Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Adaptive compression as a unifying framework for episodic and semantic memory

Abstract

Sensory experiences are encoded as memories, not as verbatim copies, but through interpretation and transformation. Rate distortion theory frames this process as compression in which irrelevant details are discarded. Despite the successes of approaches based on rate–distortion theory in aligning with empirical findings, these approaches assume that environmental regularities are known and unchanging and that surprising experiences are dismissed. However, the brain’s model of environmental regularities (semantic memory) is continually learned and refined, and surprising events have a pivotal role in this learning. In this Perspective, we offer a normative framework that addresses the interplay between semantic and episodic memory in the context of this computational problem that encompasses memory distortions, curriculum effects and prioritized replay. We propose to consider memory as solving an online structure learning problem, with semantic and episodic memory each having a role. We argue that semantic memory must learn the regularities that enable the efficient encoding of experience and that episodic memory supports this process by preserving surprising experiences in a relatively raw format for later interpretation. This framework opens up avenues towards understanding how adaptive compression and surprise shape the trajectory of learning and memory distortions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Compression in memory.
Fig. 2: Online structure learning in the coffee-brewing example.
Fig. 3: Interactions between semantic and episodic memory.
Fig. 4: The Neurath’s ship analogy for human learning.
Fig. 5: The episodic ‘life raft’.

Similar content being viewed by others

References

  1. Baddeley, A., Eysenck, M. W. & Anderson, M. C. Memory (Routledge, 2020).

  2. Nickerson, R. S. & Adams, M. J. Long-term memory for a common object. Cogn. Psychol. 11, 287–307 (1979).

    Google Scholar 

  3. Martin, M. & Jones, G. V. Generalizing everyday memory: signs and handedness. Mem. Cogn. 26, 193–200 (1998).

    Google Scholar 

  4. Blake, A. B., Nazarian, M. & Castel, A. D. Rapid communication: the apple of the mind’s eye: everyday attention, metamemory, and reconstructive memory for the Apple logo. Q. J. Exp. Psychol. 68, 858–865 (2015).

    Google Scholar 

  5. Prasad, D. & Bainbridge, W. A. The visual Mandela effect as evidence for shared and specific false memories across people. Psychol. Sci. 33, 1971–1988 (2022).

    PubMed  Google Scholar 

  6. Schacter, D. L., Guerin, S. A. & St Jacques, P. L. Memory distortion: an adaptive perspective. Trends Cogn. Sci. 15, 467–474 (2011).

    PubMed  PubMed Central  Google Scholar 

  7. Wu, C. M., Meder, B. & Schulz, E. Unifying principles of generalization: past, present, and future. Annu. Rev. Psychol. 76, 275–302 (2025).

    PubMed  Google Scholar 

  8. Reyna, V. F. & Brainerd, C. J. Fuzzy-trace theory: an interim synthesis. Learn. Individ. Differ. 7, 1–75 (1995).

    Google Scholar 

  9. Reyna, V. F., Corbin, J. C., Weldon, R. B. & Brainerd, C. J. How fuzzy-trace theory predicts true and false memories for words, sentences, and narratives. J. Appl. Res. Mem. Cogn. 5, 1–9 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, 1932).

  11. Nagy, D. G., Török, B. & Orbán, G. Optimal forgetting: semantic compression of episodic memories. PLoS Comput. Biol. 16, e1008367 (2020).

    PubMed  PubMed Central  Google Scholar 

  12. Bates, C. J. & Jacobs, R. A. Efficient data compression in perception and perceptual memory. Psychol. Rev. 127, 891–917 (2020).

    PubMed  Google Scholar 

  13. Fayyaz, Z. et al. A model of semantic completion in generative episodic memory. Neural Comput. 34, 1841–1870 (2022).

    PubMed  Google Scholar 

  14. Spens, E. & Burgess, N. A generative model of memory construction and consolidation. Nat. Hum. Behav. 8, 526–543 (2024).

    PubMed  PubMed Central  Google Scholar 

  15. Tompary, A. & Thompson-Schill, S. L. Semantic influences on episodic memory distortions. J. Exp. Psychol. Gen. 150, 1800–1824 (2021).

