Abstract
Sensory experiences are encoded as memories, not as verbatim copies, but through interpretation and transformation. Rate distortion theory frames this process as compression in which irrelevant details are discarded. Despite the successes of approaches based on rate–distortion theory in aligning with empirical findings, these approaches assume that environmental regularities are known and unchanging and that surprising experiences are dismissed. However, the brain’s model of environmental regularities (semantic memory) is continually learned and refined, and surprising events have a pivotal role in this learning. In this Perspective, we offer a normative framework that addresses the interplay between semantic and episodic memory in the context of this computational problem that encompasses memory distortions, curriculum effects and prioritized replay. We propose to consider memory as solving an online structure learning problem, with semantic and episodic memory each having a role. We argue that semantic memory must learn the regularities that enable the efficient encoding of experience and that episodic memory supports this process by preserving surprising experiences in a relatively raw format for later interpretation. This framework opens up avenues towards understanding how adaptive compression and surprise shape the trajectory of learning and memory distortions.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$59.00 per year
only $4.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
References
Baddeley, A., Eysenck, M. W. & Anderson, M. C. Memory (Routledge, 2020).
Nickerson, R. S. & Adams, M. J. Long-term memory for a common object. Cogn. Psychol. 11, 287–307 (1979).
Martin, M. & Jones, G. V. Generalizing everyday memory: signs and handedness. Mem. Cogn. 26, 193–200 (1998).
Blake, A. B., Nazarian, M. & Castel, A. D. Rapid communication: the apple of the mind’s eye: everyday attention, metamemory, and reconstructive memory for the Apple logo. Q. J. Exp. Psychol. 68, 858–865 (2015).
Prasad, D. & Bainbridge, W. A. The visual Mandela effect as evidence for shared and specific false memories across people. Psychol. Sci. 33, 1971–1988 (2022).
Schacter, D. L., Guerin, S. A. & St Jacques, P. L. Memory distortion: an adaptive perspective. Trends Cogn. Sci. 15, 467–474 (2011).
Wu, C. M., Meder, B. & Schulz, E. Unifying principles of generalization: past, present, and future. Annu. Rev. Psychol. 76, 275–302 (2025).
Reyna, V. F. & Brainerd, C. J. Fuzzy-trace theory: an interim synthesis. Learn. Individ. Differ. 7, 1–75 (1995).
Reyna, V. F., Corbin, J. C., Weldon, R. B. & Brainerd, C. J. How fuzzy-trace theory predicts true and false memories for words, sentences, and narratives. J. Appl. Res. Mem. Cogn. 5, 1–9 (2016).
Bartlett, F. C. Remembering: A Study in Experimental and Social Psychology (Cambridge Univ. Press, 1932).
Nagy, D. G., Török, B. & Orbán, G. Optimal forgetting: semantic compression of episodic memories. PLoS Comput. Biol. 16, e1008367 (2020).
Bates, C. J. & Jacobs, R. A. Efficient data compression in perception and perceptual memory. Psychol. Rev. 127, 891–917 (2020).
Fayyaz, Z. et al. A model of semantic completion in generative episodic memory. Neural Comput. 34, 1841–1870 (2022).
Spens, E. & Burgess, N. A generative model of memory construction and consolidation. Nat. Hum. Behav. 8, 526–543 (2024).
Tompary, A. & Thompson-Schill, S. L. Semantic influences on episodic memory distortions. J. Exp. Psychol. Gen. 150, 1800–1824 (2021).
Tandoc, M. C., Dong, C. V. & Schapiro, A. C. Object feature memory is distorted by category structure. Open Mind 8, 1348–1368 (2024).
Shannon, C. A mathematical theory of communication. Bell Syst. Tech. J. 27, 623–656 (1948).
Shannon, C. E. in Claude E. Shannon: Collected Papers (eds Sloane, N. J. A. & Wyner, A. D.) vol. 7, 325–350 (Wiley/IEEE Press, 1993).
Barlow, H. B. in Sensory Communication (ed. Rosenblith, W. A.) 217–233 (The MIT Press, 1961).
Barlow, H. Redundancy reduction revisited. Network 12, 241–253 (2001).
Zhaoping, L. Theoretical understanding of the early visual processes by data compression and data selection. Network 17, 301–334 (2006).
Craik, K. J. W. The Nature of Explanation (Cambridge Univ. Press, 1967).
Káli, S. & Dayan, P. Off-line replay maintains declarative memories in a model of hippocampal-neocortical interactions. Nat. Neurosci. 7, 286–294 (2004).
Berkes, P., Orbán, G., Lengyel, M. & Fiser, J. Spontaneous cortical activity reveals hallmarks of an optimal internal model of the environment. Science 331, 83–87 (2011).
Kingma, D. P . & Welling, M. Auto-encoding variational Bayes. In Intl Conf. Learning Representations https://openreview.net/forum?id=33X9fd2-9FyZd (2014).
Higgins, I. et al. Beta-VAE: learning basic visual concepts with a constrained variational framework. In Int. Conf. Learning Representations https://openreview.net/forum?id=Sy2fzU9gl (2017).
Rezende D. J., Mohamed S. & Wierstra D. Stochastic backpropagation and approximate inference in deep generative models. In Proc. 31st Intl Conf. Machine Learning, PMLR 32, 1278–1286 (2014).
Alemi, A. A., Fischer, I., Dillon, J. V. & Murphy, K. Deep variational information bottleneck. In Intl Conf. Learning Representations 2017 https://openreview.net/forum?id=HyxQzBceg (2017).
Alemi, A. et al. Fixing a broken ELBO. In Proc. 35th Intl Conf. Machine Learning (eds Dy, J. & Krause, A.) 80, 159–168 (2018).
Ballé, J., Laparra, V. & Simoncelli, E. P. End-to-end optimized image compression. In Intl Conf. Learning Representations 2017 https://openreview.net/forum?id=rJxdQ3jeg (2017).
Bates, C. J., Alvarez, G. A. & Gershman, S. J. Scaling models of visual working memory to natural images. Commun. Psychol. 2, 3 (2024).
Hedayati, S., O’Donnell, R. E. & Wyble, B. A model of working memory for latent representations. Nat. Hum. Behav. 6, 709–719 (2022).
Martin-Ordas, G. & Easton, A. Elements of episodic memory: lessons from 40 years of research. Phil. Trans. R. Soc. Lond. B 379, 20230395 (2024).
Nicholas, J. & Mattar, M. G. Humans use episodic memory to access features of past experience for flexible decision making. In Proc. 46th Ann. Conf. Cognitive Science Society (eds. Samuelson K. et al.) 2754–2760 (Cognitive Science Society, 2024).
Lengyel, M. & Dayan, P. Hippocampal contributions to control: the third way. In Advances in Neural Information Processing Systems 20 (eds. Platt, J., Koller, D., Singer, Z. & Roweis S.) 889–896 (2007).
Mahr, J. & Csibra, G. Why do we remember? The communicative function of episodic memory. Behav. Brain Sci. 41, 1–93 (2017).
McClelland, J. L., McNaughton, B. L. & O’Reilly, R. C. Why there are complementary learning systems in the hippocampus and neocortex: insights from the successes and failures of connectionist models of learning and memory. Psychol. Rev. 102, 419–457 (1995).
Moscovitch, M. The hippocampus as a ‘stupid,’ domain-specific module: implications for theories of recent and remote memory, and of imagination. Can. J. Exp. Psychol. 62, 62–79 (2008).
Nagy, D. G. & Orban, G. Episodic memory as a prerequisite for online updates of model structure. In Proc. 38th Ann. Conf. Cognitive Science Society (eds. Papafragou, A. et al.) 2699–2704 (Cognitive Science Society, 2016).
Lu, Q., Hummos, A. & Norman, K. A. Episodic memory supports the acquisition of structured task representations. Preprint at bioRxiv https://doi.org/10.1101/2024.05.06.592749 (2024).
Kumaran, D., Hassabis, D. & McClelland, J. L. What learning systems do intelligent agents need? Complementary learning systems theory updated. Trends Cogn. Sci. 20, 512–534 (2016).
Antony, J. W., Van Dam, J., Massey, J. R., Barnett, A. J. & Bennion, K. A. Long-term, multi-event surprise correlates with enhanced autobiographical memory. Nat. Hum. Behav. 7, 2152–2168 (2023).
Lin, Q., Li, Z., Lafferty, J. & Yildirim, I. Images with harder-to-reconstruct visual representations leave stronger memory traces. Nat. Hum. Behav. 8, 1309–1320 (2024).
Rouhani, N. & Niv, Y. Signed and unsigned reward prediction errors dynamically enhance learning and memory. elife 10, e61077 (2021).
von Restorff, H. Über die Wirkung von Bereichsbildungen im Spurenfeld. Psychol. Forsch. 18, 299–342 (1933).
van Kesteren, M. T. R., Ruiter, D. J., Fernández, G. & Henson, R. N. How schema and novelty augment memory formation. Trends Neurosci. 35, 211–219 (2012).
Kemp, C. & Tenenbaum, J. B. The discovery of structural form. Proc. Natl. Acad. Sci. USA. 105, 10687–10692 (2008).
Gershman, S. J. & Niv, Y. Learning latent structure: carving nature at its joints. Curr. Opin. Neurobiol. 20, 251–256 (2010).
Sanborn, A. N., Griffiths, T. L. & Navarro, D. J. Rational approximations to rational models: alternative algorithms for category learning. Psychol. Rev. 117, 1144–1167 (2010).
Heald, J. B., Lengyel, M. & Wolpert, D. M. Contextual inference in learning and memory. Trends Cogn. Sci. 27, 43–64 (2023).
Dasgupta, I., Schulz, E. & Gershman, S. J. Where do hypotheses come from? Cogn. Psychol. 96, 1–25 (2017).
Sanborn, A. N. & Chater, N. Bayesian brains without probabilities. Trends Cogn. Sci. 20, 883–893 (2016).
Bramley, N. R., Dayan, P., Griffiths, T. L. & Lagnado, D. A. Formalizing Neurath’s ship: approximate algorithms for online causal learning. Psychol. Rev. 124, 301–338 (2017).
Vul, E., Goodman, N., Griffiths, T. L. & Tenenbaum, J. B. One and done? Optimal decisions from very few samples. Cogn. Sci. 38, 599–637 (2014).
Courville, A. C. & Daw, N. The rat as particle filter. In Advances in Neural Information Processing Systems 20 (eds. Platt, J., Koller, D., Singer, Z., & Roweis S.) 369–376 (2007).
Neurath, O. Empiricism and Sociology (eds Neurath, M. & Cohen, R. S.) Vienna Circle Collection Vol. 1 (D. Reidel Publishing, 1973).
Van Orman Quine, W. Word and Object (MIT Press, 1960).
Tse, D. et al. Schemas and memory consolidation. Science 316, 76–82 (2007).
Tse, D. et al. Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891–895 (2011).
Abbott, J. T. & Thomas, L. Exploring the influence of particle filter parameters on order effects in causal learning. In Proc. 33rd Ann. Conf. Cognitive Science Society (eds. Carlson, L., Hoelscher, C. & Shipley, T. F.) 2950–2955 (Cognitive Science Society, 2011).
Zhou, H., Nagy, D. G. & Wu, C. M. Harmonizing program induction with rate–distortion theory. In Proc. 46th Ann. Conf. Cognitive Science Society (eds Frank, S. L., Toneva, M., Mackey, A. & Hazeltine, E.) 2511–2518 (Cognitive Science Society, 2024).
Flesch, T., Balaguer, J., Dekker, R., Nili, H. & Summerfield, C. Comparing continual task learning in minds and machines. Proc. Natl Acad. Sci. USA 115, E10313–E10322 (2018).
Dekker, R. B., Otto, F. & Summerfield, C. Curriculum learning for human compositional generalization. Proc. Natl Acad. Sci. USA 119, e2205582119 (2022).
Zhao, B., Lucas, C. G. & Bramley, N. R. A model of conceptual bootstrapping in human cognition. Nat. Hum. Behav. 8, 125–136 (2024).
Gong, T., Gerstenberg, T., Mayrhofer, R. & Bramley, N. R. Active causal structure learning in continuous time. Cogn. Psychol. 140, 101542 (2023).
McCloskey, M. & Cohen, N. J. Catastrophic interference in connectionist networks: the sequential learning problem. Psychol. Learning Motiv. 24, 109–165 (1989).
French, R. M. Catastrophic forgetting in connectionist networks. Trends Cogn. Sci. 3, 128–135 (1999).
Hadsell, R., Rao, D., Rusu, A. A. & Pascanu, R. Embracing change: continual learning in deep neural networks. Trends Cogn. Sci. 24, 1028–1040 (2020).
Beukers, A. O. et al. Blocked training facilitates learning of multiple schemas. Commun. Psychol. 2, 28 (2024).
Zhou, Z., Singh, D., Tandoc, M. C. & Schapiro, A. C. Building integrated representations through interleaved learning. J. Exp. Psychol. Gen. 152, 2666–2684 (2023).
Birnbaum, M. S., Kornell, N., Bjork, E. L. & Bjork, R. A. Why interleaving enhances inductive learning: the roles of discrimination and retrieval. Mem. Cogn. 41, 392–402 (2013).
Zulkiply, N. & Burt, J. S. The exemplar interleaving effect in inductive learning: moderation by the difficulty of category discriminations. Mem. Cogn. 41, 16–27 (2013).
Carvalho, P. F. & Goldstone, R. L. Putting category learning in order: category structure and temporal arrangement affect the benefit of interleaved over blocked study. Mem. Cogn. 42, 481–495 (2014).
Chater, N. & Oaksford, M. Programs as causal models: speculations on mental programs and mental representation. Cogn. Sci. 37, 1171–1191 (2013).
Icard, T. F. From programs to causal models. In Proc. 21st Amsterdam Colloquium (eds Cremers, A., van Gessel, T. & Roelofsen, F.) 35–44 (2017).
Preston, A. R. & Eichenbaum, H. Interplay of hippocampus and prefrontal cortex in memory. Curr. Biol. 23, R764–R773 (2013).
Baldi, P. & Itti, L. Of bits and wows: a Bayesian theory of surprise with applications to attention. Neural Netw. 23, 649–666 (2010).
Koch, C., Zika, O., Bruckner, R. & Schuck, N. W. Influence of surprise on reinforcement learning in younger and older adults. PLoS Comput. Biol. 20, e1012331 (2024).
Schmidhuber, J. Formal theory of creativity, fun, and intrinsic motivation (1990–2010). IEEE Trans. Auton. Ment. Dev. 2, 230–247 (2010).
Nosofsky, R. M., Palmeri, T. J. & McKinley, S. C. Rule-plus-exception model of classification learning. Psychol. Rev. 101, 53–79 (1994).
Nosofsky, R. M. & Palmeri, T. J. A rule-plus-exception model for classifying objects in continuous-dimension spaces. Psychon. Bull. Rev. 5, 345–369 (1998).
Piray, P. & Daw, N. D. A model for learning based on the joint estimation of stochasticity and volatility. Nat. Commun. 12, 6587 (2021).
Modirshanechi, A., Brea, J. & Gerstner, W. A taxonomy of surprise definitions. J. Math. Psychol. 110, 102712 (2022).
Franklin, N. T., Norman, K. A., Ranganath, C., Zacks, J. M. & Gershman, S. J. Structured event memory: a neuro-symbolic model of event cognition. Psychol. Rev. 127, 327–361 (2020).
Gershman, S. J., Radulescu, A., Norman, K. A. & Niv, Y. Statistical computations underlying the dynamics of memory updating. PLoS Comput. Biol. 10, e1003939 (2014).
Rouhani, N., Norman, K. A. & Niv, Y. Dissociable effects of surprising rewards on learning and memory. J. Exp. Psychol. Learn. Mem. Cogn. 44, 1430–1443 (2018).
Mattar, M. G. & Daw, N. D. Prioritized memory access explains planning and hippocampal replay. Nat. Neurosci. 21, 1609–1617 (2018).
Sun, W., Advani, M., Spruston, N., Saxe, A. & Fitzgerald, J. E. Organizing memories for generalization in complementary learning systems. Nat. Neurosci. 26, 1438–1448 (2023).
Schaul, T., Quan, J., Antonoglou, I. & Silver, D. Prioritized experience replay. Preprint at arXiv https://doi.org/10.48550/arXiv.1511.05952 (2015).
Mnih, V. et al. Human-level control through deep reinforcement learning. Nature 518, 529–533 (2015).
Aljundi, R. et al. Online continual learning with maximal interfered retrieval. In Advances in Neural Information Processing Systems (eds. Wallach, H. et al.) 32, 11849–11860 (2019).
Botvinick, M. et al. Reinforcement learning, fast and slow. Trends Cogn. Sci. 23, 408–422 (2019).
Gershman, S. J. & Daw, N. D. Reinforcement learning and episodic memory in humans and animals: an integrative framework. Annu. Rev. Psychol. 68, 101–128 (2017).
Shin, H., Lee, J. K., Kim, J., & Kim, J. Continual learning with deep generative replay. In Advances in Neural Information Processing Systems (eds. Guyon, I. et al.) 30, 2990–2999 (2017).
van de Ven, G. M., Siegelmann, H. T. & Tolias, A. S. Brain-inspired replay for continual learning with artificial neural networks. Nat. Commun. 11, 4069 (2020).
Roediger, H. L. & McDermott, K. B. Creating false memories: remembering words not presented in lists. J. Exp. Psychol. Learn. Mem. Cogn. 21, 803–814 (1995).
Carmichael, L., Hogan, H. P. & Walter, A. A. An experimental study of the effect of language on the reproduction of visually perceived form. J. Exp. Psychol. 15, 73–86 (1932).
Loftus, E. F. Planting misinformation in the human mind: a 30-year investigation of the malleability of memory. Learn. Mem. 12, 361–366 (2005).
Roese, N. J. & Vohs, K. D. Hindsight bias. Persp. Psychol. Sci. 7, 411–426 (2012).
Carpenter, A. C. & Schacter, D. L. Flexible retrieval: when true inferences produce false memories. J. Exp. Psychol. Learn. Mem. Cogn. 43, 335–349 (2017).
Baldassano, C. et al. Discovering event structure in continuous narrative perception and memory. Neuron 95, 709–721.e5 (2017).
Davachi, L. & DuBrow, S. How the hippocampus preserves order: the role of prediction and context. Trends Cogn. Sci. 19, 92–99 (2015).
Zheng, J. et al. Neurons detect cognitive boundaries to structure episodic memories in humans. Nat. Neurosci. 25, 358–368 (2022).
Zacks, J. M., Speer, N. K., Swallow, K. M., Braver, T. S. & Reynolds, J. R. Event perception: a mind–brain perspective. Psychol. Bull. 133, 273–293 (2007).
Butz, M. V., Achimova, A., Bilkey, D. & Knott, A. Event-predictive cognition: a root for conceptual human thought. Top. Cogn. Sci. 13, 10–24 (2021).
Flesch, T., Nagy, D. G., Saxe, A. & Summerfield, C. Modelling continual learning in humans with Hebbian context gating and exponentially decaying task signals. PLoS Comput. Biol. 19, e1010808 (2023).
Zhou, H., Bamler, R., Wu, C. M. & Tejero-Cantero, Á. Predictive, scalable and interpretable knowledge tracing on structured domains. In Intl Conf. Learning Representations 2024 https://openreview.net/forum?id=NgaLU2fP5D (2024).
Goldwater, M. B. & Schalk, L. Relational categories as a bridge between cognitive and educational research. Psychol. Bull. 142, 729–757 (2016).
Denervaud, S., Christensen, A. P., Kenett, Y. N. & Beaty, R. E. Education shapes the structure of semantic memory and impacts creative thinking. npj Sci. Learn. 6, 35 (2021).
Rule, J. S., Tenenbaum, J. B. & Piantadosi, S. T. The child as hacker. Trends Cogn. Sci. 24, 900–915 (2020).
Lake, B. M., Salakhutdinov, R. & Tenenbaum, J. B. Human-level concept learning through probabilistic program induction. Science 350, 1332–1338 (2015).
Ellis, K. et al. Dreamcoder: bootstrapping inductive program synthesis with wake–sleep library learning. Proc. 42nd ACM SIGPLAN Int. Conf. Programming Language and Implementation (PLDI) 835–850 (ACM, 2021).
Ullman, T. D., Goodman, N. D. & Tenenbaum, J. B. Theory learning as stochastic search in the language of thought. Cogn. Dev. 27, 455–480 (2012).
Rouhani, N., Niv, Y., Frank, M. J. & Schwabe, L. Multiple routes to enhanced memory for emotionally relevant events. Trends Cogn. Sci. 27, 867–882 (2023).
Kalbe, F. & Schwabe, L. Beyond arousal: prediction error related to aversive events promotes episodic memory formation. J. Exp. Psychol. Learn. Mem. Cogn. 46, 234–246 (2020).
Laney, C. & Loftus, E. F. Emotional content of true and false memories. Memory 16, 500–516 (2008).
Christianson, S.-Å. Emotional stress and eyewitness memory: a critical review. Psychol. Bull. 112, 284–309 (1992).
Hafner, D., Pasukonis, J., Ba, J. & Lillicrap, T. Mastering diverse control tasks through world models. Nature 640, 647–653 (2025).
Wayne, G. et al. Unsupervised predictive memory in a goal-directed agent. Preprint at arXiv https://doi.org/10.48550/arXiv.1803.10760 (2018).
Emanuel, A. & Eldar, E. Emotions as computations. Neurosci. Biobehav. Rev. 144, 104977 (2023).
Gagne, C., Dayan, P. & Bishop, S. J. When planning to survive goes wrong: predicting the future and replaying the past in anxiety and PTSD. Curr. Opin. Behav. Sci. 24, 89–95 (2018).
van der Kolk, B. A. & Fisler, R. Dissociation and the fragmentary nature of traumatic memories: overview and exploratory study. J. Traum. Stress 8, 505–525 (1995).
Ehlers, A. & Clark, D. M. A cognitive model of posttraumatic stress disorder. Behav. Res. Ther. 38, 319–345 (2000).
Bramley, N. R., Zhao, B., Quillien, T. & Lucas, C. G. Local search and the evolution of world models. Top. Cogn. Sci. https://doi.org/10.1111/tops.12703 (2023).
Sanborn, A. N., Griffiths, T. L. & Shiffrin, R. M. Uncovering mental representations with Markov chain Monte Carlo. Cogn. Psychol. 60, 63–106 (2010).
Sims, C. R., Jacobs, R. A. & Knill, D. C. An ideal observer analysis of visual working memory. Psychol. Rev. 119, 807–830 (2012).
Gershman, S. J. in The Oxford Handbook of Human Memory (eds Kahana, M. & Wagner, A.) 1505–1520 (Oxford Univ. Press, 2024).
Baddeley, A. D. Language habits, acoustic confusability, and immediate memory for redundant letter sequences. Psychon. Sci. 22, 120–121 (1971).
Gobet, F. & Simon, H. A. Recall of rapidly presented random chess positions is a function of skill. Psychon. Bull. Rev. 3, 159–163 (1996).
Anderson, J. R. & Milson, R. Human memory: an adaptive perspective. Psychol. Rev. 96, 703–719 (1989).
Anderson, J. R. & Schooler, L. J. Reflections of the environment in memory. Psychol. Sci. 2, 396–408 (1991).
Roediger, H. L. 3rd & DeSoto, K. A. Cognitive psychology. Forgetting the presidents. Science 346, 1106–1109 (2014).
Hanawalt, N. G. & Demarest, I. H. The effect of verbal suggestion in the recall period upon the reproduction of visually perceived forms. J. Exp. Psychol. 25, 159–174 (1939).
Toglia, M. P., Neuschatz, J. S. & Goodwin, K. A. Recall accuracy and illusory memories: when more is less. Memory 7, 233–256 (1999).
Seamon, J. G. et al. Are false memories more difficult to forget than accurate memories? The effect of retention interval on recall and recognition. Mem. Cogn. 30, 1054–1064 (2002).
Sims, C., Ma, Z., Allred, S. R., Lerch, R. & Flombaum, J. I. Exploring the cost function in color perception and memory: an information-theoretic model of categorical effects in color matching. In Proc. 38th Ann. Conf. Cognitive Science Society (eds. Papafragou, A., et al.) 2273–2278 (Cognitive Science Society, 2016).
Bates, C. J., Lerch, R. A., Sims, C. R. & Jacobs, R. A. Adaptive allocation of human visual working memory capacity during statistical and categorical learning. J. Vis. 19, 11 (2019).
Yoo, A. H., Klyszejko, Z., Curtis, C. E. & Ma, W. J. Strategic allocation of working memory resource. Sci. Rep. 8, 16162 (2018).
Alemi, A. A. Variational predictive information bottleneck. iProc. Machine Learning Res. 118, 1–6 (2020).
Bialek, W., Nemenman, I. & Tishby, N. Predictability, complexity, and learning. Neural Comput. 13, 2409–2463 (2001).
Gelman, A. et al. Bayesian Data Analysis (Chapman and Hall/CRC, 2013).
Grunwald, P. D. The Minimum Description Length Principle (MIT Press, 2007).
Tenenbaum, J. B., Kemp, C., Griffiths, T. L. & Goodman, N. D. How to grow a mind: statistics, structure, and abstraction. Science 331, 1279–1285 (2011).
Fränken, J.-P., Theodoropoulos, N. C. & Bramley, N. R. Algorithms of adaptation in inductive inference. Cogn. Psychol. 137, 101506 (2022).
Rubino, V., Hamidi, M., Dayan, P. & Wu, C. M. Compositionality under time pressure. In Proc. 45th Ann. Conf. Cognitive Science Society (eds Goldwater, M., Anggoro, F., Hayes, B. & Ong, D.) (Cognitive Science Society, 2023).
Orbán, G., Fiser, J., Aslin, R. N. & Lengyel, M. Bayesian learning of visual chunks by human observers. Proc. Natl Acad. Sci. USA 105, 2745–2750 (2008).
Austerweil, J. L., Sanborn, S. & Griffiths, T. L. Learning how to generalize. Cogn. Sci. 43, e12777 (2019).
Piantadosi, S. T., Tenenbaum, J. B. & Goodman, N. D. Bootstrapping in a language of thought: a formal model of numerical concept learning. Cognition 123, 199–217 (2012).
Shin, Y. S. & DuBrow, S. Structuring memory through inference-based event segmentation. Top. Cogn. Sci. 13, 106–127 (2021).
Choi, Y., El-Khamy, M. & Lee, J. Variable rate deep image compression with a conditional autoencoder. In 2019 IEEE/CVF Int. Conf. Computer Vision (ICCV) (IEEE, 2019).
Yang, Y., Bamler, R. & Mandt, S. Variational Bayesian quantization. In Proc. 37th Intl Conf. Machine Learning (ICML 2020) 119, 10670–10680 (2020).
Bae, J. et al. Multi-rate VAE: train once, get the full rate-distortion curve. In Intl Conf. Learning Representations 2023 https://openreview.net/forum?id=OJ8aSjCaMNK (2023).
Gregor, K., Besse, F., Rezende, D. J., Danihelka, I. & Wierstra, D. Towards conceptual compression. In Advances in Neural Information Processing Systems (eds. Lee, D. et al.) 29, 3549–3557 (2016).
Maaløe, L., Fraccaro, M., Liévin, V. & Winther, O. BIVA: a very deep hierarchy of latent variables for generative modeling. In Advances in Neural Information Processing Systems (eds. Wallach, H. et al.) 32, 6551–6562 (2019).
Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. In Intl Conf. Learning Representations 2018 https://openreview.net/forum?id=Hk99zCeAb (2018).
Child, R. Very deep VAEs generalize autoregressive models and can outperform them on images. In Intl Conf. Learning Representations 2021 https://openreview.net/forum?id=RLRXCV6DbEJ (2021).
Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb. Cortex 1, 1–47 (1991).
Riesenhuber, M. & Poggio, T. Hierarchical models of object recognition in cortex. Nat. Neurosci. 2, 1019–1025 (1999).
Freeman, J. & Simoncelli, E. P. Metamers of the ventral stream. Nat. Neurosci. 14, 1195–1201 (2011).
Teyler, T. J. & Rudy, J. W. The hippocampal indexing theory and episodic memory: updating the index. Hippocampus 17, 1158–1169 (2007).
Bányai, M., Nagy, D. G. & Orbán, G. Hierarchical semantic compression predicts texture selectivity in early vision. In Proc. 2019 Conf. Cognitive Computational Neuroscience 743–746 (2019).
Brady, T. F., Robinson, M. M. & Williams, J. R. Noisy and hierarchical visual memory across timescales. Nat. Rev. Psychol. 3, 147–163 (2024).
McDermott, J. H., Schemitsch, M. & Simoncelli, E. P. Summary statistics in auditory perception. Nat. Neurosci. 16, 493–498 (2013).
Karras, T., Laine, S. & Aila, T. A style-based generator architecture for generative adversarial networks. In Proc. IEEE/CVF Conf. Computer Vision and Pattern Recognition 4401–4410 (2019).
Acknowledgements
The authors thank N. R. Bramley for insightful comments and suggestions, which helped to improve this manuscript, and P. Dayan for valuable discussions and extensive comments on earlier drafts. Additionally, the authors thank C. Frater, R. Uchiyama and M. Banyai for helpful feedback on the manuscript and B. Meszena for help with figures. This work is supported by the Humboldt Foundation, the German Federal Ministry of Education and Research (BMBF), by the Tübingen AI Center (FKZ 01IS18039A) funded by the Deutsche Forschungsgemeinschaft (German Research Foundation) under Germany’s Excellence Strategy (EXC2064/1–390727645), and by the Deutsche Forschungsgemeinschaft under Germany’s Excellence Strategy (EXC 2117 422037984). G.O. was supported by a grant from the National Research, Development and Innovation Office (grant ADVANCED 150361) and by the European Union project RRF-2.3.1-21-2022-00004 within the framework of the Artificial Intelligence National Laboratory in Hungary.
Author information
Authors and Affiliations
Contributions
D.G.N. and G.O. researched data for the article. All authors contributed substantially to discussion of the content. D.G.N. wrote the article. All authors reviewed and/or edited the manuscript before submission.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Psychology thanks Neil R. Bramley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Nagy, D.G., Orbán, G. & Wu, C.M. Adaptive compression as a unifying framework for episodic and semantic memory. Nat Rev Psychol 4, 484–498 (2025). https://doi.org/10.1038/s44159-025-00458-6
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44159-025-00458-6
This article is cited by
-
Episodic memory facilitates flexible decision-making via access to detailed events
Nature Human Behaviour (2026)


