Table 1 Lattice properties obtained from the Birch–Murnaghan equation of state for the diamond and β-Sn phases of silicon

From: A shortcut to the thermodynamic limit for quantum many-body calculations of metals

Structure

Property

TA-HF

sfTA-CCSD-FS

sfTA-DCSD-FS

Experiments

DMCa

DMCb

DMC + EMP-ppc

AFQMC

D-Si

Vt3 per atom)

15.52

17.62

18.15

18.14

17.83

18.15

 

B0 (GPa)

104

105.1

99.2

103.0

98.0

96.2

 

\({B}_{0}^{\prime}\)

3.82

3.83

4.11

4.6

4.19

 

V03 per atom)

20.78

20.04

20.0

20.11

19.98

19.75

β-Sn Si

Vt3 per atom)

12.16

13.5

13.96

13.9

13.81

13.955

 

B0 (GPa)

112

118.3

114

107

104.2

 

\({B}_{0}^{\prime}\)

4.05

4.6

4.6

4.7

 

V03 per atom)

15.96

14.95

15.26

15.2

15.17

 

ΔE (eV per atom)

1.302

0.562

0.494

0.505

0.424

0.329

0.365d

 

Pt (GPa)

52.96

17.37

15.26

17.8

15.3

13.16

13.9

 

Pt vib. (GPa)

51.66

16.07

13.96

11.3–12.5

16.5

14.0

12.2

12.6

  1. Lattice properties for the two silicon phases, including the transition volume (Vt), bulk modulus (B0), pressure derivative of the bulk modulus (\(B_0\)), volume at equilibrium (V0), energy difference between the two minima (ΔE), transition pressure (Pt) and fully corrected transition pressures (Pt vib.) (see Methods for details). Our TA-HF and sfTA-CCSD energies are compared with those from DMC, AFQMC and experiments. The following superscripts distinguish between different DMC studies: aAlfè et al.19, bHennig et al.18 and cMaezono et al.21. AFQMC numbers come from Purwanto et al.20 and to obtain d we applied a core-polarization correction ourselves. The column marked DMC + EMP-pp used an empirical pseudopotential correction (EMP-pp). The energies and transition pressures consistently include core-polarization contributions (see Methods for details). Experimental numbers come from various sources22,23,24 as organized by Hennig and colleagues18.