    PubMed  PubMed Central  Google Scholar 

  16. Tandoc, M. C., Dong, C. V. & Schapiro, A. C. Object feature memory is distorted by category structure. Open Mind 8, 1348–1368 (2024).

    PubMed  PubMed Central  Google Scholar 

  17. Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).

    Google Scholar 

  18. Shannon, C. E. in Claude E. Shannon: Collected Papers (eds Sloane, N. J. A. & Wyner, A. D.) vol. 7, 325–350 (Wiley/IEEE Press, 1993).

  19. Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.) 217–233 (The MIT Press, 1961).

  20. Barlow, H. Redundancy reduction revisited. Network 12, 241–253 (2001).

    PubMed  Google Scholar 

  21. Zhaoping, L. Theoretical understanding of the early visual processes by data compression and data selection. Network 17, 301–334 (2006).

    PubMed  Google Scholar 

  22. Craik, K. J. W. The Nature of Explanation (Cambridge Univ. Press, 1967).

  23. Káli, S. & Dayan, P. Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. Nat. Neurosci. 7, 286–294 (2004).

    PubMed  Google Scholar 

  24. Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).

    PubMed  PubMed Central  Google Scholar 

  25. Kingma, D. P . & Welling, M. Auto-encoding variational Bayes. In Intl Conf. Learning Representations https://openreview.net/forum?id=33X9fd2-9FyZd (2014).

  26. Higgins, I. et al. Beta-VAE: learning basic visual concepts with a constrained variational framework. In Int. Conf. Learning Representations https://openreview.net/forum?id=Sy2fzU9gl (2017).

  27. Rezende D. J., Mohamed S. & Wierstra D. Stochastic backpropagation and approximate inference in deep generative models. In Proc. 31st Intl Conf. Machine Learning, PMLR 32, 1278–1286 (2014).

    Google Scholar 

  28. Alemi, A. A., Fischer, I., Dillon, J. V. & Murphy, K. Deep variational information bottleneck. In Intl Conf. Learning Representations 2017 https://openreview.net/forum?id=HyxQzBceg (2017).

  29. Alemi, A. et al. Fixing a broken ELBO. In Proc. 35th Intl Conf. Machine Learning (eds Dy, J. & Krause, A.) 80, 159–168 (2018).

  30. Ballé, J., Laparra, V. & Simoncelli, E. P. End-to-end optimized image compression. In Intl Conf. Learning Representations 2017 https://openreview.net/forum?id=rJxdQ3jeg (2017).

  31. Bates, C. J., Alvarez, G. A. & Gershman, S. J. Scaling models of visual working memory to natural images. Commun. Psychol. 2, 3 (2024).

    PubMed  PubMed Central  Google Scholar 

  32. Hedayati, S., O’Donnell, R. E. & Wyble, B. A model of working memory for latent representations. Nat. Hum. Behav. 6, 709–719 (2022).

    PubMed  Google Scholar 

  33. Martin-Ordas, G. & Easton, A. Elements of episodic memory: lessons from 40 years of research. Phil. Trans. R. Soc. Lond. B 379, 20230395 (2024).

    Google Scholar 

  34. Nicholas, J. & Mattar, M. G. Humans use episodic memory to access features of past experience for flexible decision making. In Proc. 46th Ann. Conf. Cognitive Science Society (eds. Samuelson K. et al.) 2754–2760 (Cognitive Science Society, 2024).

  35. Lengyel, M. & Dayan, P. Hippocampal contributions to control: the third way. In Advances in Neural Information Processing Systems 20 (eds. Platt, J., Koller, D., Singer, Z. & Roweis S.) 889–896 (2007).

  36. Mahr, J. & Csibra, G. Why do we remember? The communicative function of episodic memory. Behav. Brain Sci. 41, 1–93 (2017).

    PubMed  Google Scholar 

  37. McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).

    PubMed  Google Scholar 

  38. Moscovitch, M. The hippocampus as a ‘stupid,’ domain-specific module: implications for theories of recent and remote memory, and of imagination. Can. J. Exp. Psychol. 62, 62–79 (2008).

    PubMed  Google Scholar 

  39. Nagy, D. G. & Orban, G. Episodic memory as a prerequisite for online updates of model structure. In Proc. 38th Ann. Conf. Cognitive Science Society (eds. Papafragou, A. et al.) 2699–2704 (Cognitive Science Society, 2016).

  40. Lu, Q., Hummos, A. & Norman, K. A. Episodic memory supports the acquisition of structured task representations. Preprint at bioRxiv https://doi.org/10.1101/2024.05.06.592749 (2024).

  41. Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016).

    PubMed  Google Scholar 

  42. Antony, J. W., Van Dam, J., Massey, J. R., Barnett, A. J. & Bennion, K. A. Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nat. Hum. Behav. 7, 2152–2168 (2023).

    PubMed  Google Scholar 

  43. Lin, Q., Li, Z., Lafferty, J. & Yildirim, I. Images with harder-to-reconstruct visual representations leave stronger memory traces. Nat. Hum. Behav. 8, 1309–1320 (2024).

    PubMed  Google Scholar 

  44. Rouhani, N. & Niv, Y. Signed and unsigned reward prediction errors dynamically enhance learning and memory. elife 10, e61077 (2021).

    PubMed  PubMed Central  Google Scholar 

  45. von Restorff, H. Über die Wirkung von Bereichsbildungen im Spurenfeld. Psychol. Forsch. 18, 299–342 (1933).

    Google Scholar 

  46. van Kesteren, M. T. R., Ruiter, D. J., Fernández, G. & Henson, R. N. How schema and novelty augment memory formation. Trends Neurosci. 35, 211–219 (2012).

    PubMed  Google Scholar 

  47. Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl. Acad. Sci. USA. 105, 10687–10692 (2008).

    PubMed  PubMed Central  Google Scholar 

  48. Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr. Opin. Neurobiol. 20, 251–256 (2010).

    PubMed  PubMed Central  Google Scholar 

  49. Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. Rational approximations to rational models: alternative algorithms for category learning. Psychol. Rev. 117, 1144–1167 (2010).

    PubMed  Google Scholar 

  50. Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference in learning and memory. Trends Cogn. Sci. 27, 43–64 (2023).

    PubMed  Google Scholar 

  51. Dasgupta, I., Schulz, E. & Gershman, S. J. Where do hypotheses come from? Cogn. Psychol. 96, 1–25 (2017).

    PubMed  Google Scholar 

  52. Sanborn, A. N. & Chater, N. Bayesian brains without probabilities. Trends Cogn. Sci. 20, 883–893 (2016).

    PubMed  Google Scholar 

  53. Bramley, N. R., Dayan, P., Griffiths, T. L. & Lagnado, D. A. Formalizing Neurath’s ship: approximate algorithms for online causal learning. Psychol. Rev. 124, 301–338 (2017).

    PubMed  Google Scholar 

  54. Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? Optimal decisions from very few samples. Cogn. Sci. 38, 599–637 (2014).

    PubMed  Google Scholar 

  55. Courville, A. C. & Daw, N. The rat as particle filter. In Advances in Neural Information Processing Systems 20 (eds. Platt, J., Koller, D., Singer, Z., & Roweis S.) 369–376 (2007).

  56. Neurath, O. Empiricism and Sociology (eds Neurath, M. & Cohen, R. S.) Vienna Circle Collection Vol. 1 (D. Reidel Publishing, 1973).

  57. Van Orman Quine, W. Word and Object (MIT Press, 1960).

  58. Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).

    PubMed  Google Scholar 

  59. Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).

    PubMed  Google Scholar 

  60. Abbott, J. T. & Thomas, L. Exploring the influence of particle filter parameters on order effects in causal learning. In Proc. 33rd Ann. Conf. Cognitive Science Society (eds. Carlson, L., Hoelscher, C. & Shipley, T. F.) 2950–2955 (Cognitive Science Society, 2011).

  61. Zhou, H., Nagy, D. G. & Wu, C. M. Harmonizing program induction with rate–distortion theory. In Proc. 46th Ann. Conf. Cognitive Science Society (eds Frank, S. L., Toneva, M., Mackey, A. & Hazeltine, E.) 2511–2518 (Cognitive Science Society, 2024).

  62. Flesch, T., Balaguer, J., Dekker, R., Nili, H. & Summerfield, C. Comparing continual task learning in minds and machines. Proc. Natl Acad. Sci. USA 115, E10313–E10322 (2018).

    PubMed  PubMed Central  Google Scholar 

  63. Dekker, R. B., Otto, F. & Summerfield, C. Curriculum learning for human compositional generalization. Proc. Natl Acad. Sci. USA 119, e2205582119 (2022).

    PubMed  PubMed Central  Google Scholar 

  64. Zhao, B., Lucas, C. G. & Bramley, N. R. A model of conceptual bootstrapping in human cognition. Nat. Hum. Behav. 8, 125–136 (2024).

    PubMed  Google Scholar 

  65. Gong, T., Gerstenberg, T., Mayrhofer, R. & Bramley, N. R. Active causal structure learning in continuous time. Cogn. Psychol. 140, 101542 (2023).

    PubMed  Google Scholar 

  66. McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learning Motiv. 24, 109–165 (1989).

    Google Scholar 

  67. French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).

    PubMed  Google Scholar 

  68. Hadsell, R., Rao, D., Rusu, A. A. & Pascanu, R. Embracing change: continual learning in deep neural networks. Trends Cogn. Sci. 24, 1028–1040 (2020).

    PubMed  Google Scholar 

  69. Beukers, A. O. et al. Blocked training facilitates learning of multiple schemas. Commun. Psychol. 2, 28 (2024).

    PubMed  PubMed Central  Google Scholar 

  70. Zhou, Z., Singh, D., Tandoc, M. C. & Schapiro, A. C. Building integrated representations through interleaved learning. J. Exp. Psychol. Gen. 152, 2666–2684 (2023).

    PubMed  Google Scholar 

  71. Birnbaum, M. S., Kornell, N., Bjork, E. L. & Bjork, R. A. Why interleaving enhances inductive learning: the roles of discrimination and retrieval. Mem. Cogn. 41, 392–402 (2013).

    Google Scholar 

  72. Zulkiply, N. & Burt, J. S. The exemplar interleaving effect in inductive learning: moderation by the difficulty of category discriminations. Mem. Cogn. 41, 16–27 (2013).

    Google Scholar 

  73. Carvalho, P. F. & Goldstone, R. L. Putting category learning in order: category structure and temporal arrangement affect the benefit of interleaved over blocked study. Mem. Cogn. 42, 481–495 (2014).

    Google Scholar 

  74. Chater, N. & Oaksford, M. Programs as causal models: speculations on mental programs and mental representation. Cogn. Sci. 37, 1171–1191 (2013).

    PubMed  Google Scholar 

  75. Icard, T. F. From programs to causal models. In Proc. 21st Amsterdam Colloquium (eds Cremers, A., van Gessel, T. & Roelofsen, F.) 35–44 (2017).

  76. Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).

    PubMed  PubMed Central  Google Scholar 

  77. Baldi, P. & Itti, L. Of bits and wows: a Bayesian theory of surprise with applications to attention. Neural Netw. 23, 649–666 (2010).

    PubMed  Google Scholar 

  78. Koch, C., Zika, O., Bruckner, R. & Schuck, N. W. Influence of surprise on reinforcement learning in younger and older adults. PLoS Comput. Biol. 20, e1012331 (2024).

    PubMed  PubMed Central  Google Scholar 

  79. Schmidhuber, J. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2, 230–247 (2010).

    Google Scholar 

  80. Nosofsky, R. M., Palmeri, T. J. & McKinley, S. C. Rule-plus-exception model of classification learning. Psychol. Rev. 101, 53–79 (1994).

    PubMed  Google Scholar 

  81. Nosofsky, R. M. & Palmeri, T. J. A rule-plus-exception model for classifying objects in continuous-dimension spaces. Psychon. Bull. Rev. 5, 345–369 (1998).

    Google Scholar 

  82. Piray, P. & Daw, N. D. A model for learning based on the joint estimation of stochasticity and volatility. Nat. Commun. 12, 6587 (2021).

