Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Slow down and be critical before using early warning signals in psychopathology

Abstract

Early warning signals are considered to be generic indicators of a system’s accumulating instability and ‘critical slowing down’ prior to substantial and abrupt transitions between stable states. In clinical psychology, these signals have been proposed to enable personalized predictions of the impending onset, recurrence and remission of mental health problems before changes in symptoms occur, thereby facilitating timely therapeutic interventions. In this Perspective, we question the idea that early warning signals in a person’s emotion time series can predict changes in mental health symptoms. Using the empirical findings to date and the theoretical and methodological limitations inherent in their application, we argue that there is little support for the use of early warning signals based on critical slowing down in clinical psychology. Deepening our knowledge of the theoretical foundations of these predictors and improving their measurement are key to clarifying the potential and boundaries for their use in psychopathology. It is necessary to build on the insights gained from early warning signal studies and to improve and evaluate alternative methods, keeping in mind that clinical applications require prospective, real-time predictions that not only indicate whether, but also when, a specific person is likely to experience changes in their mental health.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changing system stability landscapes during critical slowing down.
Fig. 2: Example transitions in psychopathology.
Fig. 3: Statistical process control method.

Similar content being viewed by others

References

  1. Thelen, E. & Smith, L. B. A Dynamic Systems Approach to Development and Action (MIT Press, 1994).

  2. Mahoney, M. J. Human Change Processes: The Scientific Foundations of Psychotherapy (Basic Books, 1991).

  3. Van Der Maas, H. L. J. & Molenaar, P. C. M. Stagewise cognitive development: an application of catastrophe theory. Psychol. Rev. 99, 395–417 (1992).

    Article  PubMed  Google Scholar 

  4. Richardson, M. J., Dale, R. & Marsh, K. L. in Handbook of Research Methods in Social and Personality Psychology (eds Reis, H. T. & Judd, C. M.) 253–282 (Cambridge Univ. Press, 2014).

  5. Zeeman, E. C. Catastrophe theory. Sci. Am. 234, 65–83 (1976).

    Article  Google Scholar 

  6. Glass, L. & Mackey, M. C. Pathological conditions resulting from instabilities in physiological control systems. Ann. NY Acad. Sci. 316, 214–235 (1979).

    Article  PubMed  Google Scholar 

  7. Witherington, D. C. & Crichton, J. A. Frameworks for understanding emotions and their development: functionalist and dynamic systems approaches. Emotion 7, 628 (2007).

    Article  PubMed  Google Scholar 

  8. Bringmann, L. F., Helmich, M. A., Eronen, M. I. & Voelkle, M. C. in Oxford Textbook of Psychopathology (eds Krueger, R. F. & Blaney, P. H.) 103–122 (Oxford Univ. Press, 2023).

  9. Cramer, A. O. J. et al. Major depression as a complex dynamic system. PLOS ONE 11, e0167490 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hayes, A. M. & Andrews, L. A. A complex systems approach to the study of change in psychotherapy. BMC Med. 18, 197 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lunansky, G. et al. The mental health ecosystem: extending symptom networks with risk and protective factors. Front. Psychiatry 12, 640658 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Granic, I., Hollenstein, T. & Lichtwarck-Aschoff, A. in Developmental Psychopathology: Theory and Method (ed. Cicchetti, D.) 717–759 (John Wiley & Sons, 2016).

  13. Shiffman, S., Stone, A. A. & Hufford, M. R. Ecological momentary assessment. Annu. Rev. Clin. Psychol. 4, 1–32 (2008).

    Article  PubMed  Google Scholar 

  14. Voelkle, M. C., Gische, C., Driver, C. C. & Lindenberger, U. The role of time in the quest for understanding psychological mechanisms. Multivar. Behav. Res. 53, 782–805 (2018).

    Article  Google Scholar 

  15. Hamaker, E. L. & Wichers, M. No time like the present: discovering the hidden dynamics in intensive longitudinal data. Curr. Dir. Psychol. Sci. 26, 10–15 (2017).

    Article  Google Scholar 

  16. Hayes, A. M., Laurenceau, J.-P., Feldman, G., Strauss, J. L. & Cardaciotto, L. Change is not always linear: the study of nonlinear and discontinuous patterns of change in psychotherapy. Clin. Psychol. Rev. 27, 715–723 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Schreuder, M. J., Groen, R. N., Wigman, J. T. W., Hartman, C. A. & Wichers, M. Measuring psychopathology as it unfolds in daily life: addressing key assumptions of intensive longitudinal methods in the TRAILS TRANS-ID study. BMC Psychiatry 20, 351 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wichers, M. The dynamic nature of depression: a new micro-level perspective of mental disorder that meets current challenges. Psychol. Med. 44, 1349–1360 (2014).

    Article  PubMed  Google Scholar 

  19. Wichers, M., Wigman, J. T. W. & Myin-Germeys, I. Micro-level affect dynamics in psychopathology viewed from complex dynamical system theory. Emot. Rev. 7, 362–367 (2015).

    Article  Google Scholar 

  20. Scheffer, M. Critical Transitions in Nature and Society (Princeton Univ. Press, 2009).

  21. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    Article  PubMed  Google Scholar 

  22. Boers, N. Observation-based early-warning signals for a collapse of the Atlantic meridional overturning circulation. Nat. Clim. Change 11, 680–688 (2021).

    Article  Google Scholar 

  23. de Mooij, S. M. M. et al. Dynamics of sleep: exploring critical transitions and early warning signals. Comput. Meth. Prog. Biomed. 193, 105448 (2020).

    Article  Google Scholar 

  24. Litzow, M. A. & Hunsicker, M. E. Early warning signals, nonlinearity, and signs of hysteresis in real ecosystems. Ecosphere 7, e01614 (2016).

    Article  Google Scholar 

  25. O’Brien, D. A. & Clements, C. F. Early warning signal reliability varies with COVID-19 waves. Biol. Lett. 17, 20210487 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gelo, O. C. G. & Salvatore, S. A dynamic systems approach to psychotherapy: a meta-theoretical framework for explaining psychotherapy change processes. J. Couns. Psychol. 63, 379–395 (2016).

    Article  PubMed  Google Scholar 

  27. Shalom, J. G. & Aderka, I. M. A meta-analysis of sudden gains in psychotherapy: outcome and moderators. Clin. Psychol. Rev. 76, 101827 (2020).

    Article  PubMed  Google Scholar 

  28. Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).

    Article  PubMed  Google Scholar 

  29. Hayes, A. M. & Strauss, J. L. Dynamic systems theory as a paradigm for the study of change in psychotherapy: an application to cognitive therapy for depression. J. Consult. Clin. Psychol. 66, 939–947 (1998).

    Article  PubMed  Google Scholar 

  30. Piccirillo, M. L. & Rodebaugh, T. L. Foundations of idiographic methods in psychology and applications for psychotherapy. Clin. Psychol. Rev. 71, 90–100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fisher, A. J., Medaglia, J. D. & Jeronimus, B. F. Lack of group-to-individual generalizability is a threat to human subjects research. Proc. Natl Acad. Sci. USA 115, E6106–E6115 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fried, E. I. Moving forward: how depression heterogeneity hinders progress in treatment and research. Expert. Rev. Neurother. 17, 423–425 (2017).

    Article  PubMed  Google Scholar 

  33. Hamaker, E. L. in Handbook of Research Methods for Studying Daily Life (eds Mehl, M. R. & Conner, T. S.) 43–61 (Guilford, 2012).

  34. Hekler, E. B. et al. Why we need a small data paradigm. BMC Med. 17, 133 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Reichert, M. et al. Ambulatory assessment for precision psychiatry: foundations, current developments and future avenues. Exp. Neurol. 345, 113807 (2021).

    Article  PubMed  Google Scholar 

  36. Bennett, S. & Shafran, R. Adaptation, personalization and capacity in mental health treatments: a balancing act? Curr. Opin. Psychiatry 36, 28–33 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Molenaar, P. C. M. A manifesto on psychology as idiographic science: bringing the person back into scientific psychology, this time forever. Meas. Interdisc. Res. Persp. 2, 201–218 (2004).

    Google Scholar 

  38. Roefs, A. et al. A new science of mental disorders: using personalised, transdiagnostic, dynamical systems to understand, model, diagnose and treat psychopathology. Behav. Res. Ther. 153, 104096 (2022).

    Article  PubMed  Google Scholar 

  39. Stumpp, N. & Sauer, S. Evidence-based strategies for treatment personalization: a review. Cogn. Behav. Pract. 29, 902–913 (2021).

    Article  Google Scholar 

  40. Wright, A. G. C. & Woods, W. C. Personalized models of psychopathology. Annu. Rev. Clin. Psychol. 16, 49–74 (2020).

    Article  PubMed  Google Scholar 

  41. Wichers, M., Groot, P. C., Psychosystems, ESM Group & EWS Group. Critical slowing down as a personalized early warning signal for depression. Psychother. Psychosom. 85, 114–116 2016).

    Article  PubMed  Google Scholar 

  42. Fried, E. I. Studying mental health problems as systems, not syndromes. Curr. Dir. Psychol. Sci. 31, 500–508 (2022).

    Article  Google Scholar 

  43. Dakos, V. et al. Tipping point detection and early warnings in climate, ecological, and human systems. Earth Syst. Dynam. 15, 1117-1135 (2024).

    Article  Google Scholar 

  44. George, S. V., Kachhara, S. & Ambika, G. Early warning signals for critical transitions in complex systems. Phys. Scr. 98, 072002 (2023).

    Article  Google Scholar 

  45. Cabrieto, J., Adolf, J., Tuerlinckx, F., Kuppens, P. & Ceulemans, E. An objective, comprehensive and flexible statistical framework for detecting early warning signs of mental health problems. Psychother. Psychosom. 88, 184–186 (2019).

    Article  PubMed  Google Scholar 

  46. Kéfi, S. et al. Early warning signals of ecological transitions: methods for spatial patterns. PLoS ONE 9, e92097 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  47. George, S. V. et al. Predicting recurrence of depression using cardiac complexity in individuals tapering antidepressants. Transl. Psychiatry 13, 1–8 (2023).

    Article  Google Scholar 

  48. Heino, M. T. J., Knittle, K., Noone, C., Hasselman, F. & Hankonen, N. Studying behaviour change mechanisms under complexity. Behav. Sci. Basel Switz. 11, 77 (2021).

    Google Scholar 

  49. Kelso, J. A. S., Scholz, J. P. & Schöner, G. Nonequilibrium phase transitions in coordinated biological motion: critical fluctuations. Phys. Lett. A 118, 279–284 (1986).

    Article  Google Scholar 

  50. Olthof, M. et al. Critical fluctuations as an early-warning signal for sudden gains and losses in patients receiving psychotherapy for mood disorders. Clin. Psychol. Sci. 8, 25–35 (2020).

    Article  Google Scholar 

  51. Schiepek, G. et al. Convergent validation of methods for the identification of psychotherapeutic phase transitions in time series of empirical and model systems. Front. Psychol. 11, 1970 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kuppens, P., Oravecz, Z. & Tuerlinckx, F. Feelings change: accounting for individual differences in the temporal dynamics of affect. J. Pers. Soc. Psychol. 99, 1042–1060 (2010).

    Article  PubMed  Google Scholar 

  53. Lucas, R. E. Adaptation and the set-point model of subjective well-being: does happiness change after major life events? Curr. Dir. Psychol. Sci. 16, 75–79 (2007).

    Article  Google Scholar 

  54. Ormel, J., VonKorff, M., Jeronimus, B. F. & Riese, H. in Personality Development Across the Lifespan (ed. Specht, J.) 117–137 (Academic, 2017).

  55. Eckes, T. & Nestler, S. Do I like me now? An analysis of everyday sudden gains and sudden losses in self-esteem and nervousness. Clin. Psychol. Sci. 12, 22–36 (2024).

    Article  Google Scholar 

  56. Riese, H. & Wichers, M. Comment on: Eronen MI (2019). The levels problem in psychopathology. Psychol. Med. 51, 525–526 (2021).

    Article  PubMed  Google Scholar 

  57. Schiepek, G., Heinzel, S., Karch, S., Plöderl, M. & Strunk, G. in Selforganization in Complex Systems: The Past, Present, and Future of Synergetics (eds Wunner, G. & Pelster, A.) 81–208 (Springer International, 2016).

  58. Kendler, K. S., Zachar, P. & Craver, C. What kinds of things are psychiatric disorders? Psychol. Med. 41, 1143–1150 (2011).

    Article  PubMed  Google Scholar 

  59. Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T. W. & Hartmann, J. A. Moving from static to dynamic models of the onset of mental disorder a review. JAMA Psychiatry 74, 528–534 (2017).

    Article  PubMed  Google Scholar 

  60. Korf, J. Delayed mood transitions in major depressive disorder. Med. Hypoth. 82, 581–588 (2014).

    Article  Google Scholar 

  61. Olthof, M., Hasselman, F., Oude Maatman, F., Bosman, A. M. T. & Lichtwarck-Aschoff, A. Complexity theory of psychopathology. J. Psychopathol. Clin. Sci. 132, 314–323 (2023).

    Article  PubMed  Google Scholar 

  62. Smit, A. C., Snippe, E., Bringmann, L. F., Hoenders, H. J. R. & Wichers, M. Transitions in depression: if, how, and when depressive symptoms return during and after discontinuing antidepressants. Qual. Life Res. 32, 1295–1306 (2023).

    Article  PubMed  Google Scholar 

  63. Hufford, M. R., Witkiewitz, K., Shields, A. L., Kodya, S. & Caruso, J. C. Relapse as a nonlinear dynamic system: application to patients with alcohol use disorders. J. Abnorm. Psychol. 112, 219–227 (2003).

    Article  PubMed  Google Scholar 

  64. Lutz, W. et al. The ups and downs of psychotherapy: sudden gains and sudden losses identified with session reports. Psychother. Res. 23, 14–24 (2013).

    Article  PubMed  Google Scholar 

  65. Bos, E. H., de Jonge, P. & Cox, R. F. A. Affective variability in depression: revisiting the inertia-instability paradox. Br. J. Psychol. 110, 814–827 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Dejonckheere, E. et al. Complex affect dynamics add limited information to the prediction of psychological well-being. Nat. Hum. Behav. 3, 478–491 (2019).

    Article  PubMed  Google Scholar 

  67. Houben, M., Van Den Noortgate, W. & Kuppens, P. The relation between short-term emotion dynamics and psychological well-being: a meta-analysis. Psychol. Bull. 141, 901–930 (2015).

    Article  PubMed  Google Scholar 

  68. Koval, P., Pe, M. L., Meers, K. & Kuppens, P. Affect dynamics in relation to depressive symptoms: variable, unstable or inert? Emotion 13, 1132–1141 (2013).

    Article  PubMed  Google Scholar 

  69. Kuppens, P., Allen, N. B. & Sheeber, L. Emotional inertia and psychological maladjustment. Psychol. Sci. 21, 984–991 (2010).

    Article  PubMed  Google Scholar 

  70. Nelson, B. & Hartmann, J. A. Prediction in mental health research and its limits (or why life can only be understood backwards but must be lived forwards). Early Interv. Psychiatry 12, 767–770 (2018).

    Article  PubMed  Google Scholar 

  71. Schoevers, R. A. et al. Affect fluctuations examined with ecological momentary assessment in patients with current or remitted depression and anxiety disorders. Psychol. Med. 51, 1906–1915 (2021).

    Article  PubMed  Google Scholar 

  72. Silk, J. S. et al. Daily emotional dynamics in depressed youth: a cell phone ecological momentary assessment study. J. Exp. Child. Psychol. 110, 241–257 (2011).

    Article  PubMed  Google Scholar 

  73. Brose, A., Schmiedek, F., Koval, P. & Kuppens, P. Emotional inertia contributes to depressive symptoms beyond perseverative thinking. Cogn. Emot. 29, 527–538 (2015).

    Article  PubMed  Google Scholar 

  74. Kuppens, P. et al. Emotional inertia prospectively predicts the onset of depressive disorder in adolescence. Emotion 12, 283–289 (2012).

    Article  PubMed  Google Scholar 

  75. van de Leemput, I. A. et al. Critical slowing down as early warning for the onset and termination of depression. Proc. Natl Acad. Sci. USA 111, 87–92 (2014).

    Article  PubMed  Google Scholar 

  76. Houben, M. & Kuppens, P. Emotion dynamics and the association with depressive features and borderline personality disorder traits: unique, specific, and prospective relationships. Clin. Psychol. Sci. 8, 226–239 (2020).

    Article  Google Scholar 

  77. Kuranova, A. et al. Measuring resilience prospectively as the speed of affect recovery in daily life: a complex systems perspective on mental health. BMC Med. 18, 36 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Schreuder, M. J. et al. Early warning signals in psychopathology: what do they tell? BMC Med. 18, 269 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sperry, S. H., Walsh, M. A. & Kwapil, T. R. Emotion dynamics concurrently and prospectively predict mood psychopathology. J. Affect. Disord. 261, 67–75 (2020).

    Article  PubMed  Google Scholar 

  80. Bos, E. H. & De Jonge, P. Critical slowing down in depression’ is a great idea that still needs empirical proof. Proc. Natl Acad. Sci. USA 111, E878 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wichers, M. et al. Reply to Bos and de Jonge: between-subject data do provide first empirical support for critical slowing down in depression. Proc. Natl Acad. Sci. USA 111, E879 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Curtiss, J. E. et al. Rising early warning signals in affect associated with future changes in depression: a dynamical systems approach. Psychol. Med. 53, 3124–3132 (2023).

    Article  PubMed  Google Scholar 

  83. Slofstra, C. et al. Individual negative affective trajectories can be detected during different depressive relapse prevention strategies. Psychother. Psychosom. 87, 243–245 (2018).

    Article  PubMed  Google Scholar 

  84. Cui, J., Hasselman, F., Olthof, M. & Lichtwarck-Aschoff, A. Illuminating the path: examining the research methods of early warning signals in clinical psychology through a theoretical lens. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/59fu4 (2023).

  85. Bos, F. M. et al. Anticipating manic and depressive transitions in patients with bipolar disorder using early warning signals. Int. J. Bipolar Disord. 10, 12 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Helmich, M. A. et al. Detecting impending symptom transitions using early warning signals in individuals receiving treatment for depression. Clin. Psychol. Sci. 11, 994–1010 (2023).

    Article  Google Scholar 

  87. Ludwig, V. M. et al. Limited evidence of autocorrelation signaling upcoming affective episodes: a 12-month e-diary study in patients with bipolar disorder. Psychol. Med. 54, 1844–1852 (2024).

    Article  PubMed  Google Scholar 

  88. Schreuder, M. J. et al. Anticipating transitions in mental health in at-risk youth: a six-month daily diary study into early warning signals. Clin. Psychol. Sci. 11, 1026–1043 (2023).

    Article  Google Scholar 

  89. Smit, A. C. et al. Critical slowing down in momentary affect as early warning signal of impending transitions in depression. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/u6vdg (2022).

  90. Tonge, N. A., Miller, J. P., Kharasch, E. D., Lenze, E. J. & Rodebaugh, T. L. An investigation of the potential clinical utility of critical slowing down as an early warning sign for recurrence of depression. J. Behav. Ther. Exp. Psychiatry 82, 101922 (2024).

    Article  PubMed  Google Scholar 

  91. Wichers, M., Smit, A. C. & Snippe, E. Early warning signals based on momentary affect dynamics can expose nearby transitions in depression: a confirmatory single-subject time-series study. J. Pers. Oriented Res. 6, 1–15 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Boettiger, C. & Hastings, A. Early warning signals and the prosecutor’s fallacy. Proc. R. Soc. B 279, 4734–4739 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Dablander, F., Pichler, A., Cika, A. & Bacilieri, A. Anticipating critical transitions in psychological systems using early warning signals: theoretical and practical considerations. Psychol. Meth. 28, 765–790 (2023).

    Article  Google Scholar 

  94. Scheffer, M. et al. A dynamical systems view of psychiatric disorders — theory: a review. JAMA Psychiatry 81, 618–623 (2024).

    Article  PubMed  Google Scholar 

  95. Scheffer, M. et al. A dynamical systems view of psychiatric disorders — practical implications: a review. JAMA Psychiatry 81, 624–630 (2024).

    Article  PubMed  Google Scholar 

  96. Burthe, S. J. et al. Do early warning indicators consistently predict nonlinear change in long-term ecological data? J. Appl. Ecol. 53, 666–676 (2016).

    Article  Google Scholar 

  97. O’Brien, D. A. et al. Early warning signals have limited applicability to empirical lake data. Nat. Commun. 14, 7942 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gsell, A. S. et al. Evaluating early-warning indicators of critical transitions in natural aquatic ecosystems. Proc. Natl Acad. Sci. USA 113, E8089–E8095 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  99. Ditlevsen, P. D. & Johnsen, S. J. Tipping points: early warning and wishful thinking. Geophys. Res. Lett. 37, 2010GL044486 (2010).

    Article  Google Scholar 

  100. Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interf. 9, 2527–2539 (2012).

    Article  Google Scholar 

  101. Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

    Article  Google Scholar 

  102. Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).

    Article  PubMed  Google Scholar 

  103. Jäger, G. & Füllsack, M. Systematically false positives in early warning signal analysis. PLoS ONE 14, e0211072 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Kéfi, S., Dakos, V., Scheffer, M., Van Nes, E. H. & Rietkerk, M. Early warning signals also precede non-catastrophic transitions. Oikos 122, 641–648 (2013).

    Article  Google Scholar 

  105. Bury, T. Detecting and Distinguishing Transitions in Ecological Systems: Model and Data-driven Approaches. Thesis http://hdl.handle.net/10012/15531 (Univ. Waterloo, 2020).

  106. Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Philos. Trans. R. Soc. B 370, 20130263 (2015).

    Article  Google Scholar 

  107. Evers, K., Borsboom, D. & Hasselman, F. Early warning signals of complex critical transitions in deterministic dynamics. Nonlinear Dyn. 112, 19071–19094 (2024).

    Article  Google Scholar 

  108. Lever, J. J. et al. Foreseeing the future of mutualistic communities beyond collapse. Ecol. Lett. 23, 2–15 (2020).

    Article  PubMed  Google Scholar 

  109. Patterson, A. C., Strang, A. G. & Abbott, K. C. When and where we can expect to see early warning signals in multispecies systems approaching tipping points: insights from theory. Am. Nat. 198, E12–E26 (2021).

    Article  PubMed  Google Scholar 

  110. Weinans, E. et al. Finding the direction of lowest resilience in multivariate complex systems. J. R. Soc. Interf. 16, 20190629 (2019).

    Article  Google Scholar 

  111. Boerlijst, M. C., Oudman, T. & de Roos, A. M. Catastrophic collapse can occur without early warning: examples of silent catastrophes in structured ecological models. PLoS ONE 8, e62033 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Dakos, V. Identifying best-indicator species for abrupt transitions in multispecies communities. Ecol. Indic. 94, 494–502 (2018).

    Article  Google Scholar 

  113. Schreuder, M. J. et al. Anticipating the direction of symptom progression using critical slowing down: a proof-of-concept study. BMC Psychiatry 22, 49 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Wichers, M., Schreuder, M. J., Goekoop, R. & Groen, R. N. Can we predict the direction of sudden shifts in symptoms? Transdiagnostic implications from a complex systems perspective on psychopathology. Psychol. Med. 49, 380–387 (2019).

    Article  PubMed  Google Scholar 

  115. Fava, G. A. & Tossani, E. Prodromal stage of major depression. Early Interv. Psychiatry 1, 9–18 (2007).

    Article  PubMed  Google Scholar 

  116. Eisele, G. et al. A mixed-method investigation into measurement reactivity to the experience sampling method: the role of sampling protocol and individual characteristics. Psychol. Assess. 35, 68–81 (2023).

    Article  PubMed  Google Scholar 

  117. Bringmann, L. F., Elmer, T. & Eronen, M. I. Back to basics: the importance of conceptual clarification in psychological science. Curr. Dir. Psychol. Sci. 31, 340–346 (2022).

    Article  Google Scholar 

  118. Eronen, M. I. Causal complexity and psychological measurement. Phil. Psychol. https://doi.org/10.1080/09515089.2023.2300693 (2024).

    Article  Google Scholar 

  119. von Klipstein, L. et al. Increased affective reactivity among depressed individuals can be explained by floor effects: an experience sampling study. J. Affect. Disord. 334, 370–381 (2023).

    Article  Google Scholar 

  120. Dejonckheere, E. et al. Assessing the reliability of single-item momentary affective measurements in experience sampling. Psychol. Assess. 34, 1138–1154 (2022).

    Article  PubMed  Google Scholar 

  121. McNeish, D., Mackinnon, D. P., Marsch, L. A. & Poldrack, R. A. Measurement in intensive longitudinal data. Struct. Equ. Model. 28, 807–822 (2021).

    Article  Google Scholar 

  122. Siepe, B. S. et al. Understanding EMA data: a tutorial on exploring item performance in ecological momentary assessment data. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/dvj8g (2024).

  123. Shrout, P. E. et al. Initial elevation bias in subjective reports. Proc. Natl Acad. Sci. USA 115, E15–E23 (2018).

    Article  PubMed  Google Scholar 

  124. Ludwigs, K., Lucas, R., Burger, M., Veenhoven, R. & Arends, L. How does more attention to subjective well-being affect subjective well-being? Appl. Res. Qual. Life 13, 1055–1080 (2018).

    Article  Google Scholar 

  125. van Os, J. et al. The experience sampling method as an mHealth tool to support self-monitoring, self-insight, and personalized health care in clinical practice. Depress. Anxiety 34, 481–493 (2017).

    Article  PubMed  Google Scholar 

  126. Schuurman, N. K., Houtveen, J. H. & Hamaker, E. L. Incorporating measurement error in n = 1 psychological autoregressive modeling. Front. Psychol. 6, 1038 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Schuurman, N. K. A. ‘Within/between problem’ primer: about (not) separating within-person variance and between-person variance in psychology. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/7zgkx (2024).

  128. Dejonckheere, E. & Mestdagh, M. in: Waugh, C. E. & Kuppens, P. (eds) Affect Dynamics 131–152 (Springer International, 2021).

  129. Ebner-Priemer, U. & Santangelo, P. Digital phenotyping: hype or hope? Lancet Psychiatry 7, 297–299 (2020).

    Article  PubMed  Google Scholar 

  130. Ebner-Priemer, U. W. et al. Digital phenotyping: towards replicable findings with comprehensive assessments and integrative models in bipolar disorders. Int. J. Bipolar Disord. 8, 35 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  131. McLeod, J., Stiles, W. B. & Levitt, H. M. in Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change (eds Barkham, M., Lutz, W. & Castonguay, L. G.) 351–384 (Wiley, 2021).

  132. Fusar-Poli, P. et al. The lived experience of depression: a bottom-up review co-written by experts by experience and academics. World Psychiatry 22, 352–365 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  133. De Smet, M. M. et al. What “good outcome” means to patients: understanding recovery and improvement in psychotherapy for major depression from a mixed-methods perspective. J. Couns. Psychol. 67, 25–39 (2020).

    Article  PubMed  Google Scholar 

  134. De Smet, M. M. et al. Understanding ‘patient deterioration’ in psychotherapy from depressed patients’ perspectives: a mixed methods multiple case study. Psychother. Res. https://doi.org/10.1080/10503307.2024.2309286 (2024).

  135. Stänicke, E. & McLeod, J. Paradoxical outcomes in psychotherapy: theoretical perspectives, research agenda and practice implications. Eur. J. Psychother. Couns. 23, 115–138 (2021).

    Article  Google Scholar 

  136. Truijens, F. L. et al. When quantitative measures become a qualitative storybook: a phenomenological case analysis of validity and performativity of questionnaire administration in psychotherapy research. Qual. Res. Psychol. 19, 244–287 (2022).

    Article  Google Scholar 

  137. Helmich, M. A. et al. Early warning signals and critical transitions in psychopathology: challenges and recommendations. Curr. Opin. Psychol. 41, 51–58 (2021).

    Article  PubMed  Google Scholar 

  138. Truijens, F. L., De Smet, M. M., Vandevoorde, M., Desmet, M. & Meganck, R. What is it like to be the object of research? On meaning making in self-report measurement and validity of data in psychotherapy research. Meth. Psychol. 8, 100118 (2023).

    Article  Google Scholar 

  139. Haslbeck, J. & Ryan, O. Recovering within-person dynamics from psychological time series. Multivar. Behav. Res. 57, 735–766 (2022).

    Article  Google Scholar 

  140. Helmich, M. A. The duration-adjusted reliable change index: defining clinically relevant symptom changes of varying durations. Assessment 31, 1493–1507 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Strunk, G. & Lichtwarck-Aschoff, A. Therapeutic chaos. J. Pers. Oriented Res. 5, 81–100 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Kunkels, Y. K. et al. Risk ahead: actigraphy-based early-warning signals of increases in depressive symptoms during antidepressant discontinuation. Clin. Psychol. Sci. 11, 942–953 (2023).

    Article  Google Scholar 

  143. Kunkels, Y. K. et al. Efficacy of early warning signals and spectral periodicity for predicting transitions in bipolar patients: an actigraphy study. Transl. Psychiatry 11, 350 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  144. Langener, A. M. et al. It’s all about timing: exploring different temporal resolutions for analyzing digital-phenotyping data. Adv. Meth. Pract. Psychol. Sci. 7, 25152459231202677 (2024).

    Article  Google Scholar 

  145. Gijzel, S. M. W. et al. Measurement of dynamical resilience indicators improves the prediction of recovery following hospitalization in older adults. J. Am. Med. Dir. Assoc. 21, 525–530.e4 (2020).

    Article  PubMed  Google Scholar 

  146. Rector, J. L. et al. Dynamical indicators of resilience from physiological time series in geriatric inpatients: lessons learned. Exp. Gerontol. 149, 111341 (2021).

    Article  PubMed  Google Scholar 

  147. Jong, D. de, Ryan, O., Maas, H. van der & Hamaker, E. Detecting hysteresis in psychological processes with the hysteretic threshold autoregressive (HysTAR) model. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/zrcft (2024).

  148. Bringmann, L. F., van der Veen, D. C., Wichers, M., Riese, H. & Stulp, G. ESMvis: a tool for visualizing individual Experience Sampling Method (ESM) data. Qual. Life Res. 30, 3179–3188 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Snippe, E. et al. The temporal order of emotional, cognitive, and behavioral gains in daily life during treatment of depression. J. Consult. Clin. Psychol. https://doi.org/10.1037/ccp0000890 (2024).

  150. Snippe, E., Doornbos, B., Schoevers, R. A., Wardenaar, K. J. & Wichers, M. Individual and common patterns in the order of symptom improvement during outpatient treatment for major depression. J. Affect. Disord. 290, 81–88 (2021).

    Article  PubMed  Google Scholar 

  151. Benasi, G., Fava, G. A. & Guidi, J. Prodromal symptoms in depression: a systematic review. Psychother. Psychosom. 90, 365–372 (2021).

    Article  PubMed  Google Scholar 

  152. Schat, E., Tuerlinckx, F., Smit, A. C., De Ketelaere, B. & Ceulemans, E. Detecting mean changes in experience sampling data in real time: a comparison of univariate and multivariate statistical process control methods. Psychol. Meth. 28, 1335–1357 (2023).

    Article  Google Scholar 

  153. Smit, A. C., Snippe, E. & Wichers, M. Increasing restlessness signals impending increase in depressive symptoms more than 2 months before it happens in individual patients. Psychother. Psychosom. 88, 249–251 (2019).

    Article  PubMed  Google Scholar 

  154. Smit, A. C. & Snippe, E. Real-time monitoring of increases in restlessness to assess idiographic risk of recurrence of depressive symptoms. Psychol. Med. 53, 5060–5069 (2023).

    Article  PubMed  Google Scholar 

  155. Montgomery, D. C. Introduction to Statistical Quality Control (Wiley, 2009).

  156. Smit, A. C., Schat, E. & Ceulemans, E. The exponentially weighted moving average procedure for detecting changes in intensive longitudinal data in psychological research in real-time: a tutorial showcasing potential applications. Assessment 30, 1354–1368 (2023).

    Article  PubMed  Google Scholar 

  157. Snippe, E., Smit, A. C., Kuppens, P., Burger, H. & Ceulemans, E. Recurrence of depression can be foreseen by monitoring mental states with statistical process control. J. Psychopathol. Clin. Sci. 132, 145–155 (2023).

    Article  PubMed  Google Scholar 

  158. Schreuder, M. J., Schat, E., Smit, A. C., Snippe, E. & Ceulemans, E. Monitoring emotional intensity and variability to forecast depression recurrence in real time in remitted adults. J. Consult. Clin. Psychol. https://doi.org/10.1037/ccp0000871 (2024).

  159. Schat, E., Tuerlinckx, F., Schreuder, M., De Ketelaere, B. & Ceulemans, E. Forecasting the onset of depression with limited baseline data only: a comparison of a person-specific and a multilevel modeling based EWMA approach. Psychol. Assess. 36, 379–394 (2024).

    Article  PubMed  Google Scholar 

  160. Schat, E., Tuerlinckx, F., De Ketelaere, B. & Ceulemans, E. Real-time detection of mean and variance changes in experience sampling data: a comparison of existing and novel statistical process control approaches. Behav. Res. Meth. https://doi.org/10.3758/s13428-023-02103-7 (2023).

  161. Schreuder, M. J. et al. Warning signals for mental health problems in at‐risk young adults may be informed by momentary emotions reported by the general population: a novel application of the principles of statistical process control. Ment. Health Sci. https://doi.org/10.1002/mhs2.72 (2024).

  162. Kleiman, E. M., Glenn, C. R. & Liu, R. T. The use of advanced technology and statistical methods to predict and prevent suicide. Nat. Rev. Psychol. 2, 347–359 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Sedano-Capdevila, A., Porras-Segovia, A., Bello, H. J., Baca-García, E. & Barrigon, M. L. Use of ecological momentary assessment to study suicidal thoughts and behavior: a systematic review. Curr. Psychiatry Rep. 23, 41 (2021).

    Article  PubMed  Google Scholar 

  164. Meuret, A. E. et al. Do unexpected panic attacks occur spontaneously? Biol. Psychiatry 70, 985–991 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Witkiewitz, K. & Marlatt, G. A. Modeling the complexity of post-treatment drinking: it’s a rocky road to relapse. Clin. Psychol. Rev. 27, 724–738 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Leenaerts, N. et al. Person-specific and pooled prediction models for binge eating, alcohol use and binge drinking in bulimia nervosa and alcohol use disorder. Psychol. Med. https://doi.org/10.1017/S0033291724000862 (2024).

  167. Balaskas, A., Schueller, S. M., Cox, A. L. & Doherty, G. Ecological momentary interventions for mental health: a scoping review. PLoS ONE 16, e0248152 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  168. Versluis, A., Verkuil, B., Spinhoven, P., van der Ploeg, M. M. & Brosschot, J. F. Changing mental health and positive psychological well-being using ecological momentary interventions: a systematic review and meta-analysis. J. Med. Internet Res. 18, e5642 (2016).

    Article  Google Scholar 

  169. Colombo, D. et al. Current state and future directions of technology-based ecological momentary assessment and intervention for major depressive disorder: a systematic review. J. Clin. Med. 8, 465 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Dao, K. P. et al. Smartphone-delivered ecological momentary interventions based on ecological momentary assessments to promote health behaviors: systematic review and adapted checklist for reporting ecological momentary assessment and intervention studies. JMIR MHealth UHealth 9, e22890 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Wang, L. & Miller, L. C. Just-in-the-Moment Adaptive Interventions (JITAI): a meta-analytical review. Health Commun. 35, 1531–1544 (2020).

    Article  PubMed  Google Scholar 

  172. Fisher, A. J. & Soyster, P. Generating accurate personalized predictions of future behavior: a smoking exemplar. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/e24v6 (2019).

  173. Olthof, M. et al. The best of both worlds? General principles of psychopathology in personalized assessment. J. Psychopathol. Clin. Sci. 132, 808–819 (2023).

    Article  PubMed  Google Scholar 

  174. Gloster, A. et al. When average isn’t good enough: identifying meaningful subgroups in clinical data. Cogn. Ther. Res. 48, 537–551 (2024).

    Article  Google Scholar 

  175. O’Brien, D. A. et al. EWSmethods: an R package to forecast tipping points at the community level using early warning signals, resilience measures, and machine learning models. Ecography 2023, e06674 (2023).

    Article  Google Scholar 

  176. Delecroix, C., Van Nes, E. H., Scheffer, M. & Van De Leemput, I. A. Monitoring resilience in bursts. Proc. Natl Acad. Sci. USA 121, e2407148121 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Bouwman, V., Mobach, L., Teachman, B. & Salemink, E. Return of negative interpretation bias after positive interpretation training as a dynamic predictor of treatment outcome in fear of public speaking. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/9z2qy (2024).

  178. Mobach, L. et al. Return to baseline after an interpretation training as a dynamic predictor for treatment response in social anxiety disorder. Cogn. Ther. Res. 47, 431–438 (2023).

    Article  Google Scholar 

  179. Scott, D. W. Catastrophe theory applications in clinical psychology: a review. Curr. Psychol. 4, 69–86 (1985).

    Article  Google Scholar 

  180. Hosenfeld, B. et al. Major depressive disorder as a nonlinear dynamic system: bimodality in the frequency distribution of depressive symptoms over time. BMC Psychiatry 15, 222 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Gilmore, R. in Encyclopedia of Applied Physics (ed. Trigg, G. L.) Vol. 3, 85–119 (1992).

  182. Olthof, M., Hasselman, F. & Lichtwarck-Aschoff, A. Complexity in psychological self-ratings: implications for research and practice. BMC Med. 18, 317 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Haslbeck, J., Ryan, O. & Dablander, F. Multimodality and skewness in emotion time series. Emotion 23, 2117–2141 (2022).

    Article  Google Scholar 

  184. Cui, J., Hasselman, F. & Lichtwarck-Aschoff, A. Unlocking nonlinear dynamics and multistability from intensive longitudinal data: a novel method. Psychol. Meth. https://doi.org/10.1037/met0000623 (2023).

    Article  Google Scholar 

  185. Stone, A. A. & Shiffman, S. Capturing momentary, self-report data: a proposal for reporting guidelines. Ann. Behav. Med. 24, 236–243 (2002).

    Article  PubMed  Google Scholar 

  186. Csikszentmihalyi, M. & Larson, R. Validity and reliability of the experience-sampling method. J. Nerv. Ment. Dis. 175, 526–536 (1987).

    Article  PubMed  Google Scholar 

  187. Myin-Germeys, I. & Kuppens, P. The Open Handbook of Experience Sampling Methodology: A Step-by-Step Guide to Designing, Conducting, and Analyzing ESM Studies (Center for Research on Experience Sampling and Ambulatory Methods, 2022).

  188. Fahrenberg, J. in Ambulatory Assessment: Computer-assisted Psychological and Psychophysiological Methods in Monitoring and Field Studies (eds Fahrenberg, J. & Myrtek, M.) 3–20 (Hogrefe and Huber, 1996).

  189. Delespaul, P. Assessing Schizophrenia in Daily Life: The Experience Sampling Method (Datawyse/Univ. Pers Maastricht, 1995).

  190. Myin-Germeys, I. et al. Experience sampling research in psychopathology: opening the black box of daily life. Psychol. Med. 39, 1533–1547 (2009).

    Article  PubMed  Google Scholar 

  191. Mestdagh, M. & Dejonckheere, E. Ambulatory assessment in psychopathology research: current achievements and future ambitions. Curr. Opin. Psychol. 41, 1–8 (2021).

    Article  PubMed  Google Scholar 

  192. Trull, T. J. & Ebner-Priemer, U. W. Ambulatory assessment in psychopathology research: a review of recommended reporting guidelines and current practices. J. Abnorm. Psychol. 129, 56–63 (2020).

    Article  PubMed  Google Scholar 

  193. Trull, T. J. & Ebner-Priemer, U. Ambulatory assessment. Annu. Rev. Clin. Psychol. 9, 151–176 (2013).

    Article  PubMed  Google Scholar 

  194. Harari, G. M. & Gosling, S. D. Understanding behaviours in context using mobile sensing. Nat. Rev. Psychol. 2, 767–779 (2023).

    Article  Google Scholar 

  195. Koinis, L., Mobbs, R. J., Fonseka, R. D. & Natarajan, P. A commentary on the potential of smartphones and other wearable devices to be used in the identification and monitoring of mental illness. Ann. Transl. Med. 10, 1420 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Hickey, B. A. et al. Smart devices and wearable technologies to detect and monitor mental health conditions and stress: a systematic review. Sensors 21, 3461 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Myin-Germeys, I. et al. Experience sampling methodology in mental health research: new insights and technical developments. World Psychiatry 17, 123–132 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  198. Trull, T. J., Lane, S. P., Koval, P. & Ebner-Priemer, U. W. Affective dynamics in psychopathology. Emot. Rev. 7, 355–361 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Elmer, T., Geschwind, N., Peeters, F., Wichers, M. & Bringmann, L. Getting stuck in social isolation: solitude inertia and depressive symptoms. J. Abnorm. Psychol. 129, 713–723 (2020).

    Article  PubMed  Google Scholar 

  200. Koval, P., Sütterlin, S. & Kuppens, P. Emotional inertia is associated with lower well-being when controlling for differences in emotional context. Front. Psychol. 6, 1997 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  201. Jahng, S., Wood, P. K. & Trull, T. J. Analysis of affective instability in ecological momentary assessment: indices using successive difference and group comparison via multilevel modeling. Psychol. Meth. 13, 354–375 (2008).

    Article  Google Scholar 

  202. Mestdagh, M. et al. Sidelining the mean: the relative variability index as a generic mean-corrected variability measure for bounded variables. Psychol. Meth. 23, 690–707 (2018).

    Article  Google Scholar 

  203. Bringmann, L. F. et al. Psychopathological networks: theory, methods and practice. Behav. Res. Ther. 149, 104011 (2022).

    Article  PubMed  Google Scholar 

  204. Pe, M. L. et al. Emotion-network density in major depressive disorder. Clin. Psychol. Sci. 3, 292–300 (2015).

    Article  Google Scholar 

  205. Shin, K. E., Newman, M. G. & Jacobson, N. C. Emotion network density is a potential clinical marker for anxiety and depression: comparison of ecological momentary assessment and daily diary. Br. J. Clin. Psychol. 61, 31–50 (2022).

    Article  PubMed  Google Scholar 

  206. Wigman, J. T. W. et al. Exploring the underlying structure of mental disorders: cross-diagnostic differences and similarities from a network perspective using both a top-down and a bottom-up approach. Psychol. Med. 45, 2375–2387 (2015).

    Article  PubMed  Google Scholar 

  207. Wrzus, C. & Neubauer, A. B. Ecological momentary assessment: a meta-analysis on designs, samples, and compliance across research fields. Assessment 30, 825–846 (2023).

    Article  PubMed  Google Scholar 

  208. Janssens, K. A. M., Bos, E. H., Rosmalen, J. G. M., Wichers, M. C. & Riese, H. A qualitative approach to guide choices for designing a diary study. BMC Med. Res. Methodol. 18, 140 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  209. Eisele, G. et al. The effects of sampling frequency and questionnaire length on perceived burden, compliance, and careless responding in experience sampling data in a student population. Assessment 29, 136–151 (2022).

    Article  PubMed  Google Scholar 

  210. Vachon, H., Viechtbauer, W., Rintala, A. & Myin-Germeys, I. Compliance and retention with the experience sampling method over the continuum of severe mental disorders: meta-analysis and recommendations. J. Med. Internet Res. 21, e14475 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Piot, M. et al. Practitioner and researcher perspectives on the utility of ecological momentary assessment in mental health care: a survey study. Internet Interv. 30, 100575 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  212. Bos, F. M. et al. A web-based application for personalized ecological momentary assessment in psychiatric care: user-centered development of the PETRA application. JMIR Ment. Health 9, e36430 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  213. Schiepek, G., Stöger-Schmidinger, B., Aichhorn, W., Schöller, H. & Aas, B. Systemic case formulation, individualized process monitoring, and state dynamics in a case of dissociative identity disorder. Front. Psychol. 7, 1545 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  214. von Klipstein, L., Riese, H., van der Veen, D., Servaas, M. & Schoevers, R. Using person-specific networks in psychotherapy: challenges, limitations, and how we could use them anyway. BMC Med. 18, 345 (2020).

    Article  Google Scholar 

  215. Bos, F. M., Snippe, E., Bruggeman, R., Wichers, M. & van der Krieke, L. Insights of patients and clinicians on the promise of the experience sampling method for psychiatric care. Psychiatr. Serv. 70, 983–991 (2019).

    Article  PubMed  Google Scholar 

  216. Bos, F. M. et al. Recommendations for the use of long-term experience sampling in bipolar disorder care: a qualitative study of patient and clinician experiences. Int. J. Bipolar Disord. 8, 38 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Groot, P. C. Patients can diagnose too: how continuous self-assessment aids diagnosis of, and recovery from, depression. J. Ment. Health 19, 352–362 (2010).

    Article  PubMed  Google Scholar 

  218. Mofsen, A. M. et al. When all else fails, listen to the patient: a viewpoint on the use of ecological momentary assessment in clinical trials. JMIR Ment. Health 6, e11845 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

M.J.S. was funded by the Research Foundation — Flanders (FWO, grant number 12AVE24N).

Author information

Authors and Affiliations

Authors

Contributions

M.A.H., M.J.S., E.S. and A.C.S. researched data and wrote the article. M.A.H., M.J.S., L.F.B., E.S. and A.C.S. contributed substantially to discussion of the content. All authors reviewed and/or edited the manuscript before submission.

Corresponding authors

Correspondence to Marieke A. Helmich or Evelien Snippe.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Joshua Curtiss, Ulrich Ebner-Priemer, Thomas Rodebaugh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Helmich, M.A., Schreuder, M.J., Bringmann, L.F. et al. Slow down and be critical before using early warning signals in psychopathology. Nat Rev Psychol 3, 767–780 (2024). https://doi.org/10.1038/s44159-024-00369-y

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-024-00369-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing