Table 3 Predictive power of linguistic models in the current study.

From: Head versus heart: social media reveals differential language of loneliness from depression

Features

Loneliness

Depression

r

MAE

r

MAE

Demographics

Age + gender

0.133

1.90

0.253

4.63

Language

LIWC

0.190

1.87

0.283

4.58

N-grams

0.155

1.89

0.209

4.71

Topics

0.169

1.88

0.274

4.56

BERT

0.201

1.87

0.312

4.54

Demographics + Language

Age + gender + BERT

0.204

1.87

0.321

4.52

Age + gender + LIWC + N-gram + topics + BERT

0.204

1.87

0.312

4.55

  1. r = Pearson’s correlation coefficient. N-grams = words and phrases (1–3-grams). Topics = clusters of co-occurring words extracted using the Latent Dirichlet Allocation method.
  2. MAE Mean Absolute Error, LIWC Linguistic Inquiry and Word Count, English 2015 category. BERT Bidirectional Encoder Representations from Transformers.