    PubMed  PubMed Central  Google Scholar 

  83. Modirshanechi, A., Brea, J. & Gerstner, W. A taxonomy of surprise definitions. J. Math. Psychol. 110, 102712 (2022).

    Google Scholar 

  84. Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M. & Gershman, S. J. Structured event memory: a neuro-symbolic model of event cognition. Psychol. Rev. 127, 327–361 (2020).

    PubMed  Google Scholar 

  85. Gershman, S. J., Radulescu, A., Norman, K. A. & Niv, Y. Statistical computations underlying the dynamics of memory updating. PLoS Comput. Biol. 10, e1003939 (2014).

    PubMed  PubMed Central  Google Scholar 

  86. Rouhani, N., Norman, K. A. & Niv, Y. Dissociable effects of surprising rewards on learning and memory. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1430–1443 (2018).

    PubMed  PubMed Central  Google Scholar 

  87. Mattar, M. G. & Daw, N. D. Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci. 21, 1609–1617 (2018).

    PubMed  PubMed Central  Google Scholar 

  88. Sun, W., Advani, M., Spruston, N., Saxe, A. & Fitzgerald, J. E. Organizing memories for generalization in complementary learning systems. Nat. Neurosci. 26, 1438–1448 (2023).

    PubMed  PubMed Central  Google Scholar 

  89. Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. Preprint at arXiv https://doi.org/10.48550/arXiv.1511.05952 (2015).

  90. Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).

    PubMed  Google Scholar 

  91. Aljundi, R. et al. Online continual learning with maximal interfered retrieval. In Advances in Neural Information Processing Systems (eds. Wallach, H. et al.) 32, 11849–11860 (2019).

  92. Botvinick, M. et al. Reinforcement learning, fast and slow. Trends Cogn. Sci. 23, 408–422 (2019).

    PubMed  Google Scholar 

  93. Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).

    PubMed  Google Scholar 

  94. Shin, H., Lee, J. K., Kim, J., & Kim, J. Continual learning with deep generative replay. In Advances in Neural Information Processing Systems (eds. Guyon, I. et al.) 30, 2990–2999 (2017).

  95. van de Ven, G. M., Siegelmann, H. T. & Tolias, A. S. Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11, 4069 (2020).

    PubMed  PubMed Central  Google Scholar 

  96. Roediger, H. L. & McDermott, K. B. Creating false memories: remembering words not presented in lists. J. Exp. Psychol. Learn. Mem. Cogn. 21, 803–814 (1995).

    Google Scholar 

  97. Carmichael, L., Hogan, H. P. & Walter, A. A. An experimental study of the effect of language on the reproduction of visually perceived form. J. Exp. Psychol. 15, 73–86 (1932).

    Google Scholar 

  98. Loftus, E. F. Planting misinformation in the human mind: a 30-year investigation of the malleability of memory. Learn. Mem. 12, 361–366 (2005).

    PubMed  Google Scholar 

  99. Roese, N. J. & Vohs, K. D. Hindsight bias. Persp. Psychol. Sci. 7, 411–426 (2012).

    Google Scholar 

  100. Carpenter, A. C. & Schacter, D. L. Flexible retrieval: when true inferences produce false memories. J. Exp. Psychol. Learn. Mem. Cogn. 43, 335–349 (2017).

    PubMed  Google Scholar 

  101. Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721.e5 (2017).

    PubMed  PubMed Central  Google Scholar 

  102. Davachi, L. & DuBrow, S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn. Sci. 19, 92–99 (2015).

    PubMed  PubMed Central  Google Scholar 

  103. Zheng, J. et al. Neurons detect cognitive boundaries to structure episodic memories in humans. Nat. Neurosci. 25, 358–368 (2022).

    PubMed  PubMed Central  Google Scholar 

  104. Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. & Reynolds, J. R. Event perception: a mind–brain perspective. Psychol. Bull. 133, 273–293 (2007).

    PubMed  PubMed Central  Google Scholar 

  105. Butz, M. V., Achimova, A., Bilkey, D. & Knott, A. Event-predictive cognition: a root for conceptual human thought. Top. Cogn. Sci. 13, 10–24 (2021).

    PubMed  Google Scholar 

  106. Flesch, T., Nagy, D. G., Saxe, A. & Summerfield, C. Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals. PLoS Comput. Biol. 19, e1010808 (2023).

    PubMed  PubMed Central  Google Scholar 

  107. Zhou, H., Bamler, R., Wu, C. M. & Tejero-Cantero, Á. Predictive, scalable and interpretable knowledge tracing on structured domains. In Intl Conf. Learning Representations 2024 https://openreview.net/forum?id=NgaLU2fP5D (2024).

  108. Goldwater, M. B. & Schalk, L. Relational categories as a bridge between cognitive and educational research. Psychol. Bull. 142, 729–757 (2016).

    PubMed  Google Scholar 

  109. Denervaud, S., Christensen, A. P., Kenett, Y. N. & Beaty, R. E. Education shapes the structure of semantic memory and impacts creative thinking. npj Sci. Learn. 6, 35 (2021).

    PubMed  PubMed Central  Google Scholar 

  110. Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).

    PubMed  PubMed Central  Google Scholar 

  111. Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).

    PubMed  Google Scholar 

  112. Ellis, K. et al. Dreamcoder: bootstrapping inductive program synthesis with wake–sleep library learning. Proc. 42nd ACM SIGPLAN Int. Conf. Programming Language and Implementation (PLDI) 835–850 (ACM, 2021).

  113. Ullman, T. D., Goodman, N. D. & Tenenbaum, J. B. Theory learning as stochastic search in the language of thought. Cogn. Dev. 27, 455–480 (2012).

    Google Scholar 

  114. Rouhani, N., Niv, Y., Frank, M. J. & Schwabe, L. Multiple routes to enhanced memory for emotionally relevant events. Trends Cogn. Sci. 27, 867–882 (2023).

    PubMed  Google Scholar 

  115. Kalbe, F. & Schwabe, L. Beyond arousal: prediction error related to aversive events promotes episodic memory formation. J. Exp. Psychol. Learn. Mem. Cogn. 46, 234–246 (2020).

    PubMed  Google Scholar 

  116. Laney, C. & Loftus, E. F. Emotional content of true and false memories. Memory 16, 500–516 (2008).

    PubMed  Google Scholar 

  117. Christianson, S.-Å. Emotional stress and eyewitness memory: a critical review. Psychol. Bull. 112, 284–309 (1992).

    PubMed  Google Scholar 

  118. Hafner, D., Pasukonis, J., Ba, J. & Lillicrap, T. Mastering diverse control tasks through world models. Nature 640, 647–653 (2025).

  119. Wayne, G. et al. Unsupervised predictive memory in a goal-directed agent. Preprint at arXiv https://doi.org/10.48550/arXiv.1803.10760 (2018).

  120. Emanuel, A. & Eldar, E. Emotions as computations. Neurosci. Biobehav. Rev. 144, 104977 (2023).

    PubMed  Google Scholar 

  121. Gagne, C., Dayan, P. & Bishop, S. J. When planning to survive goes wrong: predicting the future and replaying the past in anxiety and PTSD. Curr. Opin. Behav. Sci. 24, 89–95 (2018).

    Google Scholar 

  122. van der Kolk, B. A. & Fisler, R. Dissociation and the fragmentary nature of traumatic memories: overview and exploratory study. J. Traum. Stress 8, 505–525 (1995).

    Google Scholar 

  123. Ehlers, A. & Clark, D. M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 38, 319–345 (2000).

    PubMed  Google Scholar 

  124. Bramley, N. R., Zhao, B., Quillien, T. & Lucas, C. G. Local search and the evolution of world models. Top. Cogn. Sci. https://doi.org/10.1111/tops.12703 (2023).

  125. Sanborn, A. N., Griffiths, T. L. & Shiffrin, R. M. Uncovering mental representations with Markov chain Monte Carlo. Cogn. Psychol. 60, 63–106 (2010).

    PubMed  Google Scholar 

  126. Sims, C. R., Jacobs, R. A. & Knill, D. C. An ideal observer analysis of visual working memory. Psychol. Rev. 119, 807–830 (2012).

    PubMed  PubMed Central  Google Scholar 

  127. Gershman, S. J. in The Oxford Handbook of Human Memory (eds Kahana, M. & Wagner, A.) 1505–1520 (Oxford Univ. Press, 2024).

  128. Baddeley, A. D. Language habits, acoustic confusability, and immediate memory for redundant letter sequences. Psychon. Sci. 22, 120–121 (1971).

    Google Scholar 

  129. Gobet, F. & Simon, H. A. Recall of rapidly presented random chess positions is a function of skill. Psychon. Bull. Rev. 3, 159–163 (1996).

    PubMed  Google Scholar 

  130. Anderson, J. R. & Milson, R. Human memory: an adaptive perspective. Psychol. Rev. 96, 703–719 (1989).

    Google Scholar 

  131. Anderson, J. R. & Schooler, L. J. Reflections of the environment in memory. Psychol. Sci. 2, 396–408 (1991).

    Google Scholar 

  132. Roediger, H. L. 3rd & DeSoto, K. A. Cognitive psychology. Forgetting the presidents. Science 346, 1106–1109 (2014).

    PubMed  Google Scholar 

  133. Hanawalt, N. G. & Demarest, I. H. The effect of verbal suggestion in the recall period upon the reproduction of visually perceived forms. J. Exp. Psychol. 25, 159–174 (1939).

    Google Scholar 

  134. Toglia, M. P., Neuschatz, J. S. & Goodwin, K. A. Recall accuracy and illusory memories: when more is less. Memory 7, 233–256 (1999).

    PubMed  Google Scholar 

  135. Seamon, J. G. et al. Are false memories more difficult to forget than accurate memories? The effect of retention interval on recall and recognition. Mem. Cogn. 30, 1054–1064 (2002).

    Google Scholar 

  136. Sims, C., Ma, Z., Allred, S. R., Lerch, R. & Flombaum, J. I. Exploring the cost function in color perception and memory: an information-theoretic model of categorical effects in color matching. In Proc. 38th Ann. Conf. Cognitive Science Society (eds. Papafragou, A., et al.) 2273–2278 (Cognitive Science Society, 2016).

  137. Bates, C. J., Lerch, R. A., Sims, C. R. & Jacobs, R. A. Adaptive allocation of human visual working memory capacity during statistical and categorical learning. J. Vis. 19, 11 (2019).

    PubMed  Google Scholar 

  138. Yoo, A. H., Klyszejko, Z., Curtis, C. E. & Ma, W. J. Strategic allocation of working memory resource. Sci. Rep. 8, 16162 (2018).

    PubMed  PubMed Central  Google Scholar 

  139. Alemi, A. A. Variational predictive information bottleneck. iProc. Machine Learning Res. 118, 1–6 (2020).

    Google Scholar 

  140. Bialek, W., Nemenman, I. & Tishby, N. Predictability, complexity, and learning. Neural Comput. 13, 2409–2463 (2001).

    PubMed  Google Scholar 

  141. Gelman, A. et al. Bayesian Data Analysis (Chapman and Hall/CRC, 2013).

  142. Grunwald, P. D. The Minimum Description Length Principle (MIT Press, 2007).

  143. Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).

    PubMed  Google Scholar 

  144. Fränken, J.-P., Theodoropoulos, N. C. & Bramley, N. R. Algorithms of adaptation in inductive inference. Cogn. Psychol. 137, 101506 (2022).

    PubMed  Google Scholar 

  145. Rubino, V., Hamidi, M., Dayan, P. & Wu, C. M. Compositionality under time pressure. In Proc. 45th Ann. Conf. Cognitive Science Society (eds Goldwater, M., Anggoro, F., Hayes, B. & Ong, D.) (Cognitive Science Society, 2023).

  146. Orbán, G., Fiser, J., Aslin, R. N. & Lengyel, M. Bayesian learning of visual chunks by human observers. Proc. Natl Acad. Sci. USA 105, 2745–2750 (2008).

    PubMed  PubMed Central  Google Scholar 

  147. Austerweil, J. L., Sanborn, S. & Griffiths, T. L. Learning how to generalize. Cogn. Sci. 43, e12777 (2019).

    PubMed  Google Scholar 

  148. Piantadosi, S. T., Tenenbaum, J. B. & Goodman, N. D. Bootstrapping in a language of thought: a formal model of numerical concept learning. Cognition 123, 199–217 (2012).

    PubMed  Google Scholar 

  149. Shin, Y. S. & DuBrow, S. Structuring memory through inference-based event segmentation. Top. Cogn. Sci. 13, 106–127 (2021).

    PubMed  Google Scholar 

  150. Choi, Y., El-Khamy, M. & Lee, J. Variable rate deep image compression with a conditional autoencoder. In 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV) (IEEE, 2019).

  151. Yang, Y., Bamler, R. & Mandt, S. Variational Bayesian quantization. In Proc. 37th Intl Conf. Machine Learning (ICML 2020) 119, 10670–10680 (2020).

    Google Scholar 

  152. Bae, J. et al. Multi-rate VAE: train once, get the full rate-distortion curve. In Intl Conf. Learning Representations 2023 https://openreview.net/forum?id=OJ8aSjCaMNK (2023).

  153. Gregor, K., Besse, F., Rezende, D. J., Danihelka, I. & Wierstra, D. Towards conceptual compression. In Advances in Neural Information Processing Systems (eds. Lee, D. et al.) 29, 3549–3557 (2016).

  154. Maaløe, L., Fraccaro, M., Liévin, V. & Winther, O. BIVA: a very deep hierarchy of latent variables for generative modeling. In Advances in Neural Information Processing Systems (eds. Wallach, H. et al.) 32, 6551–6562 (2019).

  155. Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. In Intl Conf. Learning Representations 2018 https://openreview.net/forum?id=Hk99zCeAb (2018).

  156. Child, R. Very deep VAEs generalize autoregressive models and can outperform them on images. In Intl Conf. Learning Representations 2021 https://openreview.net/forum?id=RLRXCV6DbEJ (2021).

  157. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).

    PubMed  Google Scholar 

  158. Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).

    PubMed  Google Scholar 

  159. Freeman, J. & Simoncelli, E. P. Metamers of the ventral stream. Nat. Neurosci. 14, 1195–1201 (2011).

    PubMed  PubMed Central  Google Scholar 

  160. Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).

    PubMed  Google Scholar 

  161. Bányai, M., Nagy, D. G. & Orbán, G. Hierarchical semantic compression predicts texture selectivity in early vision. In Proc. 2019 Conf. Cognitive Computational Neuroscience 743–746 (2019).

  162. Brady, T. F., Robinson, M. M. & Williams, J. R. Noisy and hierarchical visual memory across timescales. Nat. Rev. Psychol. 3, 147–163 (2024).

    Google Scholar 

  163. McDermott, J. H., Schemitsch, M. & Simoncelli, E. P. Summary statistics in auditory perception. Nat. Neurosci. 16, 493–498 (2013).

    PubMed  PubMed Central  Google Scholar 

  164. Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial networks. In Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition 4401–4410 (2019).

Download references

Acknowledgements

The authors thank N. R. Bramley for insightful comments and suggestions, which helped to improve this manuscript, and P. Dayan for valuable discussions and extensive comments on earlier drafts. Additionally, the authors thank C. Frater, R. Uchiyama and M. Banyai for helpful feedback on the manuscript and B. Meszena for help with figures. This work is supported by the Humboldt Foundation, the German Federal Ministry of Education and Research (BMBF), by the Tübingen AI Center (FKZ 01IS18039A) funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy (EXC2064/1–390727645), and by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2117 422037984). G.O. was supported by a grant from the National Research, Development and Innovation Office (grant ADVANCED 150361) and by the European Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence National Laboratory in Hungary.

Author information

Authors and Affiliations

Authors

Contributions

D.G.N. and G.O. researched data for the article. All authors contributed substantially to discussion of the content. D.G.N. wrote the article. All authors reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to David G. Nagy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Psychology thanks Neil R. Bramley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagy, D.G., Orbán, G. & Wu, C.M. Adaptive compression as a unifying framework for episodic and semantic memory. Nat Rev Psychol 4, 484–498 (2025). https://doi.org/10.1038/s44159-025-00458-6

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44159-025-00458-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing