Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Negative affectivity drivers of impulsivity in opioid use disorder

Abstract

Despite the unprecedented toll of the opioid epidemic in the United States, the neurobehavioural features of opioid use disorder remain substantially understudied. Impulsivity has a central role in substance use disorders, but might not be as prominent in opioid addiction. Impulsivity has multiple dimensions, related to stability and change (trait versus state) and emotion (emotion elicited versus emotion neutral). In this Review, we suggest that trait and state impulsivity in opioid use disorder is primarily emotion elicited and mediated by negative reinforcement mechanisms that aim to relieve opioid users from acute or protracted opioid withdrawal or chronic negative affective states (for example, physical or emotional pain). Indeed, negative reinforcement mechanisms are involved in all stages of the opioid addiction cycle and are more heavily implicated in opioid use than in other substance use. Moreover, we identify that impulsive behaviour in opioid use disorder frequently occurs in the context of negative affectivity manifested as a personality trait (such as negative urgency) or a personality disorder (such as psychopathy), which are less common in other substance use disorders. Further examination of these mechanisms will deepen current knowledge of the neurobehavioural underpinnings of opioid addiction and improve clinical treatment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in the opioid addiction cycle over time.
Fig. 2: Motives and withdrawal effects across addictive substances.

Similar content being viewed by others

References

  1. Moeller, F. G., Barratt, E. S., Dougherty, D. M., Schmitz, J. M. & Swann, A. C. Psychiatric aspects of impulsivity. Am. J. Psychiatry 158, 1783–1793 (2001).

    PubMed  Google Scholar 

  2. Conrod, P. J. & Nikolaou, K. Annual research review: on the developmental neuropsychology of substance use disorders. J. Child Psychol. Psychiatry 57, 371–394 (2016).

    PubMed  Google Scholar 

  3. de Wit, H. Impulsivity as a determinant and consequence of drug use: a review of underlying processes. Addict. Biol. 14, 22–31 (2009). This seminal paper discusses the bidirectional role of impulsivity in substance use disorders.

    PubMed  Google Scholar 

  4. Kreek, M. J., Nielsen, D. A., Butelman, E. R. & LaForge, K. S. Genetic influences on impulsivity, risk taking, stress responsivity and vulnerability to drug abuse and addiction. Nat. Neurosci. 8, 1450–1457 (2005).

    PubMed  Google Scholar 

  5. Verdejo-Garcia, A. & Albein-Urios, N. Impulsivity traits and neurocognitive mechanisms conferring vulnerability to substance use disorders. Neuropharmacology 183, 108402 (2021). This review identifies distinct personality and neurocognitive dimensions of impulsivity as robust and common predictors of addiction vulnerability.

    PubMed  Google Scholar 

  6. Bickel, W. K. Discounting of delayed rewards as an endophenotype. Biol. Psychiatry 77, 846–847 (2015).

    PubMed  Google Scholar 

  7. MacKillop, J. Integrating behavioral economics and behavioral genetics: delayed reward discounting as an endophenotype for addictive disorders. J. Exp. Anal. Behav. 99, 14–31 (2013).

    PubMed  Google Scholar 

  8. Vassileva, J. & Conrod, P. J. Impulsivities and addictions: a multidimensional integrative framework informing assessment and interventions for substance use disorders. Philos. Trans. R. Soc. Lond. B 374, 20180137 (2019). This review outlines a hierarchical framework as a key target for prevention and treatment strategies.

    Google Scholar 

  9. Bari, A. & Robbins, T. W. Inhibition and impulsivity: behavioral and neural basis of response control. Prog. Neurobiol. 108, 44–79 (2013).

    PubMed  Google Scholar 

  10. Dalley, J. W., Everitt, B. J. & Robbins, T. W. Impulsivity, compulsivity, and top-down cognitive control. Neuron 69, 680–694 (2011).

    PubMed  Google Scholar 

  11. Evenden, J. L. Varieties of impulsivity. Psychopharmacology 146, 348–361 (1999).

    PubMed  Google Scholar 

  12. Hamilton, K. R. et al. Rapid-response impulsivity: definitions, measurement issues, and clinical implications. Personal. Disord. 6, 168–181 (2015).

    PubMed  PubMed Central  Google Scholar 

  13. Hamilton, K. R. et al. Choice impulsivity: definitions, measurement issues, and clinical implications. Personal. Disord. 6, 182–198 (2015).

    PubMed  PubMed Central  Google Scholar 

  14. Tolomeo, S., Davey, F., Steele, J. D. & Baldacchino, A. Compulsivity and impulsivity in opioid dependence. Drug Alcohol. Depend. 229, 109018 (2021). This study describes compulsivity and impulsivity as fundamental neurocognitive components of opioid dependence that vary across treatment stages.

    PubMed  Google Scholar 

  15. Koob, G. F. & Le Moal, M. Drug abuse: hedonic homeostatic dysregulation. Science 278, 52–58 (1997). This seminal paper introduces the three-stage model of addiction, including the changes in neurotransmitter systems and stress-response neuroadaptations caused by chronic drug use that lead to reward dysregulation.

    PubMed  Google Scholar 

  16. Koob, G. F. & Volkow, N. D. Neurobiology of addiction: a neurocircuitry analysis. Lancet Psychiatry 3, 760–773 (2016).

    PubMed  PubMed Central  Google Scholar 

  17. Kwako, L. E., Momenan, R., Litten, R. Z., Koob, G. F. & Goldman, D. Addictions neuroclinical assessment: a neuroscience-based framework for addictive disorders. Biol. Psychiatry 80, 179–189 (2016). This seminal paper introduces the Addictions Neuroclinical Assessment framework that supports studying incentive salience, negative emotionality and executive function to enhance understanding of addictions.

    PubMed  Google Scholar 

  18. Insel, T. et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am. J. Psychiatry 167, 748–751 (2010).

    PubMed  Google Scholar 

  19. Kwako, L. E. et al. Neurofunctional domains derived from deep behavioral phenotyping in alcohol use disorder. Am. J. Psychiatry 176, 744–753 (2019).

    PubMed  PubMed Central  Google Scholar 

  20. Nieto, S. J. & Ray, L. A. Applying the Addictions Neuroclinical Assessment to derive neurofunctional domains in individuals who use methamphetamine. Behav. Brain Res. 427, 113876 (2022).

    PubMed  PubMed Central  Google Scholar 

  21. Koob, G. F. Neurobiology of opioid addiction: opponent process, hyperkatifeia, and negative reinforcement. Biol. Psychiatry 87, 44–53 (2020). This paper describes how opioids disrupt reward pathways and activate stress systems, with hyperkatifeia driving compulsion and relapse through negative reinforcement.

    PubMed  Google Scholar 

  22. Wise, R. A. & Koob, G. F. The development and maintenance of drug addiction. Neuropsychopharmacology 39, 254–262 (2014).

    PubMed  Google Scholar 

  23. Substance Abuse and Mental Health Services Administration. Key Substance Use and Mental Health Indicators in the United States: Results from the 2022 National Survey on Drug Use and Health. HHS Publication No. PEP23-07-01-006, NSDUH Series H-58 (US Department of Health and Human Services, 2023).

  24. Substance Abuse and Mental Health Services Administration. The NSDUH Report. (US Department of Health and Human Services, 2022).

  25. Badiani, A., Belin, D., Epstein, D., Calu, D. & Shaham, Y. Opiate versus psychostimulant addiction: the differences do matter. Nat. Rev. Neurosci. 12, 685–700 (2011). This landmark paper challenges the unitary concept of addiction by differentiating the behavioural and neurobiological factors of opioid and stimulant addictions.

    PubMed  PubMed Central  Google Scholar 

  26. Mahu, I. T., Barrett, S. P., Conrod, P. J., Bartel, S. J. & Stewart, S. H. Different drugs come with different motives: examining motives for substance use among people who engage in polysubstance use undergoing methadone maintenance therapy (MMT). Drug Alcohol Depend. 229, 109133 (2021).

    PubMed  Google Scholar 

  27. Tsai, B. NCHS: a blog of the National Center for Health Statistics. Center for Disease Control and Prevention https://blogs.cdc.gov/nchs/2024/05/15/7623/ (2024).

  28. Koob, G. F. The dark side of emotion: the addiction perspective. Eur. J. Pharmacol. 753, 73–87 (2015).

    PubMed  PubMed Central  Google Scholar 

  29. Koob, G. F. The dark side of addiction: the Horsley Gantt to Joseph Brady connection. J. Nerv. Ment. Dis. 205, 270–272 (2017). This seminal paper introduces the ‘dark side of addiction model’ in which negative reinforcement mechanisms reflect progressive reward dysregulation and overactivation of brain stress systems.

    PubMed  PubMed Central  Google Scholar 

  30. MacKillop, J. et al. The latent structure of impulsivity: impulsive choice, impulsive action, and impulsive personality traits. Psychopharmacology 233, 3361–3370 (2016). This paper defines impulsivity through three distinct latent dimensions: impulsive choice, impulsive action and impulsive personality traits.

    PubMed  PubMed Central  Google Scholar 

  31. Sharma, L., Markon, K. E. & Clark, L. A. Toward a theory of distinct types of ‘impulsive’ behaviors: a meta-analysis of self-report and behavioral measures. Psychol. Bull. 140, 374–408 (2014).

    PubMed  Google Scholar 

  32. Gullo, M. J., Loxton, N. J. & Dawe, S. Impulsivity: four ways five factors are not basic to addiction. Addict. Behav. 39, 1547–1556 (2014).

    PubMed  Google Scholar 

  33. Leshem, R. Using dual process models to examine impulsivity throughout neural maturation. Dev. Neuropsychol. 41, 125–143 (2016).

    PubMed  Google Scholar 

  34. Wilson, M. J. & Vassileva, J. Neurocognitive and psychiatric dimensions of hot, but not cool, impulsivity predict HIV sexual risk behaviors among drug users in protracted abstinence. Am. J. Drug Alcohol Abuse 42, 231–241 (2016).

    PubMed  PubMed Central  Google Scholar 

  35. Salehinejad, M. A., Ghanavati, E., Rashid, M. H. A. & Nitsche, M. A. Hot and cold executive functions in the brain: a prefrontal-cingular network. Brain Neurosci. Adv. 5, 23982128211007769 (2021).

    PubMed  PubMed Central  Google Scholar 

  36. Mischel, W. The Marshmallow Test: Mastering Self-Control (Little, Brown Spark, 2014).

  37. Friedman, N. P. & Robbins, T. W. The role of prefrontal cortex in cognitive control and executive function. Neuropsychopharmacology 47, 72–89 (2022).

