The focus on quantum materials has raised questions on the fitness of density functional theory for the description of the basic physics of such strongly correlated systems. Recent studies point to another possibility: the perceived limitations are often not a failure of the density functional theory per se, but rather a failure to break symmetry.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Multiferroic nematic d-wave altermagnetism driven by orbital-order on the honeycomb lattice
npj 2D Materials and Applications Open Access 19 August 2025
-
Molecular modeling analyses of functionalized cellulose
Scientific Reports Open Access 12 November 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout

References
Zunger, A. Nat. Rev. Chem. 2, 0121 (2018).
Hohenberg, P. & Kohn, W. Phys. Rev. 136, B864 (1964).
Kohn, W. & Sham, L. J. Phys. Rev. 140, A3l33 (1965).
Toulouse, L. Preprint at https://arxiv.org/abs/2103.02645 (2021).
Ihm, J., Zunger, A. & Cohen, M. L. J. Phys. C 12, 4409–4421 (1979).
de Boer, J. H. & Verwey, E. J. W. Proc. Phys. Soc. 49, 59–71 (1937).
Mott, N. F. Metal–Insulator Transitions (Taylor & Francis, 1974).
Hubbard, L. Proc. R. Soc. Lond. A 276, 238–257 (1963).
Arovas, D. P., Berg, E., Kivelson, S. & Raghu, S. Annu. Rev. Condens. Matter Phys. 13, 239–274 (2022).
Park, H., Millis, A. J. & Marianetti, C. Phys. Rev. B 89, 245133 (2014).
Pavarini, E. La Rivista del Nuovo Cimento 44, 597–640 (2021).
Yeh, C. N., Iskakov, S., Zgid, D. & Gull, E. Phys. Rev. B 103, 195149 (2021).
Orenstein, J. Phys. Today 65, 44–50 (2012).
Zhang, Y. et al. Proc. Natl Acad. Sci. USA 117, 68–72 (2019).
Malyi, O. I. & Zunger, A. Appl. Phys. Rev. 7, 041310 (2020).
Trimarchi, G., Wang, Z. & Zunger, A. Phys. Rev. B 97, 035107 (2018).
Varignon, J., Bibes, M. & Zunger, A. Nat. Commun. 10, 1658 (2019).
Zhang, Y. et al. Phys. Rev. B 102, 045112 (2020).
Jordan, M. B., Iniguez, J. & Ghosez, P. Nat. Commun. 8, 177 (2017).
Aktas, O. et al. Phys. Rev. Res. 3, 043221 (2021).
Biancoli, A. et al. Nat. Mater. 14, 224–229 (2015).
Georgescu, A. B. & Millis, A. J. Preprint at https://arxiv.org/abs/2105.02271 (2021).
Perdew, J. P. et al. Proc. Natl Acad. Sci. USA 118, e2017850118 (2021).
Acknowledgements
A.Z. is supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division and US National Science Foundation NSF-DMR-DMREF.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The author declares no competing interests.
Rights and permissions
About this article
Cite this article
Zunger, A. Bridging the gap between density functional theory and quantum materials. Nat Comput Sci 2, 529–532 (2022). https://doi.org/10.1038/s43588-022-00323-z
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s43588-022-00323-z
This article is cited by
-
Multiferroic nematic d-wave altermagnetism driven by orbital-order on the honeycomb lattice
npj 2D Materials and Applications (2025)
-
Molecular modeling analyses of functionalized cellulose
Scientific Reports (2024)