Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification

Abstract

Fabricating nanofiltration membranes with high water permeance and selectivity is crucial to efficient water purification. However, achieving such a goal with a simple and cost-effective approach that is compatible with existing membrane manufacturing infrastructure remains a substantial technical challenge. Here we show a strategy of nanoemulsion-regulated interfacial polymerization (NERIP) based on nanovehicle-assisted monomer shuttling for fabricating highly permeable and selective nanofiltration membranes. In NERIP, the nanovehicles, which are surfactant-stabilized oil droplets (in water) enriched with piperazine (PIP), enter and merge into the hexane phase to initiate the polymerization between PIP and trimesoyl chloride. This nanovehicle-assisted monomer shuttling results in the formation of polyamide ‘bubbles’ that later collapse into nanocraters. The nanocrater structure substantially increases the surface area and void fraction of the polyamide layer. The PIP shuttling also accelerates the polymerization reaction, enabling the formation of a thin and highly cross-linked polyamide layer with a more uniform pore size distribution. These structural superiorities yield an unprecedentedly high performance with a water permeance of 36.8 ± 1.9 l m−2 h−1 bar−1 and a Na2SO4 rejection of 99.6 ± 0.1%. NERIP creates a new dimension to fabricate highly permeable and selective nanofiltration membranes for desalination and water purification.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PA NF membrane fabrication based on NERIP.
Fig. 2: Formation and property of nanovehicles prepared by PIP, oil and SDS.
Fig. 3: Nanocrater-like structure on PA layers resulting from nanovehicle-assisted monomer shuttling.
Fig. 4: Characterization of CIP and NERIP membranes.
Fig. 5: Water purification performance of PA NF membranes.

Similar content being viewed by others

Data availability

All relevant data that support the findings of this study are presented in the Article and Supplementary Information. Source data are provided with this paper. The source data can also be accessed through the figshare repository and are freely available for download.

Code availability

The codes for the MD simulation performed are provided with this paper. The initial configuration for the mixture box of MD simulation was built from the PACKMOL package. GROMACS was used to input files of GROMACS package of MD simulation including EM (energy minimization), NPT (isothermal–isobaric ensemble) and NVT (canonical ensemble). Data analysis was conducted by using the processing code for number density along the z axis.

References

  1. Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  3. Ritt, C. L. et al. Machine learning reveals key ion selectivity mechanisms in polymeric membranes with subnanometer pores. Sci. Adv. 8, eabl5771 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petersen, R. J. Composite reverse osmosis and nanofiltration membranes. J. Membr. Sci. 83, 81–150 (1993).

    Article  CAS  Google Scholar 

  5. Hilal, N., Al-Zoubi, H., Darwish, N. A., Mohamma, A. W. & Abu Arabi, M. A comprehensive review of nanofiltration membranes: treatment, pretreatment, modelling, and atomic force microscopy. Desalination 170, 281–308 (2004).

    Article  CAS  Google Scholar 

  6. Logan, B. E. & Elimelech, M. Membrane-based processes for sustainable power generation using water. Nature 488, 313–319 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Culp, T. E. et al. Nanoscale control of internal inhomogeneity enhances water transport in desalination membranes. Science 371, 72–75 (2021).

    Article  CAS  PubMed  Google Scholar 

  8. Guo, H. et al. Tweak in puzzle: tailoring membrane chemistry and structure toward targeted removal of organic micropollutants for water reuse. Environ. Sci. Technol. Lett. 9, 247–257 (2022).

    Article  CAS  Google Scholar 

  9. Yang, Z., Long, L., Wu, C. & Tang, C. Y. High permeance or high selectivity? Optimization of system-scale nanofiltration performance constrained by the upper bound. ACS EST Eng. (2021).

  10. Yang, Z., Guo, H. & Tang, C. Y. The upper bound of thin-film composite (TFC) polyamide membranes for desalination. J. Membr. Sci. 590, 117297 (2019).

    Article  Google Scholar 

  11. Zhao, Y. et al. Differentiating solutes with precise nanofiltration for next generation environmental separations: a review. Environ. Sci. Technol. (2021).

  12. Saha, N. K. & Joshi, S. V. Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type. J. Membr. Sci. 342, 60–69 (2009).

    Article  CAS  Google Scholar 

  13. Chowdhury, M. R., Steffes, J., Huey, B. D. & McCutcheon, J. R. 3D printed polyamide membranes for desalination. Science 361, 682–686 (2018).

    Article  CAS  PubMed  Google Scholar 

  14. Jiang, Z., Karan, S. & Livingston, A. G. Water transport through ultrathin polyamide nanofilms used for reverse osmosis. Adv. Mater. 30, 1705973 (2018).

    Article  Google Scholar 

  15. Sarkar, P., Modak, S. & Karan, S. Ultraselective and highly permeable polyamide nanofilms for ionic and molecular nanofiltration. Adv. Funct. Mater. 31, 2007054 (2021).

    Article  CAS  Google Scholar 

  16. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  PubMed  Google Scholar 

  17. Werber, J. R., Deshmukh, A. & Elimelech, M. The critical need for increased selectivity, not increased water permeability, for desalination membranes. Environ. Sci. Technol. Lett. 3, 112–120 (2016).

    Article  CAS  Google Scholar 

  18. Epsztein, R., DuChanois, R. M., Ritt, C. L., Noy, A. & Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 15, 426–436 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Tan, Z., Chen, S., Peng, X., Zhang, L. & Gao, C. Polyamide membranes with nanoscale Turing structures for water purification. Science 360, 518–521 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Z. et al. Nanoparticle-templated nanofiltration membranes for ultrahigh performance desalination. Nat. Commun. 9, 2004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Liang, Y. et al. Polyamide nanofiltration membrane with highly uniform sub-nanometre pores for sub-1 Å precision separation. Nat. Commun. 11, 2015 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dai, R. et al. Hydrophilic selective nanochannels created by metal organic frameworks in nanofiltration membranes enhance rejection of hydrophobic endocrine-disrupting compounds. Environ. Sci. Technol. 53, 13776–13783 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Dai, R., Wang, X., Tang, C. Y. & Wang, Z. Dually charged MOF-based thin-film nanocomposite nanofiltration membrane for enhanced removal of charged pharmaceutically active compounds. Environ. Sci. Technol. 54, 7619–7628 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Yuan, B., Zhao, S., Hu, P., Cui, J. & Niu, Q. J. Asymmetric polyamide nanofilms with highly ordered nanovoids for water purification. Nat. Commun. 11, 6102 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qin, D., Liu, Z., Bai, H., Sun, D. D. & Song, X. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion. Sci. Rep. 6, 24365 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Artiga-Artigas, M., Guerra-Rosas, M. I., Morales-Castro, J., Salvia-Trujillo, L. & Martín-Belloso, O. Influence of essential oils and pectin on nanoemulsion formulation: a ternary phase experimental approach. Food Hydrocoll. 81, 209–219 (2018).

    Article  CAS  Google Scholar 

  28. Kaparthi, R. & Chari, K. S. Solubilities of vegetable oils in aqueous ethanol and ethanol-hexane mixtures. J. Am. Oil Chem. Soc. 36, 77–80 (1959).

    Article  CAS  Google Scholar 

  29. Friedrich, J. P. & List, G. R. Characterization of soybean oil extracted by supercritical carbon dioxide and hexane. J. Agric. Food Chem. 30, 192–193 (1982).

    Article  CAS  Google Scholar 

  30. Lu, Y. et al. Two-dimensional fractal nanocrystals templating for substantial performance enhancement of polyamide nanofiltration membrane. Proc. Natl Acad. Sci. USA 118, e2019891118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ma, X.-H. et al. Nanofoaming of polyamide desalination membranes to tune permeability and selectivity. Environ. Sci. Technol. Lett. 5, 123–130 (2018).

    Article  CAS  Google Scholar 

  32. Song, X., Gan, B., Yang, Z., Tang, C. Y. & Gao, C. Confined nanobubbles shape the surface roughness structures of thin film composite polyamide desalination membranes. J. Membr. Sci. 582, 342–349 (2019).

    Article  CAS  Google Scholar 

  33. Dai, R., Han, H., Zhu, Y., Wang, X. & Wang, Z. Tuning the primary selective nanochannels of MOF thin-film nanocomposite nanofiltration membranes for efficient removal of hydrophobic endocrine disrupting compounds. Front. Environ. Sci. Eng. 16, 40 (2021).

    Article  Google Scholar 

  34. Lin, L., Lopez, R., Ramon, G. Z. & Coronell, O. Investigating the void structure of the polyamide active layers of thin-film composite membranes. J. Membr. Sci. 497, 365–376 (2016).

    Article  CAS  Google Scholar 

  35. Wong, M. C. Y., Lin, L., Coronell, O., Hoek, E. M. V. & Ramon, G. Z. Impact of liquid-filled voids within the active layer on transport through thin-film composite membranes. J. Membr. Sci. 500, 124–135 (2016).

    Article  CAS  Google Scholar 

  36. He, Y., Tang, Y. P. & Chung, T. S. Concurrent removal of selenium and arsenic from water using polyhedral oligomeric silsesquioxane (POSS)–polyamide thin-film nanocomposite nanofiltration membranes. Ind. Eng. Chem. Res. 55, 12929–12938 (2016).

    Article  CAS  Google Scholar 

  37. Gan, B. et al. Ultrathin polyamide nanofilm with an asymmetrical structure: a novel strategy to boost the permeance of reverse osmosis membranes. J. Membr. Sci. 612, 118402 (2020).

    Article  CAS  Google Scholar 

  38. Freger, V. & Ramon, G. Z. Polyamide desalination membranes: formation, structure, and properties. Prog. Polym. Sci. 122, 101451 (2021).

    Article  CAS  Google Scholar 

  39. Wen, Y. et al. Metal-organic framework enables ultraselective polyamide membrane for desalination and water reuse. Sci. Adv. 8, eabm4149 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Peng, L. E. et al. A critical review on porous substrates of TFC polyamide membranes: mechanisms, membrane performances, and future perspectives. J. Membr. Sci. 641, 119871 (2022).

    Article  CAS  Google Scholar 

  41. Jiang, Z., Karan, S. & Livingston, A. G. Membrane fouling: does microscale roughness matter? Ind. Eng. Chem. Res. 59, 5424–5431 (2020).

    Article  CAS  Google Scholar 

  42. Shang, C., Pranantyo, D. & Zhang, S. Understanding the roughness–fouling relationship in reverse osmosis: mechanism and implications. Environ. Sci. Technol. 54, 5288–5296 (2020).

    Article  CAS  PubMed  Google Scholar 

  43. Guo, W., Ngo, H.-H. & Li, J. A mini-review on membrane fouling. Bioresour. Technol. 122, 27–34 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. Luo, J. & Wan, Y. Effects of pH and salt on nanofiltration—a critical review. J. Membr. Sci. 438, 18–28 (2013).

    Article  CAS  Google Scholar 

  45. Szoke, S., Patzay, G. & Weiser, L. Characteristics of thin-film nanofiltration membranes at various pH-values. Desalination 151, 123–129 (2003).

    Article  CAS  Google Scholar 

  46. Epsztein, R., Shaulsky, E., Dizge, N., Warsinger, D. M. & Elimelech, M. Role of ionic charge density in Donnan exclusion of monovalent anions by nanofiltration. Environ. Sci. Technol. 52, 4108–4116 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Boo, C. et al. High performance nanofiltration membrane for effective removal of perfluoroalkyl substances at high water recovery. Environ. Sci. Technol. 52, 7279–7288 (2018).

    Article  CAS  PubMed  Google Scholar 

  48. Ritt, C. L. et al. The open membrane database: synthesis–structure–performance relationships of reverse osmosis membranes. J. Membr. Sci. 641, 119927 (2022).

    Article  CAS  Google Scholar 

  49. Dai, R. et al. Fouling is the beginning: upcycling biopolymer-fouled substrates for fabricating high-permeance thin-film composite polyamide membranes. Green Chem. 23, 1013–1025 (2021).

    Article  CAS  Google Scholar 

  50. Martínez, L., Andrade, R., Birgin, E. G. & Martínez, J. M. PACKMOL: a package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 30, 2157–2164 (2009).

    Article  PubMed  Google Scholar 

  51. Schmid, N. et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40, 843–856 (2011).

    Article  CAS  PubMed  Google Scholar 

  52. Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E. in Solving Software Challenges for Exascale (eds Markidis, S. & Laure, E.) 3–27 (Springer, 2015).

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (51925806 (Z.W.), 51838009 (Z.W.), 52200108 (R.D.)), the US National Science Foundation (2017998 (S.L.)) and the Shanghai Sailing Program (22YF1450700 (R.D.)) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

R.D., S.L., C.Y.T. and Z.W. conceived the idea and designed the research. R.D., H.Z., T.W., Z.Q. and L.L. performed the experiment including nanoemulsion preparation, simulation, membrane fabrication, characterization and performance test. S.L. and C.Y.T. provided constructive suggestions for the results and discussion. R.D., S.L., C.Y.T. and Z.W. contributed to writing the manuscript. All co-authors discussed the results.

Corresponding authors

Correspondence to Shihong Lin, Chuyang Y. Tang or Zhiwei Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–21, Supplementary Tables 1–5, Supplementary Discussion and Supplementary References.

Supplementary Data 1

Source Data for Supplementary Fig. 5

Supplementary Data 2

Source Data for Supplementary Fig. 8

Supplementary Data 3

Source Data for Supplementary Fig. 12

Supplementary Data 4

Source Data for Supplementary Fig. 13

Supplementary Data 5

Source Data for Supplementary Fig. 14

Supplementary Data 6

Source Data for Supplementary Fig. 15

Supplementary Data 7

Source Data for Supplementary Fig. 16

Supplementary Data 8

Source Data for Supplementary Fig. 18

Supplementary Data 9

Source Data for Supplementary Fig. 19

Supplementary Data 10

Source Data for Supplementary Fig. 20

Supplementary Data 11

Source Data for Supplementary Fig. 21

Supplementary Code 1

Codes for molecular dynamic simulation

Source data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, R., Zhou, H., Wang, T. et al. Nanovehicle-assisted monomer shuttling enables highly permeable and selective nanofiltration membranes for water purification. Nat Water 1, 281–290 (2023). https://doi.org/10.1038/s44221-022-00010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-022-00010-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing