Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

The SWOT mission will reshape our understanding of the global terrestrial water cycle

By simultaneously integrating the measurements from the Surface Water and Ocean Topography (SWOT) satellite and those from other Earth-observing satellites into hydrological modelling systems, we could transform our understanding of the global terrestrial water cycle. This opportunity comes with big challenges for the scientific community.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Future satellite-data integration into global hydrological models.

References

  1. Biancamaria, S., Lettenmaier, D. P. & Pavelsky, T. M. Surv. Geophys. 37, 307–337 (2016).

    Article  Google Scholar 

  2. Durand, M. et al. Water Resour. Res. 59, e2021WR031614 (2023).

    Article  Google Scholar 

  3. Nie, W. et al. Proc. Natl. Acad. Sci. 121, e2403707121 (2024).

    Article  PubMed  CAS  Google Scholar 

  4. Alfieri, L. et al. Hydrol. Earth Syst. Sci. 17, 1161–1175 (2013).

    Article  Google Scholar 

  5. Arsenault, K. R. et al. Bull. Am. Meteorol. Soc. 101, E1007–E1025 (2020).

    Article  Google Scholar 

  6. Paiva, R. C. D. et al. Hydrol. Earth Syst. Sci. 17, 2929–2946 (2013).

    Article  Google Scholar 

  7. Revel, R., Ikeshima, D., Yamazaki, D. & Kanae, S. Water 11, 829 (2019).

    Article  Google Scholar 

  8. International Altimetry Team. Adv. Space Res. 68, 319–363 (2021).

    Article  Google Scholar 

  9. SWOT Science Data Products User Handbook www.earthdata.nasa.gov/s3fs-public/2024-06/D-109532_SWOT_UserHandbook_20240502.pdf (NASA, 2024).

  10. Altenau, E. H. et al. Water Resour. Res. 57, e2021WR030054 (2021).

    Article  Google Scholar 

  11. Smith, B. et al. in IEEE Int. Geosci. Remote Sens. Symp. https://doi.org/10.1109/IGARSS46834.2022.9883411 (IEEE, 2022).

  12. De Almeida, G. A. M., Bates, P., Freer, J. E. & Souvignet, M. Water Resour. Res. 48, W05528 (2012).

    Article  Google Scholar 

  13. Getirana, A., Kumar, S., Girotto, M. & Rodell, M. Geophys. Res. Lett. 44, 10359–10368 (2017).

    Article  Google Scholar 

  14. Rocher-Ros, G. et al. Nature 621, 530–535 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Piecuch, C. G. et al. Proc. Natl. Acad. Sci. 115, 7729–7734 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Augusto Getirana.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks George Allen for their contribution to the peer review of this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Getirana, A., Kumar, S., Bates, P. et al. The SWOT mission will reshape our understanding of the global terrestrial water cycle. Nat Water 2, 1139–1142 (2024). https://doi.org/10.1038/s44221-024-00352-0

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-024-00352-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing