Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

In chemico toxicity approaches to assess, identify and prioritize contaminants in water

Abstract

Water quality assessment is exceedingly challenging given the complexity of the anthropogenic chemicals present in the environment. In addition, water treatment is increasingly reliant on chemical oxidants, which transform natural and anthropogenic organic compounds into a wide spectrum of transformation products with unknown toxicities. Existing strategies to evaluate the toxicity of these complex mixtures have so far primarily focused on the application of in vitro assays. Existing in vitro assays provide useful insights into the adverse outcomes for a variety of toxicological endpoints but generally do not provide information about the identities of the toxicant(s) responsible for the observed effect in environmental samples. Advancements in in vitro assays combined with non-targeted analysis show substantial progress in identifying emerging chemicals of concern, albeit with selection biases for analytes that are compatible with sample extraction and preparation approaches. Here we discuss the application of molecular toxicology (in chemico) approaches as a promising complement to in vitro assays to assess water quality and responsible toxicants. These in chemico approaches show particular promise for compounds that are challenging to extract and detect using conventional approaches, such as those that are highly polar, reactive (for example, organic electrophiles) and/or volatile compounds. We structure the discussion of the different in chemico approaches around the molecular initiating event, which is the initial step of the adverse outcome pathway that describes the molecular-level interactions between toxicants and organisms. In chemico approaches that use biomolecules of different complexities to investigate covalent and non-covalent interactions with contaminants are highlighted. This includes in chemico studies focusing on (1) the assessment of individual contaminants, (2) the overall toxicity of samples from laboratory studies or the environment and (3) the identification of toxicants in complex (environmental) mixtures. Major advancements in each of these areas are discussed, and future major research needs are outlined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of the AOP concept.
Fig. 2: Biomolecular probes for in chemico toxicity assessments of water contaminants.
Fig. 3: Examples of covalent/non-covalent binding mechanisms.

Similar content being viewed by others

References

  1. Schwarzenbach, R. P. et al. The challenge of micropollutants in aquatic systems. Science 313, 1072–1077 (2006).

    Article  PubMed  CAS  Google Scholar 

  2. Farré, M. L., Pérez, S., Kantiani, L. & Barceló, D. Fate and toxicity of emerging pollutants, their metabolites and transformation products in the aquatic environment. TrAC Trends Anal. Chem. 27, 991–1007 (2008).

    Article  Google Scholar 

  3. Escher, B. I. & Fenner, K. Recent advances in environmental risk assessment of transformation products. Environ. Sci. Technol. 45, 3835–3847 (2011).

    Article  PubMed  CAS  Google Scholar 

  4. Von Gunten, U. Oxidation processes in water treatment: are we on track? Environ. Sci. Technol. 52, 5062–5075 (2018).

    Article  Google Scholar 

  5. Lau, S. S., Forster, A. L., Richardson, S. D. & Mitch, W. A. Disinfection byproduct recovery during extraction and concentration in preparation for chemical analyses or toxicity assays. Environ. Sci. Technol. 55, 14136–14145 (2021).

    Article  PubMed  CAS  Google Scholar 

  6. Muellner, M. G. et al. Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environ. Sci. Technol. 41, 645–651 (2007).

    Article  PubMed  CAS  Google Scholar 

  7. Schmeisser, S. et al. New approach methodologies in human regulatory toxicology—not if, but how and when! Environ. Int. 178, 108082 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Dix, D. J. et al. The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicol. Sci. 95, 5–12 (2007).

    Article  PubMed  CAS  Google Scholar 

  9. Judson, R. et al. In vitro and modelling approaches to risk assessment from the U.S. Environmental Protection Agency ToxCast Programme. Basic Clin. Pharmacol. Toxicol. 115, 69–76 (2014).

    Article  PubMed  CAS  Google Scholar 

  10. Richard, A. M. et al. ToxCast chemical landscape: paving the road to 21st century toxicology. Chem. Res. Toxicol. 29, 1225–1251 (2016).

    Article  PubMed  CAS  Google Scholar 

  11. Murk, A. J. et al. Detection of estrogenic potency in wastewater and surface water with three in vitro bioassays. Environ. Toxicol. Chem. 21, 16–23 (2002).

    Article  PubMed  CAS  Google Scholar 

  12. Prasse, C., Stalter, D., Schulte-Oehlmann, U., Oehlmann, J. & Ternes, T. A. Spoilt for choice: a critical review on the chemical and biological assessment of current wastewater treatment technologies. Water Res. 87, 237–270 (2015).

    Article  PubMed  CAS  Google Scholar 

  13. Stalter, D., O’Malley, E., von Gunten, U. & Escher, B. I. Fingerprinting the reactive toxicity pathways of 50 drinking water disinfection by-products. Water Res. 91, 19–30 (2016).

    Article  PubMed  CAS  Google Scholar 

  14. König, M. et al. Impact of untreated wastewater on a major European river evaluated with a combination of in vitro bioassays and chemical analysis. Environ. Pollut. 220, 1220–1230 (2017).

    Article  PubMed  Google Scholar 

  15. Žegura, B., Heath, E., Černoša, A. & Filipič, M. Combination of in vitro bioassays for the determination of cytotoxic and genotoxic potential of wastewater, surface water and drinking water samples. Chemosphere 75, 1453–1460 (2009).

    Article  PubMed  Google Scholar 

  16. Escher, B. I. et al. Benchmarking organic micropollutants in wastewater, recycled water and drinking water with in vitro bioassays. Environ. Sci. Technol. 48, 1940–1956 (2014).

    Article  PubMed  CAS  Google Scholar 

  17. Leusch, F. D. L. et al. Analysis of endocrine activity in drinking water, surface water and treated wastewater from six countries. Water Res. 139, 10–18 (2018).

    Article  PubMed  CAS  Google Scholar 

  18. Muschket, M. et al. Identification of unknown antiandrogenic compounds in surface waters by Effect-Directed Analysis (EDA) using a parallel fractionation approach. Environ. Sci. Technol. 52, 288–297 (2018).

    Article  PubMed  CAS  Google Scholar 

  19. Morandi, G. D. et al. Effects-directed analysis of dissolved organic compounds in oil sands process-affected water. Environ. Sci. Technol. 49, 12395–12404 (2015).

    Article  PubMed  CAS  Google Scholar 

  20. Brack, W. Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal. Bioanal.Chem. 377, 397–407 (2003).

    Article  PubMed  CAS  Google Scholar 

  21. Tian, Z. et al. A ubiquitous tire rubber-derived chemical induces acute mortality in coho salmon. Science 371, 185–189 (2021).

    Article  PubMed  CAS  Google Scholar 

  22. Brack, W. et al. Effect-directed analysis supporting monitoring of aquatic environments—an in-depth overview. Sci. Total Environ. 544, 1073–1118 (2016).

    Article  PubMed  CAS  Google Scholar 

  23. Abbas, A. et al. What you extract is what you see: optimising the preparation of water and wastewater samples for in vitro bioassays. Water Res. 152, 47–60 (2019).

    Article  PubMed  CAS  Google Scholar 

  24. US EPA. Alternative Test Methods and Strategies to Reduce Vertebrate Animal Testing https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/alternative-test-methods-and-strategies-reduce#:~:text=Examples%20of%20NAMs%20would%20be,for%20computer%2Ddriven%20predictive%20tools (Environmental Protection Agency, 2024).

  25. Ankley, G. T. et al. Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 29, 730–741 (2010).

    Article  PubMed  CAS  Google Scholar 

  26. Villeneuve, D. L. et al. Adverse Outcome Pathway (AOP) development I: strategies and principles. Toxicol. Sci. 142, 312–320 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Gerberick, G. F. Development of a peptide reactivity assay for screening contact allergens. Toxicol. Sci. 81, 332–343 (2004).

    Article  PubMed  CAS  Google Scholar 

  28. Natsch, A. Integrated skin sensitization assessment based on OECD methods (I): deriving a point of departure for risk assessment. ALTEX 39, 636–646 (2022).

    PubMed  Google Scholar 

  29. Dik, S., Rorije, E., Schwillens, P., Van Loveren, H. & Ezendam, J. Can the direct peptide reactivity assay be used for the identification of respiratory sensitization potential of chemicals? Toxicol. Sci. 153, 361–371 (2016).

    Article  PubMed  CAS  Google Scholar 

  30. Lalko, J. F. et al. The direct peptide reactivity assay: selectivity of chemical respiratory allergens. Toxicol. Sci. 129, 421–431 (2012).

    Article  PubMed  CAS  Google Scholar 

  31. Marcelis, Q., Deconinck, E., Rogiers, V., Vanhaecke, T. & Desmedt, B. Applicability of the DPRA on mixture testing: challenges and opportunities. Arch. Toxicol. 97, 2453–2461 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Jaria, G., Calisto, V., Otero, M. & Esteves, V. I. Monitoring pharmaceuticals in the aquatic environment using enzyme-linked immunosorbent assay (ELISA)—a practical overview. Anal. Bioanal. Chem. 412, 3983–4008 (2020).

    Article  PubMed  CAS  Google Scholar 

  33. Silva, C. P., Carvalho, T., Schneider, R. J., Esteves, V. I. & Lima, D. L. D. ELISA as an effective tool to determine spatial and seasonal occurrence of emerging contaminants in the aquatic environment. Anal. Methods 12, 2517–2526 (2020).

    Article  PubMed  CAS  Google Scholar 

  34. Patel, D., Huma, Z. E. & Duncan, D. Reversible covalent inhibition─desired covalent adduct formation by mass action. ACS Chem. Biol. 19, 824–838 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Boike, L., Henning, N. J. & Nomura, D. K. Advances in covalent drug discovery. Nat. Rev. Drug Discov. 21, 881–898 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Pals, J. A., Wagner, E. D. & Plewa, M. J. Energy of the lowest unoccupied molecular orbital, thiol reactivity, and toxicity of three monobrominated water disinfection byproducts. Environ. Sci. Technol. 50, 3215–3221 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Pals, J. A., Wagner, E. D., Plewa, M. J., Xia, M. & Attene-Ramos, M. S. Monohalogenated acetamide-induced cellular stress and genotoxicity are related to electrophilic softness and thiol/thiolate reactivity. J. Environ. Sci. 58, 224–230 (2017).

    Article  CAS  Google Scholar 

  38. Zhong, C., Zhao, H., Cao, H. & Huang, C.-H. Fast coupling and detoxification of aqueous halobenzoquinones by extracellular nucleophiles: the relationship among structures, pathways and toxicity. Chem. Eng. J. 438, 135525 (2022).

    Article  CAS  Google Scholar 

  39. Dawson, D. A., Jeyaratnam, J., Mooneyham, T., Pöch, G. & Schultz, T. W. Mixture toxicity of SN2-reactive soft electrophiles: 1. Evaluation of mixtures containing α-halogenated acetonitriles. Arch. Environ. Contam. Toxicol. 59, 532–541 (2010).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Yeung, K., Xie, L., Nair, P. & Peng, H. Haloacetonitriles induce structure-related cellular toxicity through distinct proteome thiol reaction mechanisms. ACS Environ. Au 5, 101–113 (2025).

    Article  PubMed  CAS  Google Scholar 

  41. Lin, E. L. C. & Guion, C. W. Interaction of haloacetonitriles with glutathione and glutathione-S-transferase. Biochem. Pharmacol. 38, 685–688 (1989).

    Article  PubMed  CAS  Google Scholar 

  42. Hong, H. et al. Cytotoxicity of nitrogenous disinfection byproducts: a combined experimental and computational study. Sci. Total Environ. 856, 159273 (2023).

    Article  PubMed  CAS  Google Scholar 

  43. Böhme, A., Thaens, D., Paschke, A. & Schüürmann, G. Kinetic glutathione chemoassay to quantify thiol reactivity of organic electrophiles—application to α,β-unsaturated ketones, acrylates and propiolates. Chem. Res. Toxicol. 22, 742–750 (2009).

    Article  PubMed  Google Scholar 

  44. Slawik, C., Rickmeyer, C., Brehm, M., Böhme, A. & Schüürmann, G. Glutathione adduct patterns of Michael-acceptor carbonyls. Environ. Sci. Technol. 51, 4018–4026 (2017).

    Article  PubMed  CAS  Google Scholar 

  45. Li, Y., Jongberg, S., Andersen, M. L., Davies, M. J. & Lund, M. N. Quinone-induced protein modifications: kinetic preference for reaction of 1,2-benzoquinones with thiol groups in proteins. Free Radic. Biol. Med. 97, 148–157 (2016).

    Article  PubMed  CAS  Google Scholar 

  46. Shu, N., Lorentzen, L. G. & Davies, M. J. Reaction of quinones with proteins: kinetics of adduct formation, effects on enzymatic activity and protein structure, and potential reversibility of modifications. Free Radic. Biol. Med. 137, 169–180 (2019).

    Article  PubMed  CAS  Google Scholar 

  47. Prasse, C., Ford, B., Nomura, D. K. & Sedlak, D. L. Unexpected transformation of dissolved phenols to toxic dicarbonyls by hydroxyl radicals and UV light. Proc. Natl. Acad. Sci. USA 115, 2311–2316 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Hall, D. R., Yeung, K. & Peng, H. Monohaloacetic acids and monohaloacetamides attack distinct cellular proteome thiols. Environ. Sci. Technol. 54, 15191–15201 (2020).

    Article  PubMed  CAS  Google Scholar 

  49. Hall, D. R., Gauthier, J. & Peng, H. Querying the in vitro proteome cysteine reactivity of 8:2 fluorotelomer acrylate. Environ. Sci. Technol. 57, 13015–13024 (2023).

    Article  PubMed  CAS  Google Scholar 

  50. Enoch, S. J. & Cronin, M. T. D. A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit. Rev. Toxicol. 40, 728–748 (2010).

    Article  PubMed  CAS  Google Scholar 

  51. Nguyen, T. N. T., Bertagnolli, A. D., Villalta, P. W., Bühlmann, P. & Sturla, S. J. Characterization of a deoxyguanosine adduct of tetrachlorobenzoquinone: dichlorobenzoquinone-1, N2-etheno-2′-deoxyguanosine. Chem. Res. Toxicol. 18, 1770–1776 (2005).

    Article  PubMed  CAS  Google Scholar 

  52. Vaidyanathan, V. G., Villalta, P. W. & Sturla, S. J. Nucleobase-dependent reactivity of a quinone metabolite of pentachlorophenol. Chem. Res. Toxicol. 20, 913–919 (2007).

    Article  PubMed  CAS  Google Scholar 

  53. Jia, S., Zhu, B.-Z. & Guo, L.-H. Detection and mechanistic investigation of halogenated benzoquinone induced DNA damage by photoelectrochemical DNA sensor. Anal. Bioanal. Chem. 397, 2395–2400 (2010).

    Article  PubMed  CAS  Google Scholar 

  54. Gómez-Bombarelli, R. et al. DNA-damaging disinfection byproducts: alkylation mechanism of mutagenic mucohalic acids. Environ. Sci. Technol. 45, 9009–9016 (2011).

    Article  PubMed  Google Scholar 

  55. Munter, T., Le Curieux, F., Sjöholm, R. & Kronberg, L. Reaction of the potent bacterial mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone (MX) with 2′-deoxyadenosine and calf thymus DNA: identification of fluorescent propenoformyl derivatives. Chem. Res. Toxicol. 11, 226–233 (1998).

    Article  PubMed  CAS  Google Scholar 

  56. Munter, T., Le Curieux, F., Sjöholm, R. & Kronberg, L. Identification of an ethenoformyl adduct formed in the reaction of the potent bacterial mutagen 3-chloro-4-(dichloromethyl)-5-hydroxy-2(5H)-furanone with guanosine. Chem. Res. Toxicol. 12, 46–52 (1999).

    Article  PubMed  CAS  Google Scholar 

  57. Le Curieux, F., Munter, T. & Kronberg, L. Identification of adenine adducts formed in reaction of calf thymus DNA with mutagenic chlorohydroxyfuranones found in drinking water. Chem. Res. Toxicol. 10, 1180–1185 (1997).

    Article  PubMed  Google Scholar 

  58. Dong, S., Masalha, N., Plewa, M. J. & Nguyen, T. H. Toxicity of wastewater with elevated bromide and iodide after chlorination, chloramination or ozonation disinfection. Environ. Sci. Technol. 51, 9297–9304 (2017).

    Article  PubMed  CAS  Google Scholar 

  59. Dong, S., Page, M. A., Wagner, E. D. & Plewa, M. J. Thiol reactivity analyses to predict mammalian cell cytotoxicity of water samples. Environ. Sci. Technol. 52, 8822–8829 (2018).

    Article  PubMed  CAS  Google Scholar 

  60. Dong, S. et al. Toxicological comparison of water, wastewaters and processed wastewaters. Environ. Sci. Technol. 53, 9139–9147 (2019).

    Article  PubMed  CAS  Google Scholar 

  61. Prasse, C., Von Gunten, U. & Sedlak, D. L. Chlorination of phenols revisited: unexpected formation of α,β-unsaturated C4-dicarbonyl ring cleavage products. Environ. Sci. Technol. 54, 826–834 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Zhang, Z. & Prasse, C. Chlorination of para-substituted phenols: formation of α,β-unsaturated C4-dialdehydes and C4-dicarboxylic acids. J. Environ. Sci. 117, 197–208 (2022).

    Article  CAS  Google Scholar 

  63. Zoumpouli, G. A., Zhang, Z., Wenk, J. & Prasse, C. Aqueous ozonation of furans: kinetics and transformation mechanisms leading to the formation of α,β-unsaturated dicarbonyl compounds. Water Res. 203, 117487 (2021).

    Article  PubMed  CAS  Google Scholar 

  64. Prasse, C. Reactivity-directed analysis—a novel approach for the identification of toxic organic electrophiles in drinking water. Environ. Sci. Process. Impacts 23, 48–65 (2021).

    Article  PubMed  CAS  Google Scholar 

  65. Radke, M. J., Cresswell, S. L. & Leusch, F. D. L. Combining non-targeted high resolution mass spectrometry with effect-directed analysis to identify contaminants of emerging concern in the field of ecotoxicology: a systematic quantitative literature review. Sci. Total Environ. 972, 179122 (2025).

    Article  PubMed  CAS  Google Scholar 

  66. Tian, Z., McMinn, M. H. & Fang, M. Effect-directed analysis and beyond: how to find causal environmental toxicants. Exposome 3, osad002 (2023).

    Article  Google Scholar 

  67. Timilsina, A., Lokesh, S., Shahriar, A., Numan, T. & Yang, Y. Quantification of quinones in environmental media by chemical tagging with cysteine-containing peptides coupled to size exclusionary separation. Anal. Chem. 95, 12575–12579 (2023).

    Article  PubMed  CAS  Google Scholar 

  68. Yeung, K. et al. Thiol reactome: a nontargeted strategy to precisely identify thiol reactive drinking water disinfection byproducts. Environ. Sci. Technol. 57, 18722–18734 (2023).

    Article  PubMed  CAS  Google Scholar 

  69. Xu, X. et al. Applications of human and bovine serum albumins in biomedical engineering: a review. Int. J. Biol. Macromol. 253, 126914 (2023).

    Article  PubMed  CAS  Google Scholar 

  70. Ju, P. et al. Probing the toxic interactions between polyvinyl chloride microplastics and human serum albumin by multispectroscopic techniques. Sci. Total Environ. 734, 139219 (2020).

    Article  PubMed  CAS  Google Scholar 

  71. Chi, Z. & Liu, R. Phenotypic characterization of the binding of tetracycline to human serum albumin. Biomacromolecules 12, 203–209 (2011).

    Article  PubMed  CAS  Google Scholar 

  72. Abou-Zied, O. K. & Al-Shihi, O. I. K. Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J. Am. Chem. Soc. 130, 10793–10801 (2008).

    Article  PubMed  CAS  Google Scholar 

  73. Xiang, H. et al. Study of conformational and functional changes caused by binding of environmental pollutant tonalide to human serum albumin. Chemosphere 270, 129431 (2021).

    Article  PubMed  CAS  Google Scholar 

  74. Zargar, S. & Wani, T. A. Exploring the binding mechanism and adverse toxic effects of persistent organic pollutant (dicofol) to human serum albumin: a biophysical, biochemical and computational approach. Chem. Biol. Interact. 350, 109707 (2021).

    Article  PubMed  CAS  Google Scholar 

  75. Ahmad, M. I., Potshangbam, A. M., Javed, M. & Ahmad, M. Studies on conformational changes induced by binding of pendimethalin with human serum albumin. Chemosphere 243, 125270 (2020).

    Article  PubMed  CAS  Google Scholar 

  76. Qian, Y., Zhou, X., Chen, J. & Zhang, Y. Binding of bezafibrate to human serum albumin: insight into the non-covalent interaction of an emerging contaminant with biomacromolecules. Molecules 17, 6821–6831 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Chen, J., Zhou, X., Zhang, Y., Qian, Y. & Gao, H. Interactions of acidic pharmaceuticals with human serum albumin: insights into the molecular toxicity of emerging pollutants. Amino Acids 43, 1419–1429 (2012).

    Article  PubMed  CAS  Google Scholar 

  78. Hou, C. et al. Study of modeling and optimization for predicting the acute toxicity of carbamate pesticides using the binding information with carrier protein. Spectrochim. Acta A 273, 121038 (2022).

    Article  CAS  Google Scholar 

  79. Mátyus, L., Szöllősi, J. & Jenei, A. Steady-state fluorescence quenching applications for studying protein structure and dynamics. J. Photochem. Photobiol. B 83, 223–236 (2006).

    Article  PubMed  Google Scholar 

  80. Tanwar, A. S., Parui, R., Garai, R., Chanu, M. A. & Iyer, P. K. Dual ‘static and dynamic’ fluorescence quenching mechanisms based detection of TNT via a cationic conjugated polymer. ACS Meas. Sci. Au 2, 23–30 (2022).

    Article  PubMed  CAS  Google Scholar 

  81. Ross, P. D. & Subramanian, S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20, 3096–3102 (1981).

    Article  PubMed  CAS  Google Scholar 

  82. Moro, G. et al. Investigation of the interaction between human serum albumin and branched short-chain perfluoroalkyl compounds. Chem. Res. Toxicol. 35, 2049–2058 (2022).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Poureshghi, F., Ghandforoushan, P., Safarnejad, A. & Soltani, S. Interaction of an antiepileptic drug, lamotrigine with human serum albumin (HSA): application of spectroscopic techniques and molecular modeling methods. J. Photochem. Photobiol. B 166, 187–192 (2017).

    Article  PubMed  CAS  Google Scholar 

  84. Van De Weert, M. & Schönbeck, C. Ligand binding to proteins—when flawed fluorescence quenching methodology and interpretation become the new norm. Eur. J. Pharm. Sci. 203, 106930 (2024).

    Article  PubMed  Google Scholar 

  85. Qin, W., Escher, B. I., Huchthausen, J., Fu, Q. & Henneberger, L. Species difference? Bovine, trout and human plasma protein binding of per- and polyfluoroalkyl substances. Environ. Sci. Technol. 58, 9954–9966 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ebert, A., Allendorf, F., Berger, U., Goss, K.-U. & Ulrich, N. Membrane/water partitioning and permeabilities of perfluoroalkyl acids and four of their alternatives and the effects on toxicokinetic behavior. Environ. Sci. Technol. 54, 5051–5061 (2020).

    Article  PubMed  CAS  Google Scholar 

  87. Jia, Y. et al. Insights into the competitive mechanisms of per- and polyfluoroalkyl substances partition in liver and blood. Environ. Sci. Technol. 56, 6192–6200 (2022).

    Article  PubMed  CAS  Google Scholar 

  88. Fischer, F. C. et al. Binding of per- and polyfluoroalkyl substances (PFAS) to serum proteins: implications for toxicokinetics in humans. Environ. Sci. Technol. 58, 1055–1063 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Allendorf, F., Berger, U., Goss, K.-U. & Ulrich, N. Partition coefficients of four perfluoroalkyl acid alternatives between bovine serum albumin (BSA) and water in comparison to ten classical perfluoroalkyl acids. Environ. Sci. Process. Impacts 21, 1852–1863 (2019).

    Article  PubMed  CAS  Google Scholar 

  90. Crisalli, A. M., Cai, A. & Cho, B. P. Probing the interactions of perfluorocarboxylic acids of various chain lengths with human serum albumin: calorimetric and spectroscopic investigations. Chem. Res. Toxicol. 36, 703–713 (2023).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Zhang, Y.-Z. et al. Fluorescence study on the interaction of bovine serum albumin with P-aminoazobenzene. J. Fluoresc. 18, 109–118 (2008).

    Article  PubMed  CAS  Google Scholar 

  93. Partridge, A. W., Therien, A. G. & Deber, C. M. Polar mutations in membrane proteins as a biophysical basis for disease. Biopolymers 66, 350–358 (2002).

    Article  PubMed  CAS  Google Scholar 

  94. Partridge, A. W., Therien, A. G. & Deber, C. M. Missense mutations in transmembrane domains of proteins: phenotypic propensity of polar residues for human disease. Proteins 54, 648–656 (2004).

    Article  PubMed  CAS  Google Scholar 

  95. Sekula, B., Zielinski, K. & Bujacz, A. Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. Int. J. Biol. Macromol. 60, 316–324 (2013).

    Article  PubMed  CAS  Google Scholar 

  96. Maier, R., Fries, M. R., Buchholz, C., Zhang, F. & Schreiber, F. Human versus bovine serum albumin: a subtle difference in hydrophobicity leads to large differences in bulk and interface behavior. Cryst. Growth Des. 21, 5451–5459 (2021).

    Article  CAS  Google Scholar 

  97. Huang, B. X., Kim, H.-Y. & Dass, C. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. J. Am. Soc. Mass Spectrom. 15, 1237–1247 (2004).

    Article  PubMed  CAS  Google Scholar 

  98. Ketrat, S., Japrung, D. & Pongprayoon, P. Exploring how structural and dynamic properties of bovine and canine serum albumins differ from human serum albumin. J. Mol. Graph. Model. 98, 107601 (2020).

    Article  PubMed  CAS  Google Scholar 

  99. Bischel, H. N., MacManus‐Spencer, L. A., Zhang, C. & Luthy, R. G. Strong associations of short‐chain perfluoroalkyl acids with serum albumin and investigation of binding mechanisms. Environ. Toxicol. Chem. 30, 2423–2430 (2011).

    Article  PubMed  CAS  Google Scholar 

  100. Wang, Y.-Q., Zhang, H.-M., Cao, J. & Tang, B.-P. Binding of a new bisphenol analogue, bisphenol S to bovine serum albumin and calf thymus DNA. J. Photochem. Photobiol. B 138, 182–190 (2014).

    Article  PubMed  CAS  Google Scholar 

  101. Chi, Z., Liu, R., Teng, Y., Fang, X. & Gao, C. Binding of oxytetracycline to bovine serum albumin: spectroscopic and molecular modeling investigations. J. Agric. Food Chem. 58, 10262–10269 (2010).

    Article  PubMed  CAS  Google Scholar 

  102. Yadav, A., Vuković, L. & Narayan, M. An atomic and molecular insight into how PFOA reduces α-helicity, compromises substrate binding, and creates binding pockets in a model globular protein. J. Am. Chem. Soc. 146, 12766–12777 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Sheng, N., Li, J., Liu, H., Zhang, A. & Dai, J. Interaction of perfluoroalkyl acids with human liver fatty acid-binding protein. Arch. Toxicol. 90, 217–227 (2016).

    Article  PubMed  CAS  Google Scholar 

  104. Chen, Y. et al. Overall and individual associations between per- and polyfluoroalkyl substances and liver function indices and the metabolic mechanism. Environ. Int. 183, 108405 (2024).

    Article  PubMed  CAS  Google Scholar 

  105. Zhang, L., Ren, X.-M. & Guo, L.-H. Structure-based investigation on the interaction of perfluorinated compounds with human liver fatty acid binding protein. Environ. Sci. Technol. 47, 11293–11301 (2013).

    Article  PubMed  CAS  Google Scholar 

  106. Song, Y., Sun, K. & Liu, R. An exploration of the interaction mechanism of Direct Red 80 with α‐amylase at the molecular level. J. Mol. Recognit. 34, e2883 (2021).

    Article  PubMed  CAS  Google Scholar 

  107. Liu, Y. & Liu, R. The interaction of α-chymotrypsin with one persistent organic pollutant (dicofol): spectroscope and molecular modeling identification. Food Chem. Toxicol. 50, 3298–3305 (2012).

    Article  PubMed  CAS  Google Scholar 

  108. Chi, Z., Liu, R. & Zhang, H. Noncovalent interaction of oxytetracycline with the enzyme trypsin. Biomacromolecules 11, 2454–2459 (2010).

    Article  PubMed  CAS  Google Scholar 

  109. Anichina, J., Zhao, Y., Hrudey, S. E., Le, X. C. & Li, X.-F. Electrospray ionization mass spectrometry characterization of interactions of newly identified water disinfection byproducts halobenzoquinones with oligodeoxynucleotides. Environ. Sci. Technol. 44, 9557–9563 (2010).

    Article  PubMed  CAS  Google Scholar 

  110. Chen, Y.-H. et al. Synergetic effects of novel aromatic brominated and chlorinated disinfection byproducts on Vibrio qinghaiensis sp.-Q67. Environ. Pollut. 250, 375–385 (2019).

    Article  PubMed  CAS  Google Scholar 

  111. Richardson, S., Plewa, M., Wagner, E., Schoeny, R. & Demarini, D. Occurrence, genotoxicity and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat. Res. 636, 178–242 (2007).

    Article  PubMed  CAS  Google Scholar 

  112. Li, G., Tian, C., Karanfil, T. & Liu, C. Comparative formation of chlorinated and brominated disinfection byproducts from chlorination and bromination of amino acids. Chemosphere 349, 140985 (2024).

    Article  PubMed  CAS  Google Scholar 

  113. Anichina, J., Zhao, Y., Hrudey, S. E., Schreiber, A. & Li, X.-F. Electrospray ionization tandem mass spectrometry analysis of the reactivity of structurally related bromo-methyl-benzoquinones toward oligonucleotides. Anal. Chem. 83, 8145–8151 (2011).

    Article  PubMed  CAS  Google Scholar 

  114. Tomkinson, A. E., Lasko, D. D., Daly, G. & Lindahl, T. Mammalian DNA ligases. Catalytic domain and size of DNA ligase I. J. Biol. Chem. 265, 12611–12617 (1990).

    Article  PubMed  CAS  Google Scholar 

  115. Tu, N. et al. Quantitative structure-toxicity relationships of halobenzoquinone isomers on DNA reactivity and genotoxicity. Chemosphere 309, 136763 (2022).

    Article  PubMed  CAS  Google Scholar 

  116. Wen, H. et al. Noncovalent tagging for identifying unknown contaminants of specific bioactivity in environmental water. Anal. Chem. 95, 15851–15855 (2023).

    Article  PubMed  CAS  Google Scholar 

  117. Mann, M. M., Tang, J. D. & Berger, B. W. Engineering human liver fatty acid binding protein for detection of poly‐ and perfluoroalkyl substances. Biotechnol. Bioeng. 119, 513–522 (2022).

    Article  PubMed  CAS  Google Scholar 

  118. Zhang, Q., Dong, X., Lu, J., Song, J. & Wang, Y. Chemoproteomic approach toward probing the interactomes of perfluoroalkyl substances. Anal. Chem. 93, 9634–9639 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Gong, Y., Yang, D., Barrett, H., Sun, J. & Peng, H. Building the environmental Chemical-Protein Interaction Network (eCPIN): an exposome-wide strategy for bioactive chemical contaminant identification. Environ. Sci. Technol. 57, 3486–3495 (2023).

    Article  PubMed  CAS  Google Scholar 

  120. Yang, D. et al. Nontarget screening of per- and polyfluoroalkyl substances binding to human liver fatty acid binding protein. Environ. Sci. Technol. 54, 5676–5686 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Reinemann, C., Freiin Von Fritsch, U., Rudolph, S. & Strehlitz, B. Generation and characterization of quinolone-specific DNA aptamers suitable for water monitoring. Biosens. Bioelectron. 77, 1039–1047 (2016).

    Article  PubMed  CAS  Google Scholar 

  122. Cao, J. et al. Parallel detection of mixed pesticides based on dual quantum dot/porous silicon optical biosensors. IEEE Sensors J. 24, 38596–38604 (2024).

    Article  CAS  Google Scholar 

  123. Park, J., Yang, K.-A., Choi, Y. & Choe, J. K. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environ. Int. 158, 107000 (2022).

    Article  PubMed  CAS  Google Scholar 

  124. Wen, K., Meng, X., Lara, K. & Lin, Q. Cost-effective evaluation of aptamer candidates in SELEX-based aptamer isolation. Talanta 275, 126103 (2024).

    Article  PubMed  CAS  Google Scholar 

  125. Imashimizu, M., Takahashi, M., Amano, R. & Nakamura, Y. Single-round isolation of diverse RNA aptamers from a random sequence pool. Biol. Methods Protoc. 3, bpy004 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Gulde, R. et al. Oxidation of 51 micropollutants during drinking water ozonation: formation of transformation products and their fate during biological post-filtration. Water Res. 207, 117812 (2021).

    Article  PubMed  CAS  Google Scholar 

  127. Lim, S., Shi, J. L., Von Gunten, U. & McCurry, D. L. Ozonation of organic compounds in water and wastewater: a critical review. Water Res. 213, 118053 (2022).

    Article  PubMed  CAS  Google Scholar 

  128. Grace, D. N., Newmeyer, M. N. & Prasse, C. Solid-Phase Reactivity-Directed Extraction (SPREx): an alternative approach for simultaneous extraction, identification and prioritization of toxic electrophiles produced in water treatment applications. ACS Environ. Au 4, 317–332 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Johnson, M., Finlayson, K., Van De Merwe, J. P. & Leusch, F. D. L. Adaption and application of cell-based bioassays to whole-water samples. Chemosphere 361, 142572 (2024).

    Article  PubMed  CAS  Google Scholar 

  130. Schirmer, K., Dayeh, V. R., Bopp, S., Russold, S. & Bols, N. C. Applying whole water samples to cell bioassays for detecting dioxin-like compounds at contaminated sites. Toxicology 205, 211–221 (2004).

    Article  PubMed  CAS  Google Scholar 

  131. Hosaka, S., Honda, T., Lee, S. H. & Oe, T. Biomimetic trapping cocktail to screen reactive metabolites: use of an amino acid and DNA motif mixture as light/heavy isotope pairs differing in mass shift. Anal. Bioanal. Chem. 410, 3847–3857 (2018).

    Article  PubMed  CAS  Google Scholar 

  132. Manasfi, T., Houska, J., Gebhardt, I. & von Gunten, U. Formation of carbonyl compounds during ozonation of lake water and wastewater: development of a non-target screening method and quantification of target compounds. Water Res. 237, 119751 (2023).

    Article  PubMed  CAS  Google Scholar 

  133. Houska, J., Manasfi, T., Gebhardt, I. & von Gunten, U. Ozonation of lake water and wastewater: identification of carbonous and nitrogenous carbonyl-containing oxidation byproducts by non-target screening. Water Res. 232, 119484 (2022).

    Article  PubMed  Google Scholar 

  134. Liu, G. et al. Probing protein-protein interactions with label-free mass spectrometry quantification in combination with affinity purification by spin-tip affinity columns. Anal. Chem. 92, 3913–3922 (2020).

    Article  PubMed  CAS  Google Scholar 

  135. Cho, N. et al. Identification of novel glutathione adducts of benzbromarone in human liver microsomes. Drug Metab. Pharmacokinet. 32, 46–52 (2017).

    Article  PubMed  CAS  Google Scholar 

  136. Kalgutkar, A. S. et al. Metabolic activation of the nontricyclic antidepressant trazodone to electrophilic quinone-imine and epoxide intermediates in human liver microsomes and recombinant P4503A4. Chem. Biol. Interact. 155, 10–20 (2005).

    Article  PubMed  CAS  Google Scholar 

  137. Tian, M., Peng, Y. & Zheng, J. Metabolic activation and hepatotoxicity of furan-containing compounds. Drug Metab. Dispos. 50, 655–670 (2022).

    Article  PubMed  CAS  Google Scholar 

  138. Ahlfors, S. R., Sterner, O. & Hansson, C. Reactivity of contact allergenic haptens to amino acid residues in a model carrier peptide, and characterization of formed peptide-hapten adducts1. Skin Pharmacol. Physiol. 16, 59–68 (2003).

    Article  CAS  Google Scholar 

  139. Medina-Cleghorn, D. et al. Mapping proteome-wide targets of environmental chemicals using reactivity-based chemoproteomic platforms. Chem. Biol. 22, 1394–1405 (2015).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Ferraro, P. J. & Prasse, C. Reimagining safe drinking water on the basis of twenty-first-century science. Nat. Sustain. 4, 1032–1037 (2021).

    Article  Google Scholar 

  141. Ankley, G. T. & Edwards, S. W. The adverse outcome pathway: a multifaceted framework supporting 21st century toxicology. Curr. Opin. Toxicol. 9, 1–7 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. Cell 144, 646–674 (2011).

    Article  PubMed  CAS  Google Scholar 

  143. Poirier, M. C. Chemical-induced DNA damage and human cancer risk. Nat. Rev. Cancer 4, 630–637 (2004).

    Article  PubMed  CAS  Google Scholar 

  144. Smith, M. T. et al. Key characteristics of carcinogens as a basis for organizing data on mechanisms of carcinogenesis. Environ. Health Perspect. 124, 713–721 (2016).

    Article  PubMed  CAS  Google Scholar 

  145. Rappaport, S. M., Li, H., Grigoryan, H., Funk, W. E. & Williams, E. R. Adductomics: characterizing exposures to reactive electrophiles. Toxicol. Lett. 213, 83–90 (2012).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the US National Science Foundation (CAREER award 2143152) and the US Environmental Protection Agency (R840605). D.N.G. was supported by a National Science Foundation Graduate Research Fellowship under grant no. DGE2139757, and A.R. acknowledges financial support from Johns Hopkins University through the Vivien Thomas Scholars Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carsten Prasse.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Water thanks Peng Hui and Dan Villeneuve for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grace, D.N., Rorie, A. & Prasse, C. In chemico toxicity approaches to assess, identify and prioritize contaminants in water. Nat Water 3, 854–866 (2025). https://doi.org/10.1038/s44221-025-00468-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44221-025-00468-x

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene