Table 2 FedHNN model performance

From: Identifying autism spectrum disorder from multi-modal data with privacy-preserving

 

AUC

Accuracy

Precision

Recall

Specificity

F1_Score

All HNN

0.7776

0.7794

0.7974

0.7985

0.7569

0.7961

FedHNN

0.7110

0.7352

0.7319

0.8204

0.6028

0.7598

Single NYU

0.6900

0.7125

0.7689

0.7272

0.6000

0.7696

Single UCLA

0.6880

0.6889

0.6499

0.7917

0.5844

0.7077

Single UM

0.7037

0.7194

0.7272

0.8257

0.5818

0.7664

Single USM

0.6790

0.7010

0.6686

0.6000

0.7583

0.5733

Fed GCN

0.6892

0.7012

0.6881

0.7846

0.5938

0.7192

Fed GAT

0.7033

0.7276

0.7523

0.7468

0.6601

0.7332

Fed GraphSAGE

0.6487

0.6417

0.6605

0.6841

0.6135

0.6536

Fed CNN

0.6893

0.7049

0.7232

0.7244

0.6547

0.7101

  1. Shows the performance of our proposed FedHNN model on four site data. For each strategy and deep learning model, we report the AUC results, accuracy, precision, recall, specificity, and F1 scores for all tasks.