    PubMed  Google Scholar 

  38. Leshem, R. & King, R. Trait impulsivity and callous-unemotional traits as predictors of inhibitory control and risky choices among high-risk adolescents. Int. J. Psychol. 56, 314–321 (2021).

    PubMed  Google Scholar 

  39. Lynam, D. R., Smith, G. T., Whiteside, S. P. & Cyders, M. A. The UPPS-P: assessing five personality pathways to impulsive behavior. Purdue University (2006).

  40. Patton, J. H., Stanford, M. S. & Barratt, E. S. Factor structure of the Barratt Impulsiveness Scale. J. Clin. Psychol. 51, 768–774 (1995).

    PubMed  Google Scholar 

  41. Leshem, R. & Yefet, M. Does impulsivity converge distinctively with inhibitory control? Disentangling the cold and hot aspects of inhibitory control. Pers. Individ. Differ. 145, 44–51 (2019).

    Google Scholar 

  42. Hung, Y., Gaillard, S. L., Yarmak, P. & Arsalidou, M. Dissociations of cognitive inhibition, response inhibition, and emotional interference: voxelwise ALE meta-analyses of fMRI studies. Hum. Brain Mapp. 39, 4065–4082 (2018).

    PubMed  PubMed Central  Google Scholar 

  43. Song, S. et al. The influence of emotional interference on cognitive control: a meta-analysis of neuroimaging studies using the emotional Stroop task. Sci. Rep. 7, 2088 (2017).

    PubMed  PubMed Central  Google Scholar 

  44. Spielberger, C. D., Gorsuch, R. L., Lushene, R., Vagg, P. R. & Jacobs, G. A. Manual for the State–Trait Anxiety Inventory (Consulting Psychologists, 1983).

  45. Spielberger, C. D. State–Trait Anger Expression Inventory: Professional Manual (Psychological Assessment Resources, 1988).

  46. McCrae, R. R. & Costa, P. T. Trait explanations in personality psychology. Eur. J. Personality 9, 231–252 (1995).

    Google Scholar 

  47. Odum, A. L. & Baumann, A. A. L. in Impulsivity: The Behavioral and Neurological Science of Discounting (eds Madden, G. J. & Bickel, W. K.) 39–65 (American Psychological Association, 2010).

  48. Cloninger, C. R. A systematic method for clinical description and classification of personality variants. A proposal. Arch. Gen. Psychiatry 44, 573–588 (1987).

    PubMed  Google Scholar 

  49. Eysenck, S. B. G. & Eysenck, H. J. Impulsiveness and venturesomeness: their position in a dimensional system of personality description. Psychol. Rep. 43, 1247–1255 (1978).

    PubMed  Google Scholar 

  50. Gray, J. A. The Neuropsychology of Anxiety: An Enquiry into the Functions of the Septo-Hippocampal System. (Clarendon Press/Oxford Univ. Press, 1982).

  51. McCrae, R. R. & Costa Jr, P. T. in Handbook of Personality: Theory and Research 2nd edn. 139–153 (Guilford Press, 1999).

  52. Zuckerman, M. The psychobiological model for impulsive unsocialized sensation seeking: a comparative approach. Neuropsychobiology 34, 125–129 (1996).

    PubMed  Google Scholar 

  53. Hyatt, C. S. et al. Personality traits share overlapping neuroanatomical correlates with internalizing and externalizing psychopathology. J. Abnorm. Psychol. 128, 1–11 (2019).

    PubMed  Google Scholar 

  54. Bickel, W. K. et al. Excessive discounting of delayed reinforcers as a trans-disease process: update on the state of the science. Curr. Opin. Psychol. 30, 59–64 (2019). This review supports delay discounting as a fundamental trans-disease process and endophenotype, and discusses interventions targeting delay discounting.

    PubMed  PubMed Central  Google Scholar 

  55. McTeague, L. M., Goodkind, M. S. & Etkin, A. Transdiagnostic impairment of cognitive control in mental illness. J. Psychiatr. Res. 83, 37–46 (2016).

    PubMed  PubMed Central  Google Scholar 

  56. Verdejo-Garcia, A., Lawrence, A. J. & Clark, L. Impulsivity as a vulnerability marker for substance-use disorders: review of findings from high-risk research, problem gamblers and genetic association studies. Neurosci. Biobehav. Rev. 32, 777–810 (2008).

    PubMed  Google Scholar 

  57. Um, M., Hershberger, A. R., Whitt, Z. T. & Cyders, M. A. Recommendations for applying a multi-dimensional model of impulsive personality to diagnosis and treatment. Borderline Personal. Disord. Emot. Dysregul. 5, 6 (2018).

    PubMed  PubMed Central  Google Scholar 

  58. Barratt, E. S. in The Impulsive Client: Theory, Research, and Treatment. (eds Johnson, J. L., McCown, W. G. & Shure, M. B.) 39–56 (American Psychological Association, 1993).

  59. Qin, S., Hermans, E. J., van Marle, H. J., Luo, J. & Fernández, G. Acute psychological stress reduces working memory-related activity in the dorsolateral prefrontal cortex. Biol. Psychiatry 66, 25–32 (2009).

    PubMed  Google Scholar 

  60. Zhou, L., Yang, Y. & Li, S. Music-induced emotions influence intertemporal decision making. Cogn. Emot. 36, 211–229 (2022).

    PubMed  Google Scholar 

  61. Voon, V. & Dalley, J. W. Translatable and back-translatable measurement of impulsivity and compulsivity: convergent and divergent processes. Curr. Top. Behav. Neurosci. 28, 53–91 (2016).

    PubMed  Google Scholar 

  62. Dalley, J. W. & Robbins, T. W. Fractionating impulsivity: neuropsychiatric implications. Nat. Rev. Neurosci. 18, 158–171 (2017).

    PubMed  Google Scholar 

  63. Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: a coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. Neuroimage 76, 412–427 (2013).

    PubMed  Google Scholar 

  64. Gola, M. et al. Can pornography be addictive? An fMRI study of men seeking treatment for problematic pornography use. Neuropsychopharmacology 42, 2021–2031 (2017).

    PubMed  PubMed Central  Google Scholar 

  65. Zheng, L., Miao, M. & Gan, Y. A systematic and meta-analytic review on the neural correlates of viewing high- and low-calorie foods among normal-weight adults. Neurosci. Biobehav. Rev. 138, 104721 (2022).

    PubMed  Google Scholar 

  66. Aron, A. R., Robbins, T. W. & Poldrack, R. A. Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn. Sci. 18, 177–185 (2014).

    PubMed  Google Scholar 

  67. Ridderinkhof, K. R., Ullsperger, M., Crone, E. A. & Nieuwenhuis, S. The role of the medial frontal cortex in cognitive control. Science 306, 443–447 (2004).

    PubMed  Google Scholar 

  68. Peters, S. K., Dunlop, K. & Downar, J. Cortico–striatal–thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front. Syst. Neurosci. 10, 104 (2016).

    PubMed  PubMed Central  Google Scholar 

  69. Kable, J. W. & Glimcher, P. W. The neural correlates of subjective value during intertemporal choice. Nat. Neurosci. 10, 1625–1633 (2007).

    PubMed  PubMed Central  Google Scholar 

  70. McClure, S. M., Laibson, D. I., Loewenstein, G. & Cohen, J. D. Separate neural systems value immediate and delayed monetary rewards. Science 306, 503–507 (2004).

    PubMed  Google Scholar 

  71. Halvorson, M. A. et al. Impulsive states and impulsive traits: a study of the multilevel structure and validity of a multifaceted measure of impulsive states. Assessment 28, 796–812 (2021).

    PubMed  Google Scholar 

  72. Tomko, R. L. et al. Measuring impulsivity in daily life: the momentary impulsivity scale. Psychol. Assess. 26, 339–349 (2014).

    PubMed  Google Scholar 

  73. Nguyen, R., Brooks, M., Bruno, R. & Peacock, A. Behavioral measures of state impulsivity and their psychometric properties: a systematic review. Pers. Individ. Differ. 135, 67–79 (2018).

    Google Scholar 

  74. Yip, S. W. et al. From computation to clinic. Biol. Psychiatry Glob. Open Sci. 3, 319–328 (2023).

    PubMed  Google Scholar 

  75. Vassileva, J., Lee, J.-H., Psederska, E. & Ahn, W.-Y. in Computational Neuroscience (eds Stoyanov, D., Draganski, B., Brambilla, P. & Lamm, C.) 211–231 (Springer, 2023).

  76. Ahn, W. Y. et al. Decision-making in stimulant and opiate addicts in protracted abstinence: evidence from computational modeling with pure users. Front. Psychol. 5, 849 (2014).

    PubMed  PubMed Central  Google Scholar 

  77. Konova, A. B. et al. Computational markers of risky decision-making for identification of temporal windows of vulnerability to opioid use in a real-world clinical setting. JAMA Psychiatry 77, 368–377 (2020). This article supports computational approaches to uncover cognitive factors that predict vulnerability to opioid reuse and offers insights for clinical applications.

    PubMed  Google Scholar 

  78. Kvam, P. D., Romeu, R. J., Turner, B. M., Vassileva, J. & Busemeyer, J. R. Testing the factor structure underlying behavior using joint cognitive models: impulsivity in delay discounting and Cambridge gambling tasks. Psychol. Methods 26, 18–37 (2021).

    PubMed  Google Scholar 

  79. Alvarez, E. E., Hafezi, S., Bonagura, D., Kleiman, E. M. & Konova, A. B. A proof-of-concept ecological momentary assessment study of day-level dynamics in value-based decision-making in opioid addiction. Front. Psychiatry 13, 817979 (2022).

    PubMed  PubMed Central  Google Scholar 

  80. Enkavi, A. Z. & Poldrack, R. A. Implications of the lacking relationship between cognitive task and self-report measures for psychiatry. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 6, 670–672 (2021).

    PubMed  Google Scholar 

  81. Hedge, C., Powell, G. & Sumner, P. The reliability paradox: why robust cognitive tasks do not produce reliable individual differences. Behav. Res. Methods 50, 1166–1186 (2018).

    PubMed  Google Scholar 

  82. Kim, T., Kim, S., Kang, J., Kwon, M. & Lee, S. H. The common effects of sleep deprivation on human long-term memory and cognitive control processes. Front. Neurosci. 16, 883848 (2022).

    PubMed  PubMed Central  Google Scholar 

  83. Parmentier, F. B. The cognitive determinants of behavioral distraction by deviant auditory stimuli: a review. Psychol. Res. 78, 321–338 (2014).

    PubMed  Google Scholar 

  84. Moriarty, O., McGuire, B. E. & Finn, D. P. The effect of pain on cognitive function: a review of clinical and preclinical research. Prog. Neurobiol. 93, 385–404 (2011).

    PubMed  Google Scholar 

  85. Odum, A. L. et al. Delay discounting of different outcomes: review and theory. J. Exp. Anal. Behav. 113, 657–679 (2020).

    PubMed  Google Scholar 

  86. Mischel, W. & Shoda, Y. A cognitive-affective system theory of personality: reconceptualizing situations, dispositions, dynamics, and invariance in personality structure. Psychol. Rev. 102, 246–268 (1995).

    PubMed  Google Scholar 

  87. Mischel, W., Shoda, Y. & Mendoza-Denton, R. Situation–behavior profiles as a locus of consistency in personality. Curr. Dir. Psychol. Sci. 11, 50–54 (2002).

    Google Scholar 

  88. Whiteside, S. P. & Lynam, D. R. The Five Factor Model and impulsivity: using a structural model of personality to understand impulsivity. Pers. Individ. Differ. 30, 669–689 (2001).

    Google Scholar 

  89. Joseph, J. E., Liu, X., Jiang, Y., Lynam, D. & Kelly, T. H. Neural correlates of emotional reactivity in sensation seeking. Psychol. Sci. 20, 215–223 (2009).

    PubMed  Google Scholar 

  90. Cyders, M. A. & Coskunpinar, A. Measurement of constructs using self-report and behavioral lab tasks: is there overlap in nomothetic span and construct representation for impulsivity? Clin. Psychol. Rev. 31, 965–982 (2011). This work underscores that self-report and behavioural measures of impulsivity capture distinct underlying constructs.

    PubMed  Google Scholar 

  91. Friedman, N. P. & Gustavson, D. E. Do rating and task measures of control abilities assess the same thing? Curr. Dir. Psychol. Sci. 31, 262–271 (2022).

    PubMed  PubMed Central  Google Scholar 

  92. Clark, S. L., Gillespie, N. A., Adkins, D. E., Kendler, K. S. & Neale, M. C. Psychometric modeling of abuse and dependence symptoms across six illicit substances indicates novel dimensions of misuse. Addict. Behav. 53, 132–140 (2016).

    PubMed  Google Scholar 

  93. Kendler, K. S., Jacobson, K. C., Prescott, C. A. & Neale, M. C. Specificity of genetic and environmental risk factors for use and abuse/dependence of cannabis, cocaine, hallucinogens, sedatives, stimulants, and opiates in male twins. Am. J. Psychiatry 160, 687–695 (2003).

    PubMed  Google Scholar 

  94. Tsuang, M. T. et al. Co-occurrence of abuse of different drugs in men: the role of drug-specific and shared vulnerabilities. Arch. Gen. Psychiatry 55, 967–972 (1998).

    PubMed  Google Scholar 

  95. Ahn, W. Y. & Vassileva, J. Machine-learning identifies substance-specific behavioral markers for opiate and stimulant dependence. Drug Alcohol Depend. 161, 247–257 (2016).

    PubMed  PubMed Central  Google Scholar 

  96. Bjork, J. M. et al. Social information processing in substance use disorders: insights from an emotional go–nogo task. Front. Psychiatry 12, 672488 (2021).

    PubMed  PubMed Central  Google Scholar 

  97. Bjork, J. M. et al. Attentional function and inhibitory control in different substance use disorders. Psychiatry Res. 313, 114591 (2022).

    PubMed  PubMed Central  Google Scholar 

  98. Fernandez-Serrano, M. J., Perez-Garcia, M. & Verdejo-Garcia, A. What are the specific vs. generalized effects of drugs of abuse on neuropsychological performance? Neurosci. Biobehav. Rev. 35, 377–406 (2011).

    PubMed  Google Scholar 

  99. Vassileva, J. et al. Heroin and amphetamine users display opposite relationships between trait and neurobehavioral dimensions of impulsivity. Addict. Behav. 39, 652–659 (2014).

    PubMed  Google Scholar 

  100. Verdejo-Garcia, A. & Perez-Garcia, M. Profile of executive deficits in cocaine and heroin polysubstance users: common and differential effects on separate executive components. Psychopharmacology 190, 517–530 (2007).

    PubMed  Google Scholar 

  101. Verdejo-Garcia, A. J., Perales, J. C. & Perez-Garcia, M. Cognitive impulsivity in cocaine and heroin polysubstance abusers. Addict. Behav. 32, 950–966 (2007).

    PubMed  Google Scholar 

  102. Garami, J. et al. Intolerance of uncertainty in opioid dependency—relationship with trait anxiety and impulsivity. PLoS ONE 12, e0181955 (2017).

    PubMed  PubMed Central  Google Scholar 

  103. Ghosh, A. et al. Risk, reversibility and resilience of brain circuitries linked to opioid dependence: a diffusion tensor imaging study of actively opioid-using subjects and three comparison groups. Asian J. Psychiatry 40, 107–115 (2019).

    Google Scholar 

  104. Yang, W. et al. Novel circuit biomarker of impulsivity and craving in male heroin-dependent individuals. Drug Alcohol Depend. 219, 108485 (2021).

    PubMed  Google Scholar 

  105. Nielsen, D. A. et al. Former heroin addicts with or without a history of cocaine dependence are more impulsive than controls. Drug Alcohol Depend. 124, 113–120 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Clark, L., Robbins, T. W., Ersche, K. D. & Sahakian, B. J. Reflection impulsivity in current and former substance users. Biol. Psychiatry 60, 515–522 (2006).

    PubMed  Google Scholar 

  107. Ersche, K. D. et al. Abnormal frontal activations related to decision-making in current and former amphetamine and opiate dependent individuals. Psychopharmacology 180, 612–623 (2005).

    PubMed  PubMed Central  Google Scholar 

  108. Rodriguez-Cintas, L. et al. Impulsivity and addiction severity in cocaine and opioid dependent patients. Addict. Behav. 58, 104–109 (2016).

    PubMed  Google Scholar 

  109. Lejuez, C. W., Bornovalova, M. A., Daughters, S. B. & Curtin, J. J. Differences in impulsivity and sexual risk behavior among inner-city crack/cocaine users and heroin users. Drug Alcohol Depend. 77, 169–175 (2005).

    PubMed  Google Scholar 

  110. Mohammadzadeh, A., Khosravani, V. & Feizi, R. The comparison of impulsivity and craving in stimulant-dependent, opiate-dependent and normal individuals. J. Substance Use 23, 312–317 (2018).

    Google Scholar 

  111. Peters, L. & Soyka, M. Interrelationship of opioid dependence, impaired impulse control, and depressive symptoms: an open-label cross-sectional study of patients in maintenance therapy. Neuropsychobiology 77, 73–82 (2019).

    PubMed  Google Scholar 

  112. Bozkurt, M., Evren, C., Yilmaz, A., Can, Y. & Cetingok, S. Aggression and impulsivity in different groups of alcohol and heroin dependent inpatient men. Bull. Clin. Psychopharmacol. 23, 335–344 (2013).

    Google Scholar 

  113. Hettie, G. et al. Lack of premeditation predicts aberrant behaviors related to prescription opioids in patients with chronic pain: a cross-sectional study. Subst. Use Misuse 56, 1904–1909 (2021).

    PubMed  PubMed Central  Google Scholar 

  114. Loree, A. M., Lundahl, L. H. & Ledgerwood, D. M. Impulsivity as a predictor of treatment outcome in substance use disorders: review and synthesis. Drug Alcohol Rev. 34, 119–134 (2015).

    PubMed  Google Scholar 

  115. Grall-Bronnec, M. et al. Prevalence of coaddictions and rate of successful treatment among a french sample of opioid-dependent patients with long-term opioid substitution therapy: the OPAL study. Front. Psychiatry 10, 726 (2019).

    PubMed  PubMed Central  Google Scholar 

  116. Moshier, S. J., Ewen, M. & Otto, M. W. Impulsivity as a moderator of the intention–behavior relationship for illicit drug use in patients undergoing treatment. Addict. Behav. 38, 1651–1655 (2013).

    PubMed  Google Scholar 

  117. Woicik, P. A., Stewart, S. H., Pihl, R. O. & Conrod, P. J. The substance use risk profile scale: a scale measuring traits linked to reinforcement-specific substance use profiles. Addict. Behav. 34, 1042–1055 (2009).

    PubMed  Google Scholar 

  118. Ferguson, E. et al. CANUE: a theoretical model of pain as an antecedent for substance use. Ann. Behav. Med. 55, 489–502 (2021). This article discusses the ‘catastrophizing, anxiety, negative urgency and expectancy’ model that links pain-related risk factors to substance use.

    PubMed  Google Scholar 

  119. Goncalves, S. F. et al. Negative urgency linked to craving and substance use among adults on buprenorphine or methadone. J. Behav. Health Serv. Res. 51, 114–122 (2024).

    PubMed  Google Scholar 

  120. Li, J. et al. Impulsivity and craving in subjects with opioid use disorder on methadone maintenance treatment. Drug Alcohol Depend. 219, 108483 (2021).

    PubMed  Google Scholar 

  121. Fishbein, D. H. et al. Neurocognitive characterizations of Russian heroin addicts without a significant history of other drug use. Drug Alcohol Depend. 90, 25–38 (2007).

    PubMed  PubMed Central  Google Scholar 

  122. Lee, R. S. C., Hoppenbrouwers, S. & Franken, I. A systematic meta-review of impulsivity and compulsivity in addictive behaviors. Neuropsychol. Rev. 29, 14–26 (2019). This is the first systematic review of neurocognitive literature examining specific impairments in impulsive–compulsive domains across the addiction spectrum.

    PubMed  Google Scholar 

  123. Baldacchino, A., Balfour, D. J., Passetti, F., Humphris, G. & Matthews, K. Neuropsychological consequences of chronic opioid use: a quantitative review and meta-analysis. Neurosci. Biobehav. Rev. 36, 2056–2068 (2012). This meta-analytic study discusses the most robust neurocognitive deficits observed in opioid users.

    PubMed  Google Scholar 

  124. Biernacki, K., McLennan, S. N., Terrett, G., Labuschagne, I. & Rendell, P. G. Decision-making ability in current and past users of opiates: a meta-analysis. Neurosci. Biobehav. Rev. 71, 342–351 (2016).

    PubMed  Google Scholar 

  125. Mintzer, M. Z. & Stitzer, M. L. Cognitive impairment in methadone maintenance patients. Drug Alcohol Depend. 67, 41–51 (2002).

    PubMed  Google Scholar 

  126. Forman, S. D. et al. Opiate addicts lack error-dependent activation of rostral anterior cingulate. Biol. Psychiatry 55, 531–537 (2004).

