, 15–44 (2001).

    Article  Google Scholar 

  136. Ducker, W. A., Senden, T. J. & Pashley, R. M. Direct measurement of colloidal forces using an atomic force microscope. Nature 353, 239–241 (1991).

    Article  ADS  Google Scholar 

  137. Butt, H.-J. Measuring electrostatic, van der Waals, and hydration forces in electrolyte solutions with an atomic force microscope. Biophys. J. 60, 1438–1444 (1991).

    Article  ADS  Google Scholar 

  138. Specht, A. et al. High-throughput mechanical characterization of single microgel particles by fluidic force microscopy. Small 21, e05367 (2025).

    Article  Google Scholar 

  139. Rosales, A. B., Causserand, C., Coetsier, C. & Formosa-Dague, C. Probing the reduction of adhesion forces between biofilms and anti-biofouling filtration membrane surfaces using FluidFM technology. Colloids Surf. B Biointerfaces 234, 113701 (2024).

    Article  Google Scholar 

  140. Helfricht, N., Doblhofer, E., Duval, J. F. L., Scheibel, T. & Papastavrou, G. Colloidal properties of recombinant spider silk protein particles. J. Phys. Chem. C 120, 18015–18027 (2016).

    Article  Google Scholar 

  141. Schwan, L. & Bröckel, U. First approach using fluidic force microscopy (FluidFM®) to measure adhesion forces between droplets and flat/rough surfaces immersed in water. Processes 12, 99 (2024).

    Article  Google Scholar 

  142. Demir, I. et al. Probing the interactions between air bubbles and (bio)interfaces at the nanoscale using FluidFM technology. J. Colloid Interface Sci. 604, 785–797 (2021).

    Article  ADS  Google Scholar 

  143. Emiroglu, D. B. et al. Building block properties govern granular hydrogel mechanics through contact deformations. Sci. Adv. 8, eadd8570 (2022).

    Article  Google Scholar 

  144. McGrath, J. S. et al. Deformability assessment of waterborne protozoa using a microfluidic-enabled force microscopy probe. PLoS ONE 11, e0150438 (2016).

    Article  Google Scholar 

  145. Ossola, D., Dörig, P., Vörös, J., Zambelli, T. & Vassalli, M. Serial weighting of micro-objects with resonant microchanneled cantilevers. Nanotechnology 27, 415502 (2016).

    Article  Google Scholar 

  146. Dörig, P. et al. Force-controlled spatial manipulation of viable mammalian cells and micro-organisms by means of FluidFM technology. Appl. Phys. Lett. 97, 023701 (2010).

    Article  ADS  Google Scholar 

  147. Sancho, A., Vandersmissen, I., Craps, S., Luttun, A. & Groll, J. A new strategy to measure intercellular adhesion forces in mature cell-cell contacts. Sci. Rep. 7, 46152 (2017).

    Article  ADS  Google Scholar 

  148. Sancho, A. et al. Cell adhesion assessment reveals a higher force per contact area on fibrous structures compared to flat substrates. ACS Biomater. Sci. Eng. 8, 649–658 (2022).

    Article  Google Scholar 

  149. Weigl, F., Blum, C., Sancho, A. & Groll, J. Correlative analysis of intra- versus extracellular cell detachment events via the alignment of optical imaging and detachment force quantification. Adv. Mater. Technol. 7, 2200195 (2022).

    Article  Google Scholar 

  150. Chala, N. et al. Mechanical fingerprint of senescence in endothelial cells. Nano Lett. 21, 4911–4920 (2021).

    Article  ADS  Google Scholar 

  151. Buisson, J. et al. Reverse mechanotransduction: driving chromatin compaction to decompaction increases cell adhesion strength and contractility. Nano Lett. 24, 4279–4290 (2024).

    Article  ADS  Google Scholar 

  152. Cui, Y. et al. Global miRNA dosage control of embryonic germ layer specification. Nature 593, 602–606 (2021).

    Article  ADS  Google Scholar 

  153. Gassler, T. et al. Induced endosymbiosis between a fungus and bacterium reveals a shift from antagonism to commensalism. Nat. Commun. 16, 10717 (2025).

    Article  ADS  Google Scholar 

  154. Jentsch, T. J., Hübner, C. A. & Fuhrmann, J. C. Ion channels: function unravelled by dysfunction. Nat. Cell Biol. 6, 1039–1047 (2004).

    Article  Google Scholar 

  155. Coste, B. et al. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330, 55–60 (2010).

    Article  ADS  Google Scholar 

  156. Smith, S. L., Smith, I. T., Branco, T. & Häusser, M. Dendritic spikes enhance stimulus selectivity in cortical neurons in vivo. Nature 503, 115–120 (2013).

    Article  ADS  Google Scholar 

  157. Zhu, C., Huang, K., Siepser, N. P. & Baker, L. A. Scanning ion conductance microscopy. Chem. Rev. 121, 11726–11768 (2021).

    Article  Google Scholar 

  158. Ossola, D. et al. Simultaneous scanning ion conductance microscopy and atomic force microscopy with microchanneled cantilevers. Phys. Rev. Lett. 115, 238103 (2015).

    Article  ADS  Google Scholar 

  159. Dorwling-Carter, L. et al. Simultaneous scanning ion conductance and atomic force microscopy with a nanopore: effect of the aperture edge on the ion current images. J. Appl. Phys. 124, 174902 (2018).

    Article  ADS  Google Scholar 

  160. Schlotter, T. et al. Force-controlled formation of dynamic nanopores for single-biomolecule sensing and single-cell secretomics. ACS Nano 14, 12993–13003 (2020).

    Article  Google Scholar 

  161. Schlotter, T. et al. Aptamer-functionalized interface nanopores enable amino acid-specific peptide detection. ACS Nano 18, 6286–6297 (2024).

    Article  Google Scholar 

  162. Uhlén, M. et al. The human secretome. Sci. Signal. 12, eaaz0274 (2019).

    Article  Google Scholar 

  163. te Riet, J. et al. Interlaboratory round robin on cantilever calibration for AFM force spectroscopy. Ultramicroscopy 111, 1659–1669 (2011).

    Article  Google Scholar 

  164. Hosaka, S., Etoh, K., Kikukawa, A. & Koyanagi, H. Megahertz silicon atomic force microscopy (AFM) cantilever and high-speed readout in AFM-based recording. J. Vac. Sci. Technol. B 18, 94–99 (2000).

    Article  Google Scholar 

  165. Dzedzickis, A., Rožėnė, J., Bučinskas, V., Viržonis, D. & Morkvėnaitė-Vilkončienė, I. Characteristics and functionality of cantilevers and scanners in atomic force microscopy. Materials 16, 6379 (2023).

    Article  ADS  Google Scholar 

  166. Korayem, M. H., Saraie, M. B. & Saraee, M. B. Analysis the effect of different geometries of AFM’s cantilever on the dynamic behavior and the critical forces of three-dimensional manipulation. Ultramicroscopy 175, 9–24 (2017).

    Article  Google Scholar 

  167. Glaubitz, M. et al. A novel contact model for AFM indentation experiments on soft spherical cell-like particles. Soft Matter 10, 6732–6741 (2014).

    Article  ADS  Google Scholar 

  168. Raßmann, N. et al. Determining the elastic modulus of microgel particles by nanoindentation. ACS Appl. Nano Mater. 8, 5383–5398 (2025).

    Article  Google Scholar 

  169. Bay, J., Bouwstra, S., Laegsgaard, E. & Hansen, O. Micromachined AFM transducer with differential capacitive read-out. J. Micromech. Microeng. 5, 161 (1995).

    Article  ADS  Google Scholar 

  170. Brugger, J., Buser, R. A. & de Rooij, N. F. Micromachined atomic force microprobe with integrated capacitive read-out. J. Micromech. Microeng. 2, 218 (1992).

    Article  ADS  Google Scholar 

  171. Itoh, T. & Suga, T. Development of a force sensor for atomic force microscopy using piezoelectric thin films. Nanotechnology 4, 218 (1993).

    Article  ADS  Google Scholar 

  172. Shibata, T., Unno, K., Makino, E., Ito, Y. & Shimada, S. Characterization of sputtered ZnO thin film as sensor and actuator for diamond AFM probe. Sens. Actuators A Phys. 102, 106–113 (2002).

    Article  ADS  Google Scholar 

  173. Shin, C., Jeon, I., Khim, Z. G., Hong, J. W. & Nam, H. Study of sensitivity and noise in the piezoelectric self-sensing and self-actuating cantilever with an integrated Wheatstone bridge circuit. Rev. Sci. Instrum. 81, 035109 (2010).

    Article  ADS  Google Scholar 

  174. Tortonese, M., Barrett, R. C. & Quate, C. F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl. Phys. Lett. 62, 834–836 (1993).

    Article  ADS  Google Scholar 

  175. Linnemann, R., Gotszalk, T., Hadjiiski, L. & Rangelow, I. W. Characterization of a cantilever with an integrated deflection sensor. Thin Solid Films 264, 159–164 (1995).

    Article  ADS  Google Scholar 

  176. Dukic, M., Adams, J. D. & Fantner, G. E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci. Rep. 5, 16393 (2015).

    Article  ADS  Google Scholar 

  177. Han, H. et al. Integration of silver nanowires into SU-8 hollow cantilevers for piezoresistive-based sensing. Sens. Actuators A: Phys. 301, 111748 (2020).

    Article  Google Scholar 

  178. Hosseini, N. et al. A polymer–semiconductor–ceramic cantilever for high-sensitivity fluid-compatible microelectromechanical systems. Nat. Electron. 7, 567–575 (2024).

    Article  Google Scholar 

  179. Suchyna, T. M., Markin, V. S. & Sachs, F. Biophysics and structure of the patch and the gigaseal. Biophys J. 97, 738–747 (2009).

    Article  ADS  Google Scholar 

  180. Priel, A., Gil, Z., Moy, V. T., Magleby, K. L. & Silberberg, S. D. Ionic requirements for membrane-glass adhesion and giga seal formation in patch-clamp recording. Biophys. J. 92, 3893–3900 (2007).

    Article  ADS  Google Scholar 

  181. Böhle, T. & Benndorf, K. Facilitated giga-seal formation with a just originated glass surface. Pflügers Arch. 427, 487–491 (1994).

    Article  Google Scholar 

  182. Malboubi, M., Gu, Y. & Jiang, K. Experimental and simulation study of the effect of pipette roughness on giga-seal formation in patch clamping. Microelectron. Eng. 87, 778–781 (2010).

    Article  Google Scholar 

  183. Novak, P. et al. Imaging single nanoparticle interactions with human lung cells using fast ion conductance microscopy. Nano Lett. 14, 1202–1207 (2014).

    Article  ADS  Google Scholar 

  184. Vélez-Ortega, A. C. et al. High-speed hopping probe scanning ion conductance microscopy. Biophys. J. 106, 797a–798a (2014).

    Article  ADS  Google Scholar 

  185. Watanabe, S., Kitazawa, S., Sun, L., Kodera, N. & Ando, T. Development of high-speed ion conductance microscopy. Rev. Sci. Instrum. 90, 123704 (2019).

    Article  ADS  Google Scholar 

  186. Leitao, S. M. et al. Time-resolved scanning ion conductance microscopy for three-dimensional tracking of nanoscale cell surface dynamics. ACS Nano 15, 17613–17622 (2021).

    Article  Google Scholar 

  187. Sánchez, D. et al. Noncontact measurement of the local mechanical properties of living cells using pressure applied via a pipette. Biophys J. 95, 3017–3027 (2008).

    Article  ADS  Google Scholar 

  188. Rheinlaender, J. & Schäffer, T. E. Mapping the mechanical stiffness of live cells with the scanning ion conductance microscope. Soft Matter 9, 3230–3236 (2013).

    Article  ADS  Google Scholar 

  189. Rheinlaender, J. & Schäffer, T. E. Mapping the creep compliance of living cells with scanning ion conductance microscopy reveals a subcellular correlation between stiffness and fluidity. Nanoscale 11, 6982–6989 (2019).

    Article  Google Scholar 

  190. Wang, Y., Shashishekar, M., Spence, D. M. & Baker, L. A. Subcellular mechanical imaging of erythrocytes with optically correlated scanning ion conductance microscopy. ACS Meas. Sci. Au 5, 345–352 (2025).

    Article  Google Scholar 

  191. Xiao, R., Zhang, Y. & Li, M. Automated high-throughput atomic force microscopy single-cell nanomechanical assay enabled by deep learning-based optical image recognition. Nano Lett. 24, 12323–12332 (2024).

    Article  ADS  Google Scholar 

  192. Thomas Chemin, O. et al. Advancing high-throughput cellular atomic force microscopy with automation and artificial intelligence. ACS Nano 19, 5045–5062 (2025).

    Article  Google Scholar 

  193. Shakoor, A., Gao, W., Zhao, L., Jiang, Z. & Sun, D. Advanced tools and methods for single-cell surgery. Microsyst. Nanoeng. 8, 47 (2022).

    Article  ADS  Google Scholar 

  194. Moeendarbary, E. et al. The cytoplasm of living cells behaves as a poroelastic material. Nat. Mater. 12, 253–261 (2013).

    Article  ADS  Google Scholar 

  195. Stewart, M. P. et al. Wedged AFM-cantilevers for parallel plate cell mechanics. Methods 60, 186–194 (2013).

    Article  Google Scholar 

  196. Gonnermann, C. et al. Quantitating membrane bleb stiffness using AFM force spectroscopy and an optical sideview setup. Integr. Biol. 7, 356–363 (2015).

    Article  Google Scholar 

  197. Chaudhuri, O., Parekh, S. H., Lam, W. A. & Fletcher, D. A. Combined atomic force microscopy and side-view optical imaging for mechanical studies of cells. Nat. Methods 6, 383–387 (2009).

    Article  Google Scholar 

  198. Yang, Y. & Li, M. Side-view optical microscopy-assisted atomic force microscopy for thickness-dependent nanobiomechanics. Nanoscale Adv. 6, 3306–3319 (2024).

    Article  ADS  Google Scholar 

  199. Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Article  Google Scholar 

  200. Verstegen, M. M. A. et al. Clinical applications of human organoids. Nat. Med. 31, 409–421 (2025).

    Article  Google Scholar 

  201. Guillaume-Gentil, O. et al. Force-controlled manipulation of single cells: from AFM to FluidFM. Trends Biotechnol. 32, 381–388 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank all the doctoral students and post-doctoral fellows who invaluably contributed to the progress of the FluidFM. The authors thank D. Ossola, P. Dörig, P. Behr and M. Gabi (Cytosurge AG, CH), D. Bijl (Smarttip BV, NL) as well as P. Frederix, C. Bippes and M. Portalupi (Nanosurf AG, CH) for their constant support. T.Z. is indebted to J. Vörös (ETH Zurich) for his generous continuous trust. The development of the FluidFM and its applications has been enabled by several grants of the Swiss KTI-CTI agency (now Innosuisse) to T.Z. and J.A.V., grants from the Swiss National Science Foundation to T.Z., and a European Research Council Advanced Grant (number 883077) as well as funding from the Swiss State Secretariat for Education, Research and Innovation (SERI) to J.A.V. The contribution of R.H. was supported by the Momentum (Lendület) Program of the Hungarian Academy of Sciences and the National Research, Development, and Innovation Fund (NKFIH) of Hungary under grant TKP2021-EGA-04, ADVANCED 153121 and 2024-1.2.10-TÉT-IPARI-IL-2024-00030. The contribution of M.L. was supported by the National Natural Science Foundation of China (no. 62573403) and the Natural Science Foundation of Liaoning Province (no. 2024JH3/50100021). The contribution of G.-y.L. was supported the National Science Foundation of USA (CHE-2304986).

Author information

Authors and Affiliations

Authors

Contributions

Introduction (T.Z., O.G.-G., G.P., R.H., G.-y.L., M.L. and J.A.V.); Experimentation (T.Z., O.G.-G., E.S., G.P., R.H., G.-y.L., M.L. and J.A.V.); Results (T.Z., O.G.-G., G.P., R.H., G.-y.L., M.L. and J.A.V.); Applications (T.Z., O.G.-G., G.P., R.H., G.-y.L., M.L. and J.A.V.); Reproducibility and data deposition (T.Z., O.G.-G., G.P., R.H., G.-y.L., M.L. and J.A.V.); Limitations and optimizations (T.Z., O.G.-G., E.S., G.P., R.H., G.-y.L., M.L. and J.A.V.); Outlook (T.Z., O.G.-G., E.S., G.P., R.H., G.-y.L., M.L. and J.A.V.); overview of the Primer (T.Z. and J.A.V.).

Corresponding author

Correspondence to Tomaso Zambelli.

Ethics declarations

Competing interests

E.S. oversees the production of FluidFM probes and is employed by Bruker Nederland BV (NL). The other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Methods Primers thanks Ricardo Garcia, Ana Sancho and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zambelli, T., Guillaume-Gentil, O., Sarajlic, E. et al. Fluidic force microscopy. Nat Rev Methods Primers 6, 15 (2026). https://doi.org/10.1038/s43586-025-00463-2

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s43586-025-00463-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing