Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Aligning floating photovoltaic solar energy expansion with waterbird conservation

Abstract

Floating photovoltaic solar energy presents an opportunity to mitigate climate change and spare land for other uses, including conservation. However, understanding of the effects of floating photovoltaics (FPVs) on aquatic ecosystems is currently limited. In fact, so far, only a few studies have empirically tested how wildlife responds to FPV deployment and operation. Here we present five key considerations spanning both the direct and indirect effects that FPVs can have on waterbirds and the possible ways waterbirds can interact with and directly affect FPV sites. We examine several aspects of FPVs and their deployment and operation, providing insight into FPV–waterbird dynamics, potential mitigation strategies, and viable concessions for conservation as water surfaces become a more widespread recipient environment for renewable energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FPVs have three distinct elements.
Fig. 2: Potential risks and benefits to waterbirds when interacting with components within each element of a FPV structure.
Fig. 3: Waterbirds can potentially directly impact FPV structures.
Fig. 4: Waterbirds can interact with FPVs.
Fig. 5: FPVs can introduce chemicals, microplastics and macrodebris into the environment.

Similar content being viewed by others

References

  1. Kruitwagen, L. et al. A global inventory of photovoltaic solar energy generating units. Nature 598, 604–610 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Nobre, R. et al. A global study of freshwater coverage by floating photovoltaics. Sol. Energy 267, 112244 (2024).

    Article  Google Scholar 

  3. Woolway, R. I., Zhao, G., Rocha, S. M. G., Thackeray, S. J. & Armstrong, A. Decarbonization potential of floating solar photovoltaics on lakes worldwide. Nat. Water 2, 566–576 (2024).

    Article  CAS  Google Scholar 

  4. Solfrini, V. et al. ‘Canalvoltaico’ in Emilia-Romagna, Italy: assessing technical, economic and environmental feasibility of suspended photovoltaic panels over water canals. Electronics 12, 4879 (2023).

    Article  Google Scholar 

  5. Koondhar, M. A., Albasha, L., Mahariq, I., Graba, B. B. & Touti, E. Reviewing floating photovoltaic (FPV) technology for solar energy generation. Energy Strateg. Rev. 54, 101449 (2024).

    Article  Google Scholar 

  6. Huang, G., Tang, Y., Chen, X., Chen, M. & Jiang, Y. A comprehensive review of floating solar plants and potentials for offshore applications. J. Mar. Sci. Eng. 11, 2064 (2023).

    Article  Google Scholar 

  7. US vineyard uses space saving floatovoltaics. Renew. Energy Focus 9, 64–65 (2008).

  8. He, X., Khan, S., Ozturk, I. & Murshed, M. The role of renewable energy investment in tackling climate change concerns: environmental policies for achieving SDG-13. Sustain. Dev. 31, 1888–1901 (2023).

    Article  CAS  Google Scholar 

  9. Carlsen, L. & Bruggemann, R. The 17 United Nations’ sustainable development goals: a status by 2020. Int. J. Sustain. Dev. World Ecol. 29, 219–229 (2022).

    Article  Google Scholar 

  10. Almeida, R. M. et al. Floating solar power: evaluate trade-offs. Nat. Lond. 606, 246–249 (2022).

    Article  CAS  Google Scholar 

  11. Exley, G. et al. Scientific and stakeholder evidence-based assessment: ecosystem response to floating solar photovoltaics and implications for sustainability. Renew. Sustain. Energy Rev. 152, 111639 (2021).

    Article  CAS  Google Scholar 

  12. Katzner, T. E. et al. Wind energy: an ecological challenge. Science 366, 1206–1207 (2019).

    Article  PubMed  Google Scholar 

  13. Benjamins, S. et al. Potential environmental impacts of floating solar photovoltaic systems. Renew. Sustain. Energy Rev. 199, 114463 (2024).

    Article  Google Scholar 

  14. Exley, G., Armstrong, A., Page, T. & Jones, I. D. Floating photovoltaics could mitigate climate change impacts on water body temperature and stratification. Sol. Energy 219, 24–33 (2021).

    Article  Google Scholar 

  15. Hernandez, R. R., Jordaan, S. M., Kaldunski, B. & Kumar, N. Aligning climate change and sustainable development goals with an innovation systems roadmap for renewable power. Front. Sustain. https://doi.org/10.3389/frsus.2020.583090 (2020).

    Article  Google Scholar 

  16. Moore-O’Leary, K. A. et al. Sustainability of utility-scale solar energy—critical ecological concepts. Front. Ecol. Environ. 15, 385–394 (2017).

    Article  Google Scholar 

  17. Li, W. et al. How do rotifer communities respond to floating photovoltaic systems in the subsidence wetlands created by underground coal mining in China? J. Environ. Manage. 339, 117816 (2023).

    Article  PubMed  Google Scholar 

  18. Mavraki, N. et al. Fouling community composition on a pilot floating solar-energy installation in the coastal Dutch North Sea. Front. Mar. Sci. https://doi.org/10.3389/fmars.2023.1223766 (2023).

    Article  Google Scholar 

  19. Song, X. et al. Floating photovoltaic systems homogenize the waterbird communities across subsidence wetlands in the North China Plain. J. Environ. Manage. 349, 119417 (2024).

    Article  PubMed  Google Scholar 

  20. Yang, S., Zhang, Y., Tian, D., Liu, Z. & Ma, Z. Water-surface photovoltaic systems have affected water physical and chemical properties and biodiversity. Commun. Earth Environ. 5, 632 (2024).

    Article  Google Scholar 

  21. Amano, T. et al. Successful conservation of global waterbird populations depends on effective governance. Nature 553, 199–202 (2018).

    Article  CAS  PubMed  Google Scholar 

  22. Rosenberg, K. V. et al. Decline of the North American avifauna. Science 366, 120–124 (2019).

    Article  CAS  PubMed  Google Scholar 

  23. Mott, R. et al. Measuring habitat quality for waterbirds: a review. Ecol. Evol. 13, e9905 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cagle, A. E. et al. The land sparing, water surface use efficiency, and water surface transformation of floating photovoltaic solar energy installations. Sustainability 12, 8154 (2020).

    Article  CAS  Google Scholar 

  25. Luo, W. et al. Conceptual design and model test of a pontoon-truss type offshore floating photovoltaic system with soft connection. Ocean Eng. 309, 118518 (2024).

    Article  Google Scholar 

  26. Cazzaniga, R. et al. Floating photovoltaic plants: performance analysis and design solutions. Renew. Sustain. Energy Rev. 81, 1730–1741 (2018).

    Article  Google Scholar 

  27. Kumar, M., Mohammed Niyaz, H. & Gupta, R. Challenges and opportunities towards the development of floating photovoltaic systems. Sol. Energy Mater. Sol. Cells 233, 111408 (2021).

    Article  CAS  Google Scholar 

  28. Trapani, K. & Redón Santafé, M. A review of floating photovoltaic installations: 2007–2013. Prog. Photovolt. Res. Appl. 23, 524–532 (2015).

    Article  Google Scholar 

  29. Dai, J. et al. Design and construction of floating modular photovoltaic system for water reservoirs. Energy 191, 116549 (2020).

    Article  Google Scholar 

  30. Sahu, A., Yadav, N. & Sudhakar, K. Floating photovoltaic power plant: A review. Renew. Sustain. Energy Rev. 66, 815–824 (2016).

    Article  Google Scholar 

  31. Harwood, A. J. P., Perrow, M. R., Berridge, R. J., Tomlinson, M. L. & Skeate, E. R. in Wind Energy and Wildlife Interactions: Presentations from the CWW2015 Conference (ed. Köppel, J.) 19–41 (Springer, 2017); https://doi.org/10.1007/978-3-319-51272-3_2

  32. Mainwaring, M. C. The use of man-made structures as nesting sites by birds: a review of the costs and benefits. J. Nat. Conserv. 25, 17–22 (2015).

    Article  Google Scholar 

  33. Nakamura, K. & Mueller, G. Review of the performance of the artificial floating island as a restoration tool for aquatic environments. In Proc. World Environmental and Water Resources Congress 2008 (eds Babcock, R. W. & Walton, R.) 1–10 (American Society of Civil Engineers, 2012); https://doi.org/10.1061/40976(316)276

  34. Kosciuch, K., Riser-Espinoza, D., Gerringer, M. & Erickson, W. A summary of bird mortality at photovoltaic utility scale solar facilities in the Southwestern U.S. PLoS ONE 15, e0232034 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hernandez, R. R. et al. Environmental impacts of utility-scale solar energy. Renew. Sustain. Energy Rev. 29, 766–779 (2014).

    Article  Google Scholar 

  36. Tanner, K. E. et al. Microhabitats associated with solar energy development alter demography of two desert annuals. Ecol. Appl. 31, e02349 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Golroodbari, S. M. & Selj, J. in Photovoltaic Solar Energy: From Fundamentals to Applications (eds van Sark, W. et al.) Ch. 28, 455–473 (Wiley, 2024); https://doi.org/10.1002/9781119578826.ch28

  38. Hartman, C. A., Ackerman, J. T. & Herzog, M. P. Island characteristics within wetlands influence waterbird nest success and abundance. J. Wildl. Manag. 80, 1177–1188 (2016).

    Article  Google Scholar 

  39. Burgess, N. D. & Hirons, G. J. M. Creation and management of artificial nesting sites for wetland Birds. J. Environ. Manage. 34, 285–295 (1992).

    Article  Google Scholar 

  40. Menezes, R. F. et al. Variation in fish community structure, richness and diversity in 56 Danish lakes with contrasting depth, size and trophic state: does the method matter? Hydrobiologia 710, 47–59 (2013).

    Article  Google Scholar 

  41. Claus, R. & López, M. A methodology to assess the dynamic response and the structural performance of floating photovoltaic systems. Sol. Energy 262, 111826 (2023).

    Article  Google Scholar 

  42. Sagerman, J., Hansen, J. P. & Wikström, S. A. Effects of boat traffic and mooring infrastructure on aquatic vegetation: a systematic review and meta-analysis. Ambio 49, 517–530 (2020).

    Article  PubMed  Google Scholar 

  43. Jethy, B., Paul, S., Das, S. K., Adesina, A. & Mustakim, S. M. Critical review on the evolution, properties and utilization of plasticwastes for construction applications. J. Mater. Cycles Waste Manag. 24, 435–451 (2022).

    Article  CAS  Google Scholar 

  44. Browne, M. A. et al. Linking effects of anthropogenic debris to ecological impacts. Proc. R. Soc. B Biol. Sci. 282, 20142929 (2015).

    Article  Google Scholar 

  45. Jagiello, Z., Dylewski, Ł., Tobolka, M. & Aguirre, J. I. Life in a polluted world: a global review of anthropogenic materials in bird nests. Environ. Pollut. 251, 717–722 (2019).

    Article  CAS  PubMed  Google Scholar 

  46. Kasprzykowski, Z. & Golawski, A. Comparative foraging behavior of 3 heron species in small standing-water ecosystems in the arid zone of Oman. Curr. Zool. 70, 780–785 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Katzner, T. E. et al. Counterfactuals to assess effects to species and systems from renewable energy development. Front. Conserv. Sci. 3, 844286 (2022).

  48. Spencer, R. S., Macknick, J., Aznar, A., Warren, A. & Reese, M. O. Floating photovoltaic systems: assessing the technical potential of photovoltaic systems on man-made water bodies in the continental United States. Environ. Sci. Technol. 53, 1680–1689 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Abdelgaied, M., Kabeel, A. E., Zeleňáková, M. & Abd-Elhamid, H. F. Floating photovoltaic plants as an effective option to reduce water evaporation in water-stressed regions and produce electricity: a case study of Lake Nasser, Egypt. Water 15, 635 (2023).

    Article  Google Scholar 

  50. Jin, Y. et al. Energy production and water savings from floating solar photovoltaics on global reservoirs. Nat. Sustain. 6, 865–874 (2023).

    Article  Google Scholar 

  51. Sánchez-Zapata, J. A. et al. Breeding waterbirds in relation to artificial pond attributes: implications for the design of irrigation facilities. Biodivers. Conserv. 14, 1627–1639 (2005).

    Article  Google Scholar 

  52. Brand, A. B. & Snodgrass, J. W. Value of artificial habitats for amphibian reproduction in altered landscapes. Conserv. Biol. 24, 295–301 (2010).

    Article  PubMed  Google Scholar 

  53. Oliveira, P. M. B., Almeida, R. M. & Cardoso, S. J. Effects of floating photovoltaics on aquatic organisms: a review. Hydrobiologia https://doi.org/10.1007/s10750-024-05686-0 (2024).

    Article  Google Scholar 

  54. Armstrong, A., Page, T., Thackeray, S. J., Hernandez, R. R. & Jones, I. D. Integrating environmental understanding into freshwater floatovoltaic deployment using an effects hierarchy and decision trees. Environ. Res. Lett. 15, 114055 (2020).

    Article  CAS  Google Scholar 

  55. Exley, G. et al. Floating solar panels on reservoirs impact phytoplankton populations: a modelling experiment. J. Environ. Manage. 324, 116410 (2022).

    Article  PubMed  Google Scholar 

  56. Hernandez, R. R. et al. Techno–ecological synergies of solar energy for global sustainability. Nat. Sustain. 2, 560–568 (2019).

    Article  Google Scholar 

  57. Haas, J. et al. Floating photovoltaic plants: ecological impacts versus hydropower operation flexibility. Energy Convers. Manag. 206, 112414 (2020).

    Article  Google Scholar 

  58. Downing, J. A., Plante, C. & Lalonde, S. Fish production correlated with primary productivity, not the morphoedaphic index. Can. J. Fish. Aquat. Sci. 47, 1929–1936 (1990).

    Article  Google Scholar 

  59. Su, H. et al. Determinants of trophic cascade strength in freshwater ecosystems: a global analysis. Ecology 102, e03370 (2021).

    Article  PubMed  Google Scholar 

  60. Pan, Y. et al. Microplastics can affect the trophic cascade strength and stability of plankton ecosystems via behavior-mediated indirect interactions. J. Hazard. Mater. 430, 128415 (2022).

    Article  CAS  PubMed  Google Scholar 

  61. Horváth, G., Móra, A., Bernáth, B. & Kriska, G. Polarotaxis in non-biting midges: female chironomids are attracted to horizontally polarized light. Physiol. Behav. 104, 1010–1015 (2011).

    Article  PubMed  Google Scholar 

  62. Horváth, G., Kriska, G. & Robertson, B. in Polarized Light and Polarization Vision in Animal Sciences (ed. Horváth, G.) 443–513 (Springer, 2014); https://doi.org/10.1007/978-3-642-54718-8_20

  63. Carvalho, F. et al. Towards a standardized protocol to assess natural capital and ecosystem services in solar parks. Ecol. Solut. Evid. 4, e12210 (2023).

    Article  Google Scholar 

  64. Maghami, M. R. et al. Power loss due to soiling on solar panel: a review. Renew. Sustain. Energy Rev. 59, 1307–1316 (2016).

    Article  Google Scholar 

  65. Ali, B., Fatima, K., Iqbal, A., Ali, S. S. & Nadeem, M. Experimental investigation of bird dropping and soiling on PV panel power output in a humid and dusty environment. Sukkur IBA J. Emerg. Technol. 7, 1–14 (2024).

    Article  Google Scholar 

  66. Kaldellis, J. K. & Fragos, P. Ash deposition impact on the energy performance of photovoltaic generators. J. Clean. Prod. 19, 311–317 (2011).

    Article  Google Scholar 

  67. Karim, M. M., Rimsa, R. & Masud, A. Floating solar plants and relevant environmental, health and safety challenges. J. Environ. Sci. Eng. A 12, 229–241 (2023).

    Google Scholar 

  68. Allison, T. D. et al. Impacts to Wildlife of Wind Energy Siting and Operation in the United States. Issues in Ecology, Report no. 21 (2019).

  69. Cabral, J. S., Valente, L. & Hartig, F. Mechanistic simulation models in macroecology and biogeography: state-of-art and prospects. Ecography 40, 267–280 (2017).

    Article  Google Scholar 

  70. Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).

    Article  CAS  PubMed  Google Scholar 

  71. Walston, L. J., Rollins, K. E., LaGory, K. E., Smith, K. P. & Meyers, S. A. A preliminary assessment of avian mortality at utility-scale solar energy facilities in the United States. Renew. Energy 92, 405–414 (2016).

    Article  Google Scholar 

  72. Kirby, J. S. et al. Key conservation issues for migratory land- and waterbird species on the world’s major flyways. Bird Conserv. Int. 18, S49–S73 (2008).

    Article  Google Scholar 

  73. Sauer, J. R., Fallon, J. E. & Johnson, R. Use of North American breeding bird survey data to estimate population change for bird conservation regions. J. Wildl. Manag. 67, 372–389 (2003).

    Article  Google Scholar 

  74. Donald, P. F. et al. Important Bird and Biodiversity Areas (IBAs): the development and characteristics of a global inventory of key sites for biodiversity. Bird Conserv. Int. 29, 177–198 (2019).

    Article  Google Scholar 

  75. Zimmerman, G. S. et al. Estimating allowable take for an increasing bald eagle population in the United States. J. Wildl. Manag. 86, e22158 (2022).

    Article  Google Scholar 

  76. Conkling, T. J. et al. Vulnerability of avian populations to renewable energy production. R. Soc. Open Sci. 9, 211558 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Katzner, T. E. et al. Assessing population-level consequences of anthropogenic stressors for terrestrial wildlife. Ecosphere 11, e03046 (2020).

    Article  Google Scholar 

  78. Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Conserv. 241, 108383 (2020).

    Article  Google Scholar 

  79. Timoney, K. P. & Ronconi, R. A. Annual bird mortality in the bitumen tailings ponds in Northeastern Alberta, Canada. Wilson J. Ornithol. 122, 569–576 (2010).

    Article  Google Scholar 

  80. Farwell, L. S., Wood, P. B., Brown, D. J. & Sheehan, J. Proximity to unconventional shale gas infrastructure alters breeding bird abundance and distribution. Condor 121, duz020 (2019).

    Article  Google Scholar 

  81. McClure, C. J. W., Ware, H. E., Carlisle, J., Kaltenecker, G. & Barber, J. R. An experimental investigation into the effects of traffic noise on distributions of birds: avoiding the phantom road. Proc. R. Soc. B Biol. Sci. 280, 20132290 (2013).

    Article  Google Scholar 

  82. Yuan, Y. et al. Effects of landscape structure, habitat and human disturbance on birds: a case study in East Dongting Lake wetland. Ecol. Eng. 67, 67–75 (2014).

    Article  Google Scholar 

  83. Gibson, D. et al. Impacts of anthropogenic disturbance on body condition, survival and site fidelity of nonbreeding Piping Plovers. Condor 120, 566–580 (2018).

    Article  Google Scholar 

  84. James Reynolds, S., Ibáñez-Álamo, J. D., Sumasgutner, P. & Mainwaring, M. C. Urbanisation and nest building in birds: a review of threats and opportunities. J. Ornithol. 160, 841–860 (2019).

    Article  Google Scholar 

  85. Hockin, D. et al. Examination of the effects of disturbance on birds with reference to its importance in ecological assessments. J. Environ. Manage. 36, 253–286 (1992).

    Article  Google Scholar 

  86. Halfwerk, W. et al. Adaptive changes in sexual signalling in response to urbanization. Nat. Ecol. Evol. 3, 374–380 (2019).

    Article  PubMed  Google Scholar 

  87. Soh, M. C. K. et al. Restricted human activities shift the foraging strategies of feral pigeons (Columba livia) and three other commensal bird species. Biol. Conserv. 253, 108927 (2021).

    Article  Google Scholar 

  88. Verhulst, S., Holveck, M.-J. & Riebel, K. Long-term effects of manipulated natal brood size on metabolic rate in zebra finches. Biol. Lett. 2, 478–480 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Newton, I. & Brockie, K. Population Limitation in Birds (Academic Press, 2003).

  90. Lepczyk, C. A. et al. Human impacts on regional avian diversity and abundance. Conserv. Biol. 22, 405–416 (2008).

    Article  PubMed  Google Scholar 

  91. Desholm, M. & Kahlert, J. Avian collision risk at an offshore wind farm. Biol. Lett. 1, 296–298 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Diehl, R. H., Valdez, E. W., Preston, T. M., Wellik, M. J. & Cryan, P. M. Evaluating the effectiveness of wildlife detection and observation technologies at a solar power tower facility. PLoS ONE 11, e0158115 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  93. May, R., Reitan, O., Bevanger, K., Lorentsen, S.-H. & Nygård, T. Mitigating wind-turbine induced avian mortality: sensory, aerodynamic and cognitive constraints and options. Renew. Sustain. Energy Rev. 42, 170–181 (2015).

    Article  Google Scholar 

  94. Conway, C. J. Standardized North American Marsh Bird Monitoring Protocol. Waterbirds 34, 319–346 (2011).

    Article  Google Scholar 

  95. Thaxter, C. B. et al. Bird and bat species’ global vulnerability to collision mortality at wind farms revealed through a trait-based assessment. Proc. R. Soc. B 284, 20170829 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Desholm, M., Fox, A. D., Beasley, P. D. L. & Kahlert, J. Remote techniques for counting and estimating the number of bird–wind turbine collisions at sea: a review. Ibis 148, 76–89 (2006).

    Article  Google Scholar 

  97. Smith, J. A. & Dwyer, J. F. Avian interactions with renewable energy infrastructure: an update. Condor 118, 411–423 (2016).

    Article  Google Scholar 

  98. Smallwood, K. S. Utility-scale solar impacts to volant wildlife. J. Wildl. Manag. 86, e22216 (2022).

    Article  Google Scholar 

  99. Huso, M. M., Dietsch, T. & Nicolai, C. Mortality Monitoring Design for Utility-Scale Solar Power Facilities Open-File Report (US Geological Survey, 2016); https://doi.org/10.3133/ofr20161087

  100. Bradshaw, T. M. et al. Marsh bird occupancy of wetlands managed for waterfowl in the Midwestern USA. PLoS ONE 15, e0228980 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Ralph, C. J., Droege, S. & Sauer, J. R. in Monitoring Bird Populations by Point Counts Gen. Tech. Rep. PSW-GTR-149, 161–168 (US Department of Agriculture, 1995).

  102. Conway, C. J. & Gibbs, J. P. Effectiveness of call-broadcast surveys for monitoring marsh birds. Auk 122, 26–35 (2005).

    Article  Google Scholar 

  103. Allen, T., Finkbeiner, S. L. & Johnson, D. H. Comparison of detection rates of breeding marsh birds in passive and playback surveys at Lacreek National Wildlife Refuge, South Dakota. Waterbirds 27, 277–281 (2004).

    Article  Google Scholar 

  104. Buckland, S. T., Magurran, A. E., Green, R. E. & Fewster, R. M. Monitoring change in biodiversity through composite indices. Philos. Trans. R. Soc. B Biol. Sci. 360, 243–254 (2005).

    Article  CAS  Google Scholar 

  105. Sillett, T. S., Chandler, R. B., Royle, J. A., Kéry, M. & Morrison, S. A. Hierarchical distance-sampling models to estimate population size and habitat-specific abundance of an island endemic. Ecol. Appl. 22, 1997–2006 (2012).

    Article  PubMed  Google Scholar 

  106. Conway, C. J., Sulzman, C. & Raulston, B. E. Factors affecting detection probability of California black rails. J. Wildl. Manag. 68, 360–370 (2004).

    Article  Google Scholar 

  107. Lima, S. L. Ecological and evolutionary perspectives on escape from predatory attack: a survey of North American birds. Wilson Bull. 105, 1–47 (1993).

    Google Scholar 

  108. Sen, A., Mohankar, A. S., Khamaj, A. & Karmakar, S. Emerging OSH issues in installation and maintenance of floating solar photovoltaic projects and their link with sustainable development goals. Risk Manag. Healthc. Policy 14, 1939–1957 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. Akomea-Ampeh, M. et al. Metal contaminant risk at active floating photovoltaic sites and future research roadmap. J. Environ. Manage. 383, 125216 (2025).

    Article  CAS  PubMed  Google Scholar 

  110. Richard, F.-J. et al. Warning on nine pollutants and their effects on avian communities. Glob. Ecol. Conserv. 32, e01898 (2021).

    Google Scholar 

  111. Fairbrother, A. et al. Temperature and light intensity effects on photodegradation of high-density polyethylene. Polym. Degrad. Stab. 165, 153–160 (2019).

    Article  CAS  Google Scholar 

  112. Panthi, G., Bajagain, R., An, Y.-J. & Jeong, S.-W. Leaching potential of chemical species from real perovskite and silicon solar cells. Process Saf. Environ. Prot. 149, 115–122 (2021).

    Article  CAS  Google Scholar 

  113. Ali, H., Khan, E. & Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity and bioaccumulation. J. Chem. 2019, 6730305 (2019).

    Article  Google Scholar 

  114. McHale, M. E. & Sheehan, K. L. Bioaccumulation, transfer, and impacts of microplastics in aquatic food chains. J. Environ. Expo. Assess 3, 15 (2024).

    Article  CAS  Google Scholar 

  115. Fleeger, J. W., Carman, K. R. & Nisbet, R. M. Indirect effects of contaminants in aquatic ecosystems. Sci. Total Environ. 317, 207–233 (2003).

    Article  CAS  PubMed  Google Scholar 

  116. Aghaei, M. et al. Review of degradation and failure phenomena in photovoltaic modules. Renew. Sustain. Energy Rev. 159, 112160 (2022).

    Article  CAS  Google Scholar 

  117. Buitrago, E., Novello, A. M. & Meyer, T. Third-generation solar cells: toxicity and risk of exposure. Helv. Chim. Acta 103, e2000074 (2020).

    Article  CAS  Google Scholar 

  118. Petroli, P. A., Camargo, P. S. S., de Souza, R. A. & Veit, H. M. Assessment of toxicity tests for photovoltaic panels: a review. Curr. Opin. Green Sustain. Chem. 47, 100885 (2024).

    Article  CAS  Google Scholar 

  119. Kwak, J. I., Nam, S.-H., Kim, L. & An, Y.-J. Potential environmental risk of solar cells: current knowledge and future challenges. J. Hazard. Mater. 392, 122297 (2020).

    Article  CAS  PubMed  Google Scholar 

  120. Sahu, A. K., Sudhakar, K. & Sarviya, R. M. Influence of UV light on the thermal properties of HDPE/carbon black composites. Case Stud. Therm. Eng. 15, 100534 (2019).

    Article  Google Scholar 

  121. Bilal, M. et al. Microplastic quantification in aquatic birds: biomonitoring the environmental health of the Panjkora River freshwater ecosystem in Pakistan. Toxics 11, 972 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Bange, A., Backes, A., Garthe, S. & Schwemmer, P. Prey choice and ingestion of microplastics by common shelducks and common eiders in the Wadden Sea World Heritage Site. Mar. Biol. 170, 54 (2023).

    Article  Google Scholar 

  123. Jeyavani, J. et al. A review on aquatic impacts of microplastics and its bioremediation aspects. Curr. Pollut. Rep. 7, 286–299 (2021).

    Article  CAS  Google Scholar 

  124. Holland, E. R., Mallory, M. L. & Shutler, D. Plastics and other anthropogenic debris in freshwater birds from Canada. Sci. Total Environ. 571, 251–258 (2016).

    Article  CAS  PubMed  Google Scholar 

  125. Sazima, I. & D’Angelo, G. B. Dangerous traps: Anhingas mistake anthropogenic debris for prey fish at an urban site in south-eastern Brazil. Rev. Bras. Ornitol. 23, 380–384 (2015).

    Article  Google Scholar 

  126. Damian, M. & Fraser, G. S. Incorporation of anthropogenic debris into double-crested cormorant nests, Toronto, Ontario. J. Gt Lakes Res. 46, 1761–1766 (2020).

    Article  Google Scholar 

  127. Green, D. S. in Plastics in the Aquatic Environment—Part I: Current Status and Challenges (eds Stock, F. et al.) 111–133 (Springer, 2022); https://doi.org/10.1007/698_2020_509

  128. Arnot, J. A. & Gobas, F. A. P. C. A food web bioaccumulation model for organic chemicals in aquatic ecosystems. Environ. Toxicol. Chem. 23, 2343–2355 (2004).

    Article  CAS  PubMed  Google Scholar 

  129. Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 116 (2017).

    Article  PubMed  Google Scholar 

  130. Hardesty, B. D., Good, T. P. & Wilcox, C. Novel methods, new results and science-based solutions to tackle marine debris impacts on wildlife. Ocean Coast. Manag. 115, 4–9 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Z. Goff-Eldredge and S.M. Grodsky for their contributions, as well as L.J. Cantrell, who provided expertise and insight on real-world FPV operations and management that improved this paper. We also thank T. Remo, A. Davis, G. Allen and D. Ernst for access and assistance at each FPV site. We are grateful to P. Sanzenbacher for critical feedback on this manuscript and we thank M. Marmotta for her contributions to the creation and refinement of figures that enhanced the clarity of this work. Funding for R.R.H., E.F. and E.P.S. was provided by the University of California Office of the President’s California Climate Action Seed Grant (award A24-1267). R.R.H., E.F. and A.E.C. were funded by a grant from Enel Green Power S.p.A. and the US Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Solar Energy Technologies Office award no. DE-EE0008746. Funding for T.J.C. and T.E.K. was provided by the US Bureau of Land Management and by the US Geological Survey. Any use of trade, firm or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elliott P. Steele.

Ethics declarations

Competing interests

G.P. and M.L.V.D.B. reports a relationship with Enel Green Power SpA that includes: employment. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Chunlin Li and Steven Benjamins for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernandez, R.R., Forester, E., Cagle, A.E. et al. Aligning floating photovoltaic solar energy expansion with waterbird conservation. Nat Water 3, 525–536 (2025). https://doi.org/10.1038/s44221-025-00429-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00429-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing