Table 2 FedHNN model performance
From: Identifying autism spectrum disorder from multi-modal data with privacy-preserving
AUC | Accuracy | Precision | Recall | Specificity | F1_Score | |
|---|---|---|---|---|---|---|
All HNN | 0.7776 | 0.7794 | 0.7974 | 0.7985 | 0.7569 | 0.7961 |
FedHNN | 0.7110 | 0.7352 | 0.7319 | 0.8204 | 0.6028 | 0.7598 |
Single NYU | 0.6900 | 0.7125 | 0.7689 | 0.7272 | 0.6000 | 0.7696 |
Single UCLA | 0.6880 | 0.6889 | 0.6499 | 0.7917 | 0.5844 | 0.7077 |
Single UM | 0.7037 | 0.7194 | 0.7272 | 0.8257 | 0.5818 | 0.7664 |
Single USM | 0.6790 | 0.7010 | 0.6686 | 0.6000 | 0.7583 | 0.5733 |
Fed GCN | 0.6892 | 0.7012 | 0.6881 | 0.7846 | 0.5938 | 0.7192 |
Fed GAT | 0.7033 | 0.7276 | 0.7523 | 0.7468 | 0.6601 | 0.7332 |
Fed GraphSAGE | 0.6487 | 0.6417 | 0.6605 | 0.6841 | 0.6135 | 0.6536 |
Fed CNN | 0.6893 | 0.7049 | 0.7232 | 0.7244 | 0.6547 | 0.7101 |