    PubMed  Google Scholar 

  127. Fu, L. P. et al. Impaired response inhibition function in abstinent heroin dependents: an fMRI study. Neurosci. Lett. 438, 322–326 (2008).

    PubMed  Google Scholar 

  128. Psederska, E. & Vassileva, J. Neurocognitive impulsivity in opiate users at different lengths of abstinence. Int. J. Env. Res. Public Health 20, 1236 (2023).

    Google Scholar 

  129. Lee, T. M. et al. Neural activity associated with cognitive regulation in heroin users: a fMRI study. Neurosci. Lett. 382, 211–216 (2005).

    PubMed  Google Scholar 

  130. Morie, K. P. et al. Intact inhibitory control processes in abstinent drug abusers (II): a high-density electrical mapping study in former cocaine and heroin addicts. Neuropharmacology 82, 151–160 (2014).

    PubMed  Google Scholar 

  131. Yang, B. et al. Event-related potentials in a Go/Nogo task of abnormal response inhibition in heroin addicts. Sci. China C 52, 780–788 (2009).

    Google Scholar 

  132. Yucel, M. et al. A combined spectroscopic and functional MRI investigation of the dorsal anterior cingulate region in opiate addiction. Mol. Psychiatry 12, 691–702 (2007).

    Google Scholar 

  133. Su, H. et al. Effect of automatic emotional processing on response inhibition among heroin abstainers. Psych. J. 11, 913–921 (2022).

    PubMed  Google Scholar 

  134. Smith, J. L., Mattick, R. P., Jamadar, S. D. & Iredale, J. M. Deficits in behavioural inhibition in substance abuse and addiction: a meta-analysis. Drug Alcohol Depend. 145, 1–33 (2014).

    PubMed  Google Scholar 

  135. Verbruggen, F. & Logan, G. D. Automatic and controlled response inhibition: associative learning in the go/no-go and stop-signal paradigms. J. Exp. Psychol. Gen. 137, 649–672 (2008).

    PubMed  PubMed Central  Google Scholar 

  136. Littman, R. & Takacs, A. Do all inhibitions act alike? A study of go/no-go and stop-signal paradigms. PLoS ONE 12, e0186774 (2017).

    PubMed  PubMed Central  Google Scholar 

  137. Raud, L., Westerhausen, R., Dooley, N. & Huster, R. J. Differences in unity: the go/no-go and stop signal tasks rely on different mechanisms. Neuroimage 210, 116582 (2020).

    PubMed  Google Scholar 

  138. Garland, E. L. & Howard, M. O. Prescription opioid misusers exhibit blunted parasympathetic regulation during inhibitory control challenge. Psychopharmacology 238, 765–774 (2021).

    PubMed  PubMed Central  Google Scholar 

  139. Li, X. et al. Decision-making deficits are still present in heroin abusers after short- to long-term abstinence. Drug Alcohol Depend. 130, 61–67 (2013).

    PubMed  Google Scholar 

  140. Pirastu, R. et al. Impaired decision-making in opiate-dependent subjects: effect of pharmacological therapies. Drug Alcohol Depend. 83, 163–168 (2006).

    PubMed  Google Scholar 

  141. Seeliger, C., Lippold, J. V. & Reuter, M. Variation on the CRH gene determines the different performance of opioid addicts and healthy controls in the Iowa gambling task. Neuropsychobiology 79, 150–160 (2020).

    PubMed  Google Scholar 

  142. Sun, Y. et al. Disrupted white matter structural connectivity in heroin abusers. Addict. Biol. 22, 184–195 (2017).

    PubMed  Google Scholar 

  143. Yan, W. S. et al. Working memory and affective decision-making in addiction: a neurocognitive comparison between heroin addicts, pathological gamblers and healthy controls. Drug Alcohol Depend. 134, 194–200 (2014).

    PubMed  Google Scholar 

  144. Rogers, R. D. et al. Dissociable deficits in the decision-making cognition of chronic amphetamine abusers, opiate abusers, patients with focal damage to prefrontal cortex, and tryptophan-depleted normal volunteers: evidence for monoaminergic mechanisms. Neuropsychopharmacology 20, 322–339 (1999).

    PubMed  Google Scholar 

  145. Kriegler, J. et al. Decision making of individuals with heroin addiction receiving opioid maintenance treatment compared to early abstinent users. Drug Alcohol Depend. 205, 107593 (2019).

    PubMed  Google Scholar 

  146. Tolomeo, S., Gray, S., Matthews, K., Steele, J. D. & Baldacchino, A. Multifaceted impairments in impulsivity and brain structural abnormalities in opioid dependence and abstinence. Psychol. Med. 46, 2841–2853 (2016).

    PubMed  Google Scholar 

  147. Zhang, X. L. et al. Effects of stress on decision-making deficits in formerly heroin-dependent patients after different durations of abstinence. Am. J. Psychiatry 168, 610–616 (2011).

    PubMed  Google Scholar 

  148. Baldacchino, A., Balfour, D. J. & Matthews, K. Impulsivity and opioid drugs: differential effects of heroin, methadone and prescribed analgesic medication. Psychol. Med. 45, 1167–1179 (2015).

    PubMed  Google Scholar 

  149. Kirby, K. N., Petry, N. M. & Bickel, W. K. Heroin addicts have higher discount rates for delayed rewards than non-drug-using controls. J. Exp. Psychol. Gen. 128, 78–87 (1999).

    PubMed  Google Scholar 

  150. Kirby, K. N. & Petry, N. M. Heroin and cocaine abusers have higher discount rates for delayed rewards than alcoholics or non-drug-using controls. Addiction 99, 461–471 (2004).

    PubMed  Google Scholar 

  151. Karakula, S. L. et al. Delay discounting in opioid use disorder: differences between heroin and prescription opioid users. Drug Alcohol Depend. 169, 68–72 (2016).

    PubMed  PubMed Central  Google Scholar 

  152. Robles, E., Huang, B. E., Simpson, P. M. & McMillan, D. E. Delay discounting, impulsiveness, and addiction severity in opioid-dependent patients. J. Subst. Abuse Treat. 41, 354–362 (2011).

    PubMed  PubMed Central  Google Scholar 

  153. Garami, J. & Moustafa, A. A. Probability discounting of monetary gains and losses in opioid-dependent adults. Behav. Brain Res. 364, 334–339 (2019).

    PubMed  Google Scholar 

  154. Yang, L., Liu, W. & Wang, J. The hidden-zero effect in male individuals with opioid use disorder. Am. J. Drug Alcohol Abuse 49, 530–539 (2023).

    PubMed  Google Scholar 

  155. Kluwe-Schiavon, B. et al. Substance related disorders are associated with impaired valuation of delayed gratification and feedback processing: a multilevel meta-analysis and meta-regression. Neurosci. Biobehav. Rev. 108, 295–307 (2020).

    PubMed  Google Scholar 

  156. Bornovalova, M. A., Daughters, S. B., Hernandez, G. D., Richards, J. B. & Lejuez, C. W. Differences in impulsivity and risk-taking propensity between primary users of crack cocaine and primary users of heroin in a residential substance-use program. Exp. Clin. Psychopharmacol. 13, 311–318 (2005).

    PubMed  Google Scholar 

  157. Barry, D. & Petry, N. M. Predictors of decision-making on the Iowa Gambling Task: independent effects of lifetime history of substance use disorders and performance on the Trail Making Test. Brain Cogn. 66, 243–252 (2008).

    PubMed  Google Scholar 

  158. Krain, A. L., Wilson, A. M., Arbuckle, R., Castellanos, F. X. & Milham, M. P. Distinct neural mechanisms of risk and ambiguity: a meta-analysis of decision-making. Neuroimage 32, 477–484 (2006).

    PubMed  Google Scholar 

  159. Moro, A. S. et al. Neural correlates of delay discounting in the light of brain imaging and non-invasive brain stimulation: what we know and what is missed. Brain Sci. 13, 403 (2023).

    PubMed  PubMed Central  Google Scholar 

  160. Biernacki, K. et al. A neuroeconomic signature of opioid craving: how fluctuations in craving bias drug-related and nondrug-related value. Neuropsychopharmacology 47, 1440–1448 (2022).

    PubMed  Google Scholar 

  161. Passetti, F., Clark, L., Mehta, M. A., Joyce, E. & King, M. Neuropsychological predictors of clinical outcome in opiate addiction. Drug Alcohol Depend. 94, 82–91 (2008).

    PubMed  Google Scholar 

  162. Passetti, F. et al. Risky decision-making predicts short-term outcome of community but not residential treatment for opiate addiction. Implications for case management. Drug Alcohol Depend. 118, 12–18 (2011).

    PubMed  Google Scholar 

  163. Cyders, M. A. & Smith, G. T. Emotion-based dispositions to rash action: positive and negative urgency. Psychol. Bull. 134, 807–828 (2008).

    PubMed  PubMed Central  Google Scholar 

  164. Cyders, M. A. & Smith, G. T. Mood-based rash action and its components: positive and negative urgency. Pers. Individ. Differ. 43, 839–850 (2007).

    Google Scholar 

  165. Chester, D. S. et al. How do negative emotions impair self-control? A neural model of negative urgency. Neuroimage 132, 43–50 (2016).

    PubMed  Google Scholar 

  166. Guller, L., Zapolski, T. C. & Smith, G. T. Personality measured in elementary school predicts middle school addictive behavior involvement. J. Psychopathol. Behav. Assess. 37, 523–532 (2015).

    Google Scholar 

  167. Kaiser, A. J., Milich, R., Lynam, D. R. & Charnigo, R. J. Negative urgency, distress tolerance, and substance abuse among college students. Addict. Behav. 37, 1075–1083 (2012).

    PubMed  PubMed Central  Google Scholar 

  168. Zorrilla, E. P. & Koob, G. F. Impulsivity derived from the dark side: neurocircuits that contribute to negative urgency. Front. Behav. Neurosci. 13, 136 (2019). This review elaborates on the mechanisms of the ‘dark side of addiction’ model that links negative urgency and stress-related neurocircuitry to compulsive drug-seeking behaviour.

    PubMed  PubMed Central  Google Scholar 

  169. Peck, K. R., Nighbor, T. D. & Price, M. Examining associations between impulsivity, opioid use disorder, and posttraumatic stress disorder: the additive relation between disorders. Exp. Clin. Psychopharmacol. 30, 486–493 (2022).

    PubMed  Google Scholar 

  170. Vest, N., Reynolds, C. J. & Tragesser, S. L. Impulsivity and risk for prescription opioid misuse in a chronic pain patient sample. Addict. Behav. 60, 184–190 (2016).

    PubMed  Google Scholar 

  171. Hains, A. B. & Arnsten, A. F. Molecular mechanisms of stress-induced prefrontal cortical impairment: implications for mental illness. Learn. Mem. 15, 551–564 (2008).

    PubMed  Google Scholar 

  172. van Steenbergen, H., Band, G. P. & Hommel, B. Threat but not arousal narrows attention: evidence from pupil dilation and saccade control. Front. Psychol. 2, 281 (2011).

    PubMed  PubMed Central  Google Scholar 

  173. Otto, A. R., Raio, C. M., Chiang, A., Phelps, E. A. & Daw, N. D. Working-memory capacity protects model-based learning from stress. Proc. Natl Acad. Sci. USA 110, 20941–20946 (2013).

    PubMed  PubMed Central  Google Scholar 

  174. Bechara, A. The role of emotion in decision-making: evidence from neurological patients with orbitofrontal damage. Brain Cogn. 55, 30–40 (2004).

    PubMed  Google Scholar 

  175. Bechara, A. Risky business: emotion, decision-making, and addiction. J. Gambl. Stud. 19, 23–51 (2003). This paper underscores neurocognitive criteria to refine the diagnosis and treatment of addictions.

    PubMed  Google Scholar 

  176. Verdejo-Garcia, A., Perez-Garcia, M. & Bechara, A. Emotion, decision-making and substance dependence: a somatic-marker model of addiction. Curr. Neuropharmacol. 4, 17–31 (2006).

    PubMed  PubMed Central  Google Scholar 

  177. Chick, C. F. Cooperative versus competitive influences of emotion and cognition on decision making: a primer for psychiatry research. Psychiatry Res. 273, 493–500 (2019).

    PubMed  Google Scholar 

  178. Torres, A. et al. Emotional and non-emotional pathways to impulsive behavior and addiction. Front. Hum. Neurosci. 7, 43 (2013).

    PubMed  PubMed Central  Google Scholar 

  179. Allen, K. J. D. et al. Validation of an emotional stop-signal task to probe individual differences in emotional response inhibition: relationships with positive and negative urgency. Brain Neurosci. Adv. 5, 23982128211058269 (2021).

    PubMed  PubMed Central  Google Scholar 

  180. Cohen-Gilbert, J. E. et al. College binge drinking associated with decreased frontal activation to negative emotional distractors during inhibitory control. Front. Psychol. 8, 1650 (2017).

    PubMed  PubMed Central  Google Scholar 

  181. Roxburgh, A. D., White, D. J. & Cornwell, B. R. Negative urgency is related to impaired response inhibition during threatening conditions. Acta Psychol. 228, 103648 (2022).

    Google Scholar 

  182. Wilbertz, T. et al. Response inhibition and its relation to multidimensional impulsivity. Neuroimage 103, 241–248 (2014).

    PubMed  Google Scholar 

  183. De Brito, S. A. et al. Psychopathy. Nat. Rev. Dis. Primers 7, 49 (2021).

    PubMed  Google Scholar 

  184. Hare, R. D. & Neumann, C. S. Psychopathy as a clinical and empirical construct. Annu. Rev. Clin. Psychol. 4, 217–246 (2008).

    PubMed  Google Scholar 

  185. Edens, J. F., Marcus, D. K., Lilienfeld, S. O. & Poythress, N. G. Jr. Psychopathic, not psychopath: taxometric evidence for the dimensional structure of psychopathy. J. Abnorm. Psychol. 115, 131–144 (2006).

    PubMed  Google Scholar 

  186. Guay, J. P., Ruscio, J., Knight, R. A. & Hare, R. D. A taxometric analysis of the latent structure of psychopathy: evidence for dimensionality. J. Abnorm. Psychol. 116, 701–716 (2007).

    PubMed  Google Scholar 

  187. Pemment, J. Psychopathy versus sociopathy: why the distinction has become crucial. Aggress. Violent Behav. 18, 458–461 (2013).

    Google Scholar 

  188. Walsh, A. & Wu, H. H. Differentiating antisocial personality disorder, psychopathy, and sociopathy: evolutionary, genetic, neurological, and sociological considerations. Crim. Justice Stud. 21, 135–152 (2008).

    Google Scholar 

  189. Neumann, C. S., Hare, R. D. & Newman, J. P. The super-ordinate nature of the psychopathy checklist–revised. J. Pers. Disord. 21, 102–117 (2007).

    PubMed  PubMed Central  Google Scholar 

  190. Gray, N. S. & Snowden, R. J. Psychopathy in women: prediction of criminality and violence in UK and USA psychiatric patients resident in the community. Psychiatry Res. 237, 339–343 (2016).

    PubMed  Google Scholar 

  191. Bergstrøm, H. & Farrington, D. P. Psychopathic personality and criminal violence across the life-course in a prospective longitudinal study: does psychopathic personality predict violence when controlling for other risk factors? J. Crim. Justice 80, 101817 (2022).

    Google Scholar 

  192. Thomson, N. D. et al. Which features of psychopathy and impulsivity matter most for prison violence? New evidence among female prisoners. Int. J. Law Psychiatry 64, 26–33 (2019).

    PubMed  Google Scholar 

  193. Thomson, N. D., Bozgunov, K., Psederska, E. & Vassileva, J. Sex differences on the four-facet model of psychopathy predict physical, verbal, and indirect aggression. Aggress. Behav. 45, 265–274 (2019).

    PubMed  PubMed Central  Google Scholar 

  194. Berger, K., Rotermund, P., Vieth, E. R. & Hohnhorst, A. The prognostic value of the PCL-R in relation to the SUD treatment ending. Int. J. Law Psychiatry 35, 198–201 (2012).

    PubMed  Google Scholar 

  195. Salekin, R. T., Worley, C. & Grimes, R. D. Treatment of psychopathy: a review and brief introduction to the mental model approach for psychopathy. Behav. Sci. Law 28, 235–266 (2010).

    PubMed  Google Scholar 

  196. Sewall, L. A. & Olver, M. E. Psychopathy and treatment outcome: results from a sexual violence reduction program. Personal. Disord. 10, 59–69 (2019).

    PubMed  Google Scholar 

  197. Psederska, E. et al. Effects of psychopathy on neurocognitive domains of impulsivity in abstinent opiate and stimulant users. Front. Psychiatry 12, 660810 (2021).

    PubMed  PubMed Central  Google Scholar 

  198. Hicks, B. M. & Patrick, C. J. Psychopathy and negative emotionality: analyses of suppressor effects reveal distinct relations with emotional distress, fearfulness, and anger-hostility. J. Abnorm. Psychol. 115, 276–287 (2006).

    PubMed  PubMed Central  Google Scholar 

  199. Hyde, L. W., Byrd, A. L., Votruba-Drzal, E., Hariri, A. R. & Manuck, S. B. Amygdala reactivity and negative emotionality: divergent correlates of antisocial personality and psychopathy traits in a community sample. J. Abnorm. Psychol. 123, 214–224 (2014).

    PubMed  PubMed Central  Google Scholar 

  200. Cleckley, H. M. The Mask of Sanity: An Attempt to Reinterpret the So-Called Psychopathic Personality (St. Louis, The C. V. Mosby Company, 1941).

  201. Cima, M. & Raine, A. Distinct characteristics of psychopathy relate to different subtypes of aggression. Pers. Individ. Differ. 47, 835–840 (2009).

    Google Scholar 

  202. Garofalo, C., Neumann, C. S. & Velotti, P. Difficulties in emotion regulation and psychopathic traits in violent offenders. J. Crim. Justice 57, 116–125 (2018).

    Google Scholar 

  203. Garofalo, C., Neumann, C. S. & Velotti, P. Psychopathy and aggression: the role of emotion dysregulation. J. Interpers. Violence 36, NP12640–NP12664 (2021).

    PubMed  Google Scholar 

  204. Garofalo, C., Neumann, C. S., Kosson, D. S. & Velotti, P. Psychopathy and emotion dysregulation: more than meets the eye. Psychiatry Res. 290, 113160 (2020). This article shows that all dimensions of psychopathy are closely related to compromised emotion regulation.

    PubMed  Google Scholar 

  205. Burghart, M. & Mier, D. No feelings for me, no feelings for you: a meta-analysis on alexithymia and empathy in psychopathy. Pers. Individ. Differ. 194, 111658 (2022).

    Google Scholar 

  206. Hofmann, M. J., Schneider, S. & Mokros, A. Fearless but anxious? A systematic review on the utility of fear and anxiety levels to classify subtypes of psychopathy. Behav. Sci. Law 39, 512–540 (2021).

    PubMed  Google Scholar 

  207. Falkenbach, D. M., Stern, S. B. & Creevy, C. Psychopathy variants: empirical evidence supporting a subtyping model in a community sample. Personal. Disord. 5, 10–19 (2014).

    PubMed  Google Scholar 

  208. Vassileva, J., Kosson, D. S., Abramowitz, C. & Conrod, P. Psychopathy versus psychopathies in classifying criminal offenders. Leg. Criminol. Psychol. 10, 27–43 (2005).

    Google Scholar 

  209. Lander, G. C., Lutz-Zois, C. J., Rye, M. S. & Goodnight, J. A. The differential association between alexithymia and primary versus secondary psychopathy. Pers. Individ. Differ. 52, 45–50 (2012).

    Google Scholar 

  210. Psederska, E., Savov, S., Atanassov, N. & Vassileva, J. Relationships between alexithymia and psychopathy in heroin dependent individuals. Front. Psychol. 10, 2269 (2019).

    PubMed  PubMed Central  Google Scholar 

  211. Anestis, M. D., Anestis, J. C. & Joiner, T. E. Affective considerations in antisocial behavior: an examination of negative urgency in primary and secondary psychopathy. Pers. Individ. Differ. 47, 668–670 (2009).

    Google Scholar 

  212. Gray, N. S., Weidacker, K. & Snowden, R. J. Psychopathy and impulsivity: the relationship of psychopathy to different aspects of UPPS-P impulsivity. Psychiatry Res. 272, 474–482 (2019).

    PubMed  Google Scholar 

  213. West, S. J. et al. Comparing psychopathy across measurement modalities. Personal. Disord. 14, 274–286 (2023).

    PubMed  Google Scholar 

  214. Vassileva, J., Shahidi, R., Taylor, B., Moeller, F. G. & Ahn, W. Y. Machine learning identifies common and specific markers of addiction to five different classes of drugs. Biol. Psychiatry 85, S378 (2019).

    Google Scholar 

  215. Khantzian, E. J. The self-medication hypothesis of addictive disorders: focus on heroin and cocaine dependence. Am. J. Psychiatry 142, 1259–1264 (1985).

    PubMed  Google Scholar 

  216. Thomson, N. D. et al. Substance dependence and aggression: the mediating role of psychopathy. Biol. Psychiatry 87, S444 (2020).

    Google Scholar 

  217. Alterman, A. I., Rutherford, M. J., Cacciola, J. S., McKay, J. R. & Boardman, C. R. Prediction of 7 months methadone maintenance treatment response by four measures of antisociality. Drug Alcohol Depend. 49, 217–223 (1998).

    PubMed  Google Scholar 

  218. Potik, D., Abramsohn, Y., Schreiber, S., Adelson, M. & Peles, E. Drug abuse and behavioral transgressions during methadone maintenance treatment (MMT) are related to high psychopathy levels. Subst. Use Misuse 55, 460–468 (2020).

    PubMed  Google Scholar 

  219. Vassileva, J., Georgiev, S., Martin, E., Gonzalez, R. & Segala, L. Psychopathic heroin addicts are not uniformly impaired across neurocognitive domains of impulsivity. Drug Alcohol Depend. 114, 194–200 (2011).

    PubMed  Google Scholar 

  220. Gudonis, L. C., Derefinko, K. & Giancola, P. R. The treatment of substance misuse in psychopathic individuals: why heterogeneity matters. Subst. Use Misuse 44, 1415–1433 (2009).

    PubMed  Google Scholar 

  221. Patrick, C. J., Hicks, B. M., Krueger, R. F. & Lang, A. R. Relations between psychopathy facets and externalizing in a criminal offender sample. J. Pers. Disord. 19, 339–356 (2005).

    PubMed  PubMed Central  Google Scholar 

  222. Smith, S. S. & Newman, J. P. Alcohol and drug abuse–dependence disorders in psychopathic and nonpsychopathic criminal offenders. J. Abnorm. Psychol. 99, 430–439 (1990).

    PubMed  Google Scholar 

  223. Hemphill, J. F. & Hart, S. D. Psychopathy and substance use. J. Pers. Disord. 8, 169–180 (1994).

    Google Scholar 

  224. Long, K., Felton, J. W., Lilienfeld, S. O. & Lejuez, C. W. The role of emotion regulation in the relations between psychopathy factors and impulsive and premeditated aggression. Personal. Disord. 5, 390–396 (2014).

    PubMed  PubMed Central  Google Scholar 

  225. Koob, G. F. Drug addiction: hyperkatifeia/negative reinforcement as a framework for medications development. Pharmacol. Rev. 73, 163–201 (2021).

    PubMed  PubMed Central  Google Scholar 

  226. Koob, G. F. & Le Moal, M. Addiction and the brain antireward system. Annu. Rev. Psychol. 59, 29–53 (2008).

    PubMed  Google Scholar 

  227. Pantazis, C. B. et al. Cues conditioned to withdrawal and negative reinforcement: neglected but key motivational elements driving opioid addiction. Sci. Adv. 7, eabf0364 (2021). This paper shows that external and internal cues conditioned by withdrawal have a critical motivational role in fuelling opioid addiction.

    PubMed  PubMed Central  Google Scholar 

  228. Patterson, J. T., Koob, G. F. & Anderson, R. I. Understanding hyperkatifeia to inform treatment for alcohol use disorder: an assessment of the national institute on alcohol abuse and alcoholism research portfolio. Biol. Psychiatry 91, e53–e59 (2022).

    PubMed  Google Scholar 

  229. Koob, G. F. et al. Addiction as a stress surfeit disorder. Neuropharmacology 76, 370–382 (2014).

    PubMed  Google Scholar 

  230. Shurman, J., Koob, G. F. & Gutstein, H. B. Opioids, pain, the brain, and hyperkatifeia: a framework for the rational use of opioids for pain. Pain Med. 11, 1092–1098 (2010).

    PubMed  Google Scholar 

  231. Neugebauer, V., Li, W., Bird, G. C. & Han, J. S. The amygdala and persistent pain. Neuroscientist 10, 221–234 (2004).

    PubMed  Google Scholar 

  232. Koob, G. F., Powell, P. & White, A. Addiction as a coping response: hyperkatifeia, deaths of despair, and COVID-19. Am. J. Psychiatry 177, 1031–1037 (2020).

    PubMed  Google Scholar 

  233. Minozzi, S., Amato, L. & Davoli, M. Development of dependence following treatment with opioid analgesics for pain relief: a systematic review. Addiction 108, 688–698 (2013).

    PubMed  Google Scholar 

  234. Seabury, B. A. Problem Behavior and Psychological Development: A Longitudinal Study of Youth (eds Jessor, R. & Jessor, S. L.) 281 (Academic, 1977).

  235. Vanyukov, M. M. et al. Common liability to addiction and ‘gateway hypothesis’: theoretical, empirical and evolutionary perspective. Drug Alcohol Depend. 123, S3–S17 (2012).

    PubMed  PubMed Central  Google Scholar 

  236. Kaye, A. D. et al. Prescription opioid abuse in chronic pain: an updated review of opioid abuse predictors and strategies to curb opioid abuse (Part 2). Pain Physician 20, S111–S133 (2017).

    PubMed  Google Scholar 

  237. Kendler, K. S., Lönn, S. L., Ektor-Andersen, J., Sundquist, J. & Sundquist, K. Risk factors for the development of opioid use disorder after first opioid prescription: a Swedish national study. Psychol. Med. 53, 6223–6231 (2023).

    PubMed  Google Scholar 

  238. Dol, M. & Oremus, M. Iatrogenic addiction or dependence as a result of prescription oxycodone use in persons with chronic noncancer pain: a systematic review. J. Opioid Manag. 17, 79–96 (2021).

    PubMed  Google Scholar 

  239. Higgins, C., Smith, B. H. & Matthews, K. Incidence of iatrogenic opioid dependence or abuse in patients with pain who were exposed to opioid analgesic therapy: a systematic review and meta-analysis. Br. J. Anaesth. 120, 1335–1344 (2018).

    PubMed  Google Scholar 

  240. Moe, S., Kirkwood, J. & Allan, G. M. Incidence of iatrogenic opioid use disorder. Can. Fam. Physician 65, 724 (2019).

    PubMed  PubMed Central  Google Scholar 

  241. Thomas, K. H. et al. Prevalence of problematic pharmaceutical opioid use in patients with chronic non-cancer pain: a systematic review and meta-analysis. Addiction https://doi.org/10.1111/add.16616 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Pecina, M. et al. Endogenous opioid system dysregulation in depression: implications for new therapeutic approaches. Mol. Psychiatry 24, 576–587 (2019).

    PubMed  Google Scholar 

  243. Sansone, R. A., Watts, D. A. & Wiederman, M. W. The misuse of prescription pain medication and borderline personality symptomatology. J. Opioid Manag. 9, 275–279 (2013).

    PubMed  Google Scholar 

  244. Kaye, A. D. et al. Prescription opioid abuse in chronic pain: an updated review of opioid abuse predictors and strategies to curb opioid abuse: part 1. Pain Physician 20, S93–s109 (2017).

    PubMed  Google Scholar 

  245. Stalter, N., Ma, S., Simon, G. & Pruinelli, L. Psychosocial problems and high amount of opioid administration are associated with opioid dependence and abuse after first exposure for chronic pain patients. Addict. Behav. 141, 107657 (2023).

    PubMed  Google Scholar 

  246. Hooten, W. M. Chronic pain and mental health disorders: shared neural mechanisms, epidemiology, and treatment. Mayo Clin. Proc. 91, 955–970 (2016).

    PubMed  Google Scholar 

  247. Meda, R. T. et al. Chronic pain-induced depression: a review of prevalence and management. Cureus 14, e28416 (2022).

    PubMed  PubMed Central  Google Scholar 

  248. Gohari, J. et al. Clinical factors and pre-surgical depression scores predict pain intensity in cardiac surgery patients. BMC Anesthesiol. 22, 204 (2022).

    PubMed  PubMed Central  Google Scholar 

  249. Kim, Y. S. et al. Patient reporting pain intensity immediately after surgery can be associated with underlying depression in women with breast cancer. Psychooncology 25, 308–315 (2016).

    PubMed  Google Scholar 

  250. O’Connell, C. et al. Preoperative depression, lumbar fusion, and opioid use: an assessment of postoperative prescription, quality, and economic outcomes. Neurosurg. Focus 44, E5 (2018).

    PubMed  Google Scholar 

  251. Stone, A. V. et al. Mood disorders are associated with increased perioperative opioid usage and health care costs in patients undergoing knee cartilage restoration procedure. Cartilage 13, 19476035221087703 (2022).

    PubMed  PubMed Central  Google Scholar 

  252. Cooper, M. L., Kuntsche, E., Levitt, A., Barber, L. L. & Wolf, S. in The Oxford Handbook of Substance Use and Substance Use Disorders (ed. Sher, K. J.) 1 (Oxford Univ. Press, 2016).

  253. Hogarth, L. Addiction is driven by excessive goal-directed drug choice under negative affect: translational critique of habit and compulsion theory. Neuropsychopharmacology 45, 720–735 (2020). This article suggests that addiction is primarily motivated by negative emotional states rather than by habituality or compulsion.

    PubMed  PubMed Central  Google Scholar 

  254. Evans, C. J. & Cahill, C. M. Neurobiology of opioid dependence in creating addiction vulnerability. F1000Res https://doi.org/10.12688/f1000research.8369.1 (2016).

  255. Polak, K. B., Reisweber, T., Bjork, J. & Four-Session Transcending Self, J. Therapy for substance use, depression, and treatment retention among veterans with substance use disorders: a pilot study. J. Addiction Res. Ther. 10, 378 (2019).

    Google Scholar 

  256. Polak, K., Meyer, B. L., Neale, Z. E. & Reisweber, J. Program evaluation of group transcending self therapy: an integrative modular cognitive-behavioral therapy for substance use disorders. Subst. Abuse 14, 1178221820947653 (2020).

    PubMed  PubMed Central  Google Scholar 

  257. Conrod, P. J. Personality-targeted interventions for substance use and misuse. Curr. Addict. Rep. 3, 426–436 (2016).

    PubMed  PubMed Central  Google Scholar 

  258. Edalati, H. & Conrod, P. J. A review of personality-targeted interventions for prevention of substance misuse and related harm in community samples of adolescents. Front. Psychiatry 9, 770 (2018).

    PubMed  Google Scholar 

  259. Ekhtiari, H., Rezapour, T., Aupperle, R. L. & Paulus, M. P. in Progress in Brain Research (eds Calvey, T. & Daniels, W. M. U.) 239–264 (Elsevier, 2017).

  260. Rezapour, T. et al. Neuroscience-informed classification of prevention interventions in substance use disorders: an RDoC-based approach. Neurosci. Biobehav. Rev. 159, 105578 (2024).

    PubMed  PubMed Central  Google Scholar 

  261. Santo, T. Jr et al. Prevalence of comorbid substance use disorders among people with opioid use disorder: a systematic review and meta-analysis. Int. J. Drug Policy 128, 104434 (2024).

    PubMed  Google Scholar 

  262. Amer, T., Ngo, K. W. & Hasher, L. Cultural differences in visual attention: implications for distraction processing. Br. J. Psychol. 108, 244–258 (2017).

    PubMed  Google Scholar 

  263. Hedden, T., Ketay, S., Aron, A., Markus, H. R. & Gabrieli, J. D. Cultural influences on neural substrates of attentional control. Psychol. Sci. 19, 12–17 (2008).

    PubMed  Google Scholar 

  264. Nisbett, R. E. & Miyamoto, Y. The influence of culture: holistic versus analytic perception. Trends Cognit. Sci. 9, 467–473 (2005).

    Google Scholar 

  265. Ishii, K., Eisen, C. & Hitokoto, H. The effects of social status and culture on delay discounting. Jpn Psychol. Res. 59, 230–237 (2017).

    Google Scholar 

  266. Kim, B., Sung, Y. S. & McClure, S. M. The neural basis of cultural differences in delay discounting. Philos. Trans. R. Soc. Lond. B 367, 650–656 (2012).

    Google Scholar 

  267. Raineri, A., Kausel, E., Jin, Z. & Chamorro, N. Cultural differences in intertemporal decision making: a comparison between Chile and China. J. Exp. Anal. Behav. 122, 103–116 (2023).

    PubMed  Google Scholar 

  268. Chen, X. J., Ba, L. & Kwak, Y. Neurocognitive underpinnings of cross-cultural differences in risky decision making. Soc. Cogn. Affect. Neurosci. 15, 671–680 (2020).

    PubMed  PubMed Central  Google Scholar 

  269. Seo, M., Na, J. & Kim, Y. H. Moral in whose eyes? Cross-cultural differences in moral decision making and behaviour. Int. J. Psychol. 56, 175–182 (2021).

    PubMed  Google Scholar 

  270. Legare, C. H., Dale, M. T., Kim, S. Y. & Deák, G. O. Cultural variation in cognitive flexibility reveals diversity in the development of executive functions. Sci. Rep. 8, 16326 (2018).

    PubMed  PubMed Central  Google Scholar 

  271. Tran, C. D., Arredondo, M. M. & Yoshida, H. Early executive function: the influence of culture and bilingualism. Biling. Lang. Cogn. 22, 714–732 (2019).

    Google Scholar 

  272. Jachimowicz, J. M., Chafik, S., Munrat, S., Prabhu, J. C. & Weber, E. U. Community trust reduces myopic decisions of low-income individuals. Proc. Natl Acad. Sci. USA 114, 5401–5406 (2017).

    PubMed  PubMed Central  Google Scholar 

  273. Shah, A. K., Mullainathan, S. & Shafir, E. Some consequences of having too little. Science 338, 682–685 (2012).

    PubMed  Google Scholar 

  274. Tunney, R. J. & James, R. J. E. Individual differences in decision-making: evidence for the scarcity hypothesis from the English Longitudinal Study of Ageing. R. Soc. Open Sci. 9, 220102 (2022).

    PubMed  PubMed Central  Google Scholar 

  275. Wang, M., Rieger, M. O. & Hens, T. The impact of culture on loss aversion. J. Behav. Decis. Mak. 30, 270–281 (2017).

    Google Scholar 

  276. Haines, N., Vassileva, J. & Ahn, W. Y. The outcome-representation learning model: a novel reinforcement learning model of the Iowa Gambling Task. Cogn. Sci. 42, 2534–2561 (2018).

    PubMed  PubMed Central  Google Scholar 

  277. Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).

    PubMed  Google Scholar 

  278. Bender, A. & Beller, S. Cognition is fundamentally cultural. Behav. Sci. 3, 42–54 (2013).

    PubMed  PubMed Central  Google Scholar 

  279. Eysenck, S. B. G., Pearson, P. R., Easting, G. & Allsopp, J. F. Age norms for impulsiveness, venturesomeness and empathy in adults. Pers. Individ. Differ. 6, 613–619 (1985).

    Google Scholar 

  280. Mayhew, M. J. & Powell, J. H. The development of a brief self-report questionnaire to measure ‘recent’ rash impulsivity: a preliminary investigation of its validity and association with recent alcohol consumption. Addict. Behav. 39, 1597–1605 (2014).

    PubMed  Google Scholar 

  281. Cyders, M. A. et al. Integration of impulsivity and positive mood to predict risky behavior: development and validation of a measure of positive urgency. Psychol. Assess. 19, 107–118 (2007).

    PubMed  Google Scholar 

  282. Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. J. Pers. Soc. Psychol. 67, 319–333 (1994).

    Google Scholar 

  283. Zuckerman, M. Behavioral Expressions and Biosocial Bases of Sensation Seeking (Cambridge Univ. Press, 1994).

  284. Zuckerman, M. P-Impulsive sensation seeking and its behavioral, psychophysiological and biochemical correlates. Neuropsychobiology 28, 30–36 (2008).

    Google Scholar 

  285. Torrubia, R., Ávila, C., Moltó, J. & Caseras, X. The sensitivity to punishment and sensitivity to reward questionnaire (SPSRQ) as a measure of Gray’s anxiety and impulsivity dimensions. Pers. Individ. Differ. 31, 837–862 (2001).

    Google Scholar 

  286. Dougherty, D. M., Marsh, D. M. & Mathias, C. W. Immediate and delayed memory tasks: a computerized behavioral measure of memory, attention, and impulsivity. Behav. Res. Methods Instrum. Comput. 34, 391–398 (2002).

    PubMed  Google Scholar 

  287. Eriksen, B. A. & Eriksen, C. W. Effects of noise letters upon the identification of a target letter in a nonsearch task. Percept. Psychophys. 16, 143–149 (1974).

    Google Scholar 

  288. Beck, L. H., Bransome, E. D. Jr, Mirsky, A. F., Rosvold, H. E. & Sarason, I. A continuous performance test of brain damage. J. Consult. Psychol. 20, 343–350 (1956).

    PubMed  Google Scholar 

  289. Kaufman, J. N., Ross, T. J., Stein, E. A. & Garavan, H. Cingulate hypoactivity in cocaine users during a Go–Nogo task as revealed by event-related functional magnetic resonance imaging. J. Neurosci. 23, 7839–7843 (2003).

    PubMed  PubMed Central  Google Scholar 

  290. Stroop, J. R. Studies of interference in serial verbal reactions. J. Exp. Psychol. 18, 643 (1935).

    Google Scholar 

  291. Logan, G. D., Schachar, R. J. & Tannock, R. Impulsivity and inhibitory control. Psychol. Sci. 8, 60–64 (1997).

    Google Scholar 

  292. Massaly, N. et al. Pain, negative affective states and opioid-based analgesics: safer pain therapies to dampen addiction. Int. Rev. Neurobiol. 157, 31–68 (2021).

    PubMed  Google Scholar 

  293. Richards, J. B., Zhang, L., Mitchell, S. H. & de Wit, H. Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J. Exp. Anal. Behav. 71, 121–143 (1999).

    PubMed  PubMed Central  Google Scholar 

  294. Bechara, A. et al. Decision-making deficits, linked to a dysfunctional ventromedial prefrontal cortex, revealed in alcohol and stimulant abusers. Neuropsychologia 39, 376–389 (2001).

    PubMed  Google Scholar 

  295. Chiu, Y. C. et al. Immediate gain is long-term loss: are there foresighted decision makers in the Iowa Gambling Task? Behav. Brain Funct. 4, 13 (2008).

    PubMed  PubMed Central  Google Scholar 

  296. Levy, I., Snell, J., Nelson, A. J., Rustichini, A. & Glimcher, P. W. Neural representation of subjective value under risk and ambiguity. J. Neurophysiol. 103, 1036–1047 (2010).

    PubMed  Google Scholar 

  297. Lejuez, C. W. et al. Evaluation of a behavioral measure of risk taking: the Balloon Analogue Risk Task (BART). J. Exp. Psychol. Appl. 8, 75–84 (2002).

    PubMed  Google Scholar 

  298. Figner, B., Mackinlay, R. J., Wilkening, F. & Weber, E. U. Affective and deliberative processes in risky choice: age differences in risk taking in the Columbia Card Task. J. Exp. Psychol. Learn. Mem. Cogn. 35, 709–730 (2009).

    PubMed  Google Scholar 

  299. Brand, M. et al. Decision-making deficits of Korsakoff patients in a new gambling task with explicit rules: associations with executive functions. Neuropsychology 19, 267–277 (2005).

    PubMed  Google Scholar 

  300. Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P. & Dolan, R. J. Model-based influences on humans’ choices and striatal prediction errors. Neuron 69, 1204–1215 (2011).

    PubMed  PubMed Central  Google Scholar 

  301. Newman, J. P. & Kosson, D. S. Passive avoidance learning in psychopathic and nonpsychopathic offenders. J. Abnorm. Psychol. 95, 252–225 (1986).

    PubMed  Google Scholar 

  302. Koob, G. & Le Moal, M. Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24, 97–129 (2001).

    PubMed  Google Scholar 

  303. Bloom, E. L., Matsko, S. V. & Cimino, C. R. The relationship between cigarette smoking and impulsivity: a review of personality, behavioral, and neurobiological assessment. Addict. Res. Theory 22, 386–397 (2014).

    Google Scholar 

  304. Kale, D., Stautz, K. & Cooper, A. Impulsivity related personality traits and cigarette smoking in adults: a meta-analysis using the UPPS-P model of impulsivity and reward sensitivity. Drug Alcohol Depend. 185, 149–167 (2018).

    PubMed  Google Scholar 

  305. Bos, J., Hayden, M. J., Lum, J. A. G. & Staiger, P. K. UPPS-P impulsive personality traits and adolescent cigarette smoking: a meta-analysis. Drug Alcohol Depend. 197, 335–343 (2019).

    PubMed  Google Scholar 

  306. Wellman, R. J. et al. Predictors of the onset of cigarette smoking: a systematic review of longitudinal population-based studies in youth. Am. J. Prev. Med. 51, 767–778 (2016).

    PubMed  Google Scholar 

  307. Doran, N. et al. A prospective study of the Acquired Preparedness Model: the effects of impulsivity and expectancies on smoking initiation in college students. Psychol. Addict. Behav. 27, 714–722 (2013).

    PubMed  Google Scholar 

  308. Conti, A. A., McLean, L., Tolomeo, S., Steele, J. D. & Baldacchino, A. Chronic tobacco smoking and neuropsychological impairments: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 96, 143–154 (2019).

    PubMed  Google Scholar 

  309. Coskunpinar, A., Dir, A. L. & Cyders, M. A. Multidimensionality in impulsivity and alcohol use: a meta-analysis using the UPPS model of impulsivity. Alcohol. Clin. Exp. Res. 37, 1441–1450 (2013).

    PubMed  PubMed Central  Google Scholar 

  310. Stautz, K. & Cooper, A. Impulsivity-related personality traits and adolescent alcohol use: a meta-analytic review. Clin. Psychol. Rev. 33, 574–592 (2013).

    PubMed  Google Scholar 

  311. Stavro, K., Pelletier, J. & Potvin, S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addict. Biol. 18, 203–213 (2013).

    PubMed  Google Scholar 

  312. Courtney, K. E. et al. The relationship between measures of impulsivity and alcohol misuse: an integrative structural equation modeling approach. Alcohol Clin. Exp. Res. 36, 923–931 (2012).

    PubMed  Google Scholar 

  313. Petry, N. M. Delay discounting of money and alcohol in actively using alcoholics, currently abstinent alcoholics, and controls. Psychopharmacology 154, 243–250 (2001).

    PubMed  Google Scholar 

  314. Takahashi, T., Ohmura, Y., Oono, H. & Radford, M. Alcohol use and discounting of delayed and probabilistic gain and loss. Neuro Endocrinol. Lett. 30, 749–752 (2009).

    PubMed  Google Scholar 

  315. Brevers, D. et al. Impaired decision-making under risk in individuals with alcohol dependence. Alcohol Clin. Exp. Res. 38, 1924–1931 (2014).

    PubMed  PubMed Central  Google Scholar 

  316. Galandra, C., Basso, G., Cappa, S. & Canessa, N. The alcoholic brain: neural bases of impaired reward-based decision-making in alcohol use disorders. Neurol. Sci. 39, 423–435 (2018).

    PubMed  Google Scholar 

  317. Tomassini, A. et al. Decision making, impulsivity, and personality traits in alcohol-dependent subjects. Am. J. Addict. 21, 263–267 (2012).

    PubMed  Google Scholar 

  318. Zorlu, N. et al. Abnormal white matter integrity and decision-making deficits in alcohol dependence. Psychiatry Res. 214, 382–388 (2013).

    PubMed  Google Scholar 

  319. Fein, G., Klein, L. & Finn, P. Impairment on a simulated gambling task in long-term abstinent alcoholics. Alcohol Clin. Exp. Res. 28, 1487–1491 (2004).

    PubMed  PubMed Central  Google Scholar 

  320. VanderVeen, J. D., Hershberger, A. R. & Cyders, M. A. UPPS-P model impulsivity and marijuana use behaviors in adolescents: a meta-analysis. Drug Alcohol Depend. 168, 181–190 (2016).

    PubMed  Google Scholar 

  321. Figueiredo, P. R., Tolomeo, S., Steele, J. D. & Baldacchino, A. Neurocognitive consequences of chronic cannabis use: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 108, 358–369 (2020).

    PubMed  Google Scholar 

  322. Lovell, M. E., Akhurst, J., Padgett, C., Garry, M. I. & Matthews, A. Cognitive outcomes associated with long-term, regular, recreational cannabis use in adults: a meta-analysis. Exp. Clin. Psychopharmacol. 28, 471–494 (2020).

    PubMed  Google Scholar 

  323. Strickland, J. C., Lee, D. C., Vandrey, R. & Johnson, M. W. A systematic review and meta-analysis of delay discounting and cannabis use. Exp. Clin. Psychopharmacol. 29, 696–710 (2021).

    PubMed  Google Scholar 

  324. Gonzalez, R. et al. Performance of young adult cannabis users on neurocognitive measures of impulsive behavior and their relationship to symptoms of cannabis use disorders. J. Clin. Exp. Neuropsychol. 34, 962–976 (2012).

    PubMed  PubMed Central  Google Scholar 

  325. Albein-Urios, N., Martinez-González, J. M., Lozano, O., Clark, L. & Verdejo-García, A. Comparison of impulsivity and working memory in cocaine addiction and pathological gambling: implications for cocaine-induced neurotoxicity. Drug Alcohol Depend. 126, 1–6 (2012).

    PubMed  Google Scholar 

  326. Fernández-Serrano, M. J., Perales, J. C., Moreno-López, L., Pérez-García, M. & Verdejo-García, A. Neuropsychological profiling of impulsivity and compulsivity in cocaine dependent individuals. Psychopharmacology 219, 673–683 (2012).

    PubMed  Google Scholar 

  327. Ersche, K. D. et al. Distinctive personality traits and neural correlates associated with stimulant drug use versus familial risk of stimulant dependence. Biol. Psychiatry 74, 137–144 (2013).

    PubMed  PubMed Central  Google Scholar 

  328. Ersche, K. D., Turton, A. J., Pradhan, S., Bullmore, E. T. & Robbins, T. W. Drug addiction endophenotypes: impulsive versus sensation-seeking personality traits. Biol. Psychiatry 68, 770–773 (2010).

    PubMed  PubMed Central  Google Scholar 

  329. Ramey, T. & Regier, P. S. Cognitive impairment in substance use disorders. CNS Spectr. 24, 102–113 (2019).

    PubMed  Google Scholar 

  330. Spronk, D. B., van Wel, J. H., Ramaekers, J. G. & Verkes, R. J. Characterizing the cognitive effects of cocaine: a comprehensive review. Neurosci. Biobehav. Rev. 37, 1838–1859 (2013).

    PubMed  Google Scholar 

  331. Verdejo-Garcia, A. & Rubenis, A. J. in Cognition and Addiction (ed. Verdejo-Garcia, A.) 155–163 (Academic, 2020).

  332. MacKillop, J. et al. Delayed reward discounting and addictive behavior: a meta-analysis. Psychopharmacology 216, 305–321 (2011).

    PubMed  PubMed Central  Google Scholar 

  333. Casey, B. J. & Jones, R. M. Neurobiology of the adolescent brain and behavior: implications for substance use disorders. J. Am. Acad. Child Adolesc. Psychiatry 49, 1189–1201 (2010). quiz 1285.

    PubMed  PubMed Central  Google Scholar 

  334. Kahneman, D. A. Thinking, Fast and Slow 1st edn (Farrar, Straus and Giroux, 2011).

  335. Barratt, E. S. Anxiety and impulsiveness related to psychomotor efficiency. Percept. Mot. Skills 9, 191–198 (1959).

    Google Scholar 

  336. Stanford, M. S. et al. Fifty years of the Barratt Impulsiveness Scale: an update and review. Pers. Individ. Differ. 47, 385–395 (2009).

    Google Scholar 

  337. Ahn, W. Y., Dai, J., Vassileva, J., Busemeyer, J. R. & Stout, J. C. Computational modeling for addiction medicine: from cognitive models to clinical applications. Prog. Brain Res. 224, 53–65 (2016).

    PubMed  Google Scholar 

  338. Zhou, R. & Pitt, M. A. Dual-process modeling of sequential decision making in the Balloon Analogue Risk Task. Cogn. Psychol. 149, 101629 (2024).

    PubMed  Google Scholar 

  339. Odum, A. L. Delay discounting: trait variable? Behav. Process. 87, 1–9 (2011).

    Google Scholar 

  340. Enkavi, A. Z. et al. Large-scale analysis of test–retest reliabilities of self-regulation measures. Proc. Natl Acad. Sci. USA 116, 5472–5477 (2019).

    PubMed  PubMed Central  Google Scholar 

  341. Heilig, M., Goldman, D., Berrettini, W. & O’Brien, C. P. Pharmacogenetic approaches to the treatment of alcohol addiction. Nat. Rev. Neurosci. 12, 670–684 (2011).

    PubMed  PubMed Central  Google Scholar 

  342. Babor, T. F. et al. Types of alcoholics, I. Evidence for an empirically derived typology based on indicators of vulnerability and severity. Arch. Gen. Psychiatry 49, 599–608 (1992).

    PubMed  Google Scholar 

  343. Cloninger, C. R. Neurogenetic adaptive mechanisms in alcoholism. Science 236, 410–416 (1987).

    PubMed  Google Scholar 

  344. Kendler, K. S., Prescott, C. A., Myers, J. & Neale, M. C. The structure of genetic and environmental risk factors for common psychiatric and substance use disorders in men and women. Arch. Gen. Psychiatry 60, 929–937 (2003).

    PubMed  Google Scholar 

  345. Krueger, R. F. The structure of common mental disorders. Arch. Gen. Psychiatry 56, 921–926 (1999).

    PubMed  Google Scholar 

  346. Krueger, R. F. et al. Etiologic connections among substance dependence, antisocial behavior, and personality: modeling the externalizing spectrum. J. Abnorm. Psychol. 111, 411–424 (2002).

    PubMed  Google Scholar 

  347. Krueger, R. F., Markon, K. E., Patrick, C. J., Benning, S. D. & Kramer, M. D. Linking antisocial behavior, substance use, and personality: an integrative quantitative model of the adult externalizing spectrum. J. Abnorm. Psychol. 116, 645–666 (2007).

    PubMed  PubMed Central  Google Scholar 

  348. Carragher, N. et al. The structure of adolescent psychopathology: a symptom-level analysis. Psychol. Med. 46, 981–994 (2016).

    PubMed  Google Scholar 

  349. Savage, J. E., Dick, D. M. & Spit for Science Working Group Internalizing and externalizing subtypes of alcohol misuse and their relation to drinking motives. Addict. Behav. 136, 107461 (2023).

    PubMed  Google Scholar 

  350. Conrod, P. J., Pihl, R. O., Stewart, S. H. & Dongier, M. Validation of a system of classifying female substance abusers on the basis of personality and motivational risk factors for substance abuse. Psychol. Addict. Behav. 14, 243–256 (2000).

    PubMed  Google Scholar 

Download references

Acknowledgements

J.V. discloses support for the research of this work from the National Institute on Drug Abuse and the Fogarty International Center at the National Institutes of Health (grant number R01DA021421), and the National Institute on Drug Abuse (grant number R01DA058038). J.M.B. discloses support for the research of this work from the National Institute on Drug Abuse (grant number 1U01DA057846).

Author information

Authors and Affiliations

Authors

Contributions

J.V. and E.P researched data for the article. All authors wrote the article, contributed substantially to discussion of the content, and reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Jasmin Vassileva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Dokyoung Sophia You and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vassileva, J., Psederska, E. & Bjork, J.M. Negative affectivity drivers of impulsivity in opioid use disorder. Nat Rev Psychol 4, 170–192 (2025). https://doi.org/10.1038/s44159-025-00404-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-025-00404-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing