Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinspired oral delivery devices

Abstract

Oral administration is a widespread and convenient drug delivery approach. However, oral delivery can be affected by the complex digestive tract environment, including irregular tissue morphology, the presence of digestive enzymes, mucus and mucosal barriers, and spatiotemporal variance in physiological parameters. These obstacles can prevent the oral delivery of many therapeutics. To overcome these challenges, oral delivery devices can be designed with bioinspired compositions, structures or functions to make more drugs available for oral administration. Various bioinspired oral delivery devices have been developed by harnessing biological materials and living microorganisms, or by imitating biological structures and functions. In this Review, we discuss the design and modification of bioinspired oral delivery devices, examining engineering strategies to target specific tissues and applications. We highlight how key bottlenecks in oral delivery can be addressed through bioinspired designs, concluding with an outlook on the remaining challenges towards the clinical translation of bioinspired oral delivery devices.

Key points

  • Biotic components produced by animals, plants and microbes, such as exosomes, pollen grains and bacterial spores, can be used for oral drug delivery and oral vaccination.

  • Living microorganisms can be surface coated, encapsulated or genetically modified to allow oral delivery for the regulation of the intestinal environment, to maintain homeostasis or for disease treatment.

  • Biological materials, such as polysaccharides, peptides, lipids and nucleic acids, including alginate, chitosan, gelatin, liposomes and DNA hydrogels, can improve the efficacy and efficiency of oral delivery devices.

  • Bioinspired chemical components and physical structures can improve the tissue adhesion, permeation and adaption abilities of oral delivery devices.

  • Bioinspired oral delivery devices targeting buccal, oesophageal, gastric and intestinal sites have been preclinically evaluated, and some have entered clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Oral drug delivery.
Fig. 2: Biotic components for oral delivery.
Fig. 3: Living organisms for oral delivery.
Fig. 4: Bioinspired structures.

Similar content being viewed by others

References

  1. Hu, S. et al. A mussel-inspired film for adhesion to wet buccal tissue and efficient buccal drug delivery. Nat. Commun. 12, 1689 (2021).

    Article  Google Scholar 

  2. Choi, H. S. et al. Magnetically guidable proteinaceous adhesive microbots for targeted locoregional therapeutics delivery in the highly dynamic environment of the esophagus. Adv. Funct. Mater. 31, 2104602 (2021).

    Article  Google Scholar 

  3. Abramson, A. et al. An ingestible self-orienting system for oral delivery of macromolecules. Science 363, 611–615 (2019). This article reports the design of a microneedle device that can self-orient, inspired by a leopard tortoise.

    Article  Google Scholar 

  4. Zhang, D. X. et al. Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat. Commun. 13, 1413 (2022).

    Article  Google Scholar 

  5. Liu, H. et al. Colon-targeted adhesive hydrogel microsphere for regulation of gut immunity and flora. Adv. Sci. 8, 2101619 (2021).

    Article  Google Scholar 

  6. Schafer, A. et al. Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice. Sci. Transl Med. 14, eabm3410 (2022).

    Article  Google Scholar 

  7. Hao, Y. et al. Percutaneous implantation of ethanol fueled catalytic hydrogel suppresses tumor growth by triggering ferroptosis. Mater. Today 55, 7–20 (2022).

    Article  Google Scholar 

  8. Brown, T. D., Whitehead, K. A. & Mitragotri, S. Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5, 127–148 (2020).

    Article  Google Scholar 

  9. Xiao, Y. et al. Oral insulin delivery platforms: strategies to address the biological barriers. Angew. Chem. Int. Ed. 59, 19787 (2020).

    Article  Google Scholar 

  10. Xing, L. Y. et al. Complying with the physiological functions of Golgi apparatus for secretory exocytosis facilitated oral absorption of protein drugs. J. Mater. Chem. B 9, 1707 (2021).

    Article  Google Scholar 

  11. Li, Y., Zhang, W., Zhao, R. C. & Zhang, X. Advances in oral peptide drug nanoparticles for diabetes mellitus treatment. Bioact. Mater. 15, 392–408 (2022).

    Article  Google Scholar 

  12. Qian, C. Y. et al. Vascularized silk electrospun fiber for promoting oral mucosa regeneration. NPG Asia Mater. 12, 39 (2020).

    Article  Google Scholar 

  13. Liu, X. et al. A spider-silk-inspired wet adhesive with super-cold tolerance. Adv. Mater. 33, 2007301 (2021).

    Article  Google Scholar 

  14. Zou, J. J. et al. Efficient oral insulin delivery enabled by transferrin-coated acid-resistant metal-organic framework nanoparticles. Sci. Adv. 8, eabm4677 (2022).

    Article  Google Scholar 

  15. Li, Z. et al. Hydrogel transformed from nanoparticles for prevention of tissue injury and treatment of inflammatory diseases. Adv. Mater. 34, 2109178 (2022).

    Article  Google Scholar 

  16. Fan, W. et al. Mucus penetrating and cell-binding polyzwitterionic micelles as potent oral nanomedicine for cancer drug delivery. Adv. Mater. 34, 2109189 (2022).

    Article  Google Scholar 

  17. Xiao, Y. F. et al. Glucose-responsive oral insulin delivery platform for one treatment a day in diabetes. Matter 4, 3269–3285 (2021).

    Article  Google Scholar 

  18. Zhong, D. N. et al. Orally deliverable strategy based on microalgal biomass for intestinal disease treatment. Sci. Adv. 7, eabi9265 (2021).

    Article  Google Scholar 

  19. Song, Q. L. et al. A probiotic spore-based oral autonomous nanoparticles generator for cancer therapy. Adv. Mater. 31, 1903793 (2019). This article shows that drug-modified Bacillus coagulans spores can autonomously produce drug nanoparticles after germination in the intestine, which contributes to drug permeation and absorption.

    Article  Google Scholar 

  20. Zhang, P. C., Zhao, C. Q., Zhao, T. Y., Liu, M. J. & Jiang, L. Recent advances in bioinspired gel surfaces with superwettability and special adhesion. Adv. Sci. 6, 1900996 (2019).

    Article  Google Scholar 

  21. Wang, Y. P. et al. Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 15, 3509–3521 (2021).

    Article  Google Scholar 

  22. Yang, L. S. et al. Bioinspired hierarchical porous membrane for efficient uranium extraction from seawater. Nat. Sustain. 5, 71–80 (2022).

    Article  Google Scholar 

  23. Chen, K. et al. Adhesive and injectable hydrogel microspheres for inner ear treatment. Small 18, 2106591 (2022).

    Article  Google Scholar 

  24. Chen, W. et al. Dynamic omnidirectional adhesive microneedle system for oral macromolecular drug delivery. Sci. Adv. 8, eabk1792 (2022). This article reports an oral microneedle device, inspired by thorny-headed worms, which swells after penetration into the intestinal tissue, steadily attaching to the mucosa and continuously delivering drugs.

    Article  Google Scholar 

  25. Zhao, L. et al. Improving drug utilization platform with injectable mucoadhesive hydrogel for treating ulcerative colitis. Chem. Eng. J. 424, 130464 (2021).

    Article  Google Scholar 

  26. Cai, L. J. et al. Boston ivy-inspired disc-like adhesive microparticles for drug delivery. Research 2021, 9895674 (2021).

    Article  Google Scholar 

  27. Wu, J. W. et al. Biomimetic viruslike and charge reversible nanoparticles to sequentially overcome mucus and epithelial barriers for oral insulin delivery. ACS Appl. Mater. Interfaces 10, 9916–9928 (2018).

    Article  Google Scholar 

  28. Guo, M. M. et al. Bionic dormant body of timed wake-up for bacteriotherapy in vivo. ACS Nano 16, 823–836 (2022).

    Article  Google Scholar 

  29. Zhong, J. et al. High-quality milk exosomes as oral drug delivery system. Biomaterials 277, 121126 (2021).

    Article  Google Scholar 

  30. Uddin, M. J., Liyanage, S., Abidi, N. & Gill, H. S. Physical and biochemical characterization of chemically treated pollen shells for potential use in oral delivery of therapeutics. J. Pharm. Sci. 107, 3047–3059 (2018).

    Article  Google Scholar 

  31. Li, S. Q. et al. Oral delivery of bacteria: basic principles and biomedical applications. J. Control. Release 327, 801–833 (2020).

    Article  Google Scholar 

  32. Liu, H. et al. Bacterial extracellular vesicles as bioactive nanocarriers for drug delivery: advances and perspectives. Bioact. Mater. 14, 169–181 (2022).

    Article  Google Scholar 

  33. Pan, H. Z. et al. Light-sensitive Lactococcus lactis for microbe–gut–brain axis regulating via upconversion optogenetic micro-nano system. ACS Nano 16, 6049–6063 (2022).

    Article  Google Scholar 

  34. Hu, Y., Gao, S., Lu, H. & Ying, J. Y. Acid-resistant and physiological pH-responsive DNA hydrogel composed of A-motif and i-motif toward oral insulin delivery. J. Am. Chem. Soc. 144, 5461–5470 (2022). This article shows that DNA hydrogels can be made acid resistant and pH sensitive for oral insulin delivery by tailoring oligonucleotide sequences.

    Article  Google Scholar 

  35. Liu, Y. X., Sun, L. Y., Zhang, H., Shang, L. R. & Zhao, Y. J. Microfluidics for drug development: from synthesis to evaluation. Chem. Rev. 121, 7468–7529 (2021).

    Article  Google Scholar 

  36. Pandey, M. et al. 3D printing for oral drug delivery: a new tool to customize drug delivery. Drug Deliv. Transl. Res. 10, 986–1001 (2020).

    Article  Google Scholar 

  37. Zhou, X. et al. Targeted delivery of cisplatin-derived nanoprecursors via a biomimetic yeast microcapsule for tumor therapy by the oral route. Theranostics 9, 6568–6586 (2019).

    Article  Google Scholar 

  38. Luan, Q. et al. Controlled nutrient delivery through a pH-responsive wood vehicle. ACS Nano 16, 2198–2208 (2022).

    Article  Google Scholar 

  39. Sandri, G. et al. An in situ gelling buccal spray containing platelet lysate for the treatment of oral mucositis. Curr. Drug Discov. Technol. 8, 277–285 (2011).

    Article  Google Scholar 

  40. Umezu, T. et al. Acerola exosome-like nanovesicles to systemically deliver nucleic acid medicine via oral administration. Mol. Ther. Methods Clin. Dev. 21, 199–208 (2021).

    Article  Google Scholar 

  41. Mundargi, R. C. et al. Lycopodium spores: a naturally manufactured, superrobust biomaterial for drug delivery. Adv. Funct. Mater. 26, 487–497 (2016).

    Article  Google Scholar 

  42. Kwon, K.-C., Nityanandam, R., New, J. S. & Daniell, H. Oral delivery of bioencapsulated exendin-4 expressed in chloroplasts lowers blood glucose level in mice and stimulates insulin secretion in beta-TC6 cells. Plant Biotechnol. J. 11, 77–86 (2013).

    Article  Google Scholar 

  43. Farjadian, F. et al. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work? Biotechnol. Adv. 36, 968–985 (2018).

    Article  Google Scholar 

  44. Akbaria, A. et al. Free and hydrogel encapsulated exosome-based therapies in regenerative medicine. Life Sci. 249, 117447 (2020).

    Article  Google Scholar 

  45. Carobolante, G., Mantaj, J., Ferrari, E. & Vllasaliu, D. Cow milk and intestinal epithelial cell-derived extracellular vesicles as systems for enhancing oral drug delivery. Pharmaceutics 12, 226 (2020).

    Article  Google Scholar 

  46. Kandimalla, R. et al. Targeted oral delivery of paclitaxel using colostrum-derived exosomes. Cancers 13, 3700 (2021).

    Article  Google Scholar 

  47. Huang, L. et al. Engineered exosomes as an in situ DC-primed vaccine to boost antitumor immunity in breast cancer. Mol. Cancer 21, 45 (2022).

    Article  Google Scholar 

  48. Nazimek, K., Bryniarski, K., Ptak, W., Kormelink, T. G. & Askenase, P. W. Orally administered exosomes suppress mouse delayed-type hypersensitivity by delivering miRNA-150 to antigen-primed macrophage APC targeted by exosome-surface anti-peptide antibody light chains. Int. J. Mol. Sci. 21, 5540 (2020).

    Article  Google Scholar 

  49. Yan, Y. et al. hucMSC exosome-derived GPX1 is required for the recovery of hepatic oxidant injury. Mol. Ther. 25, 465–479 (2017).

    Article  Google Scholar 

  50. Arntz, O. J. et al. Oral administration of bovine milk derived extracellular vesicles attenuates arthritis in two mouse models. Mol. Nutr. Food Res. 59, 1701–1712 (2015).

    Article  Google Scholar 

  51. Kandimalla, R., Aqil, F., Tyagi, N. & Gupta, R. Milk exosomes: a biogenic nanocarrier for small molecules and macromolecules to combat cancer. Am. J. Reprod. Immunol. 85, e13349 (2021).

    Article  Google Scholar 

  52. Lale, S. V. & Gill, H. S. Pollen grains as a novel microcarrier for oral delivery of proteins. Int. J. Pharm. 552, 352–359 (2018).

    Article  Google Scholar 

  53. Atwe, S. U., Ma, Y. & Gill, H. S. Pollen grains for oral vaccination. J. Control. Release 194, 45–52 (2014).

    Article  Google Scholar 

  54. Franchi, G. G., Franchi, G., Corti, P. & Pompella, A. Microspectrophotometric evaluation of digestibility of pollen grains. Plant Food Hum. Nutr. 50, 115–126 (1997).

    Article  Google Scholar 

  55. Wu, W. et al. In vitro and in vivo digestion comparison of bee pollen with or without wall-disruption. J. Sci. Food Agric. 101, 2744–2755 (2021).

    Article  Google Scholar 

  56. Wu, D., Wang, X. Y., Wang, S. S., Li, B. & Liang, H. S. Nanoparticle encapsulation strategy: leveraging plant exine capsules used as secondary capping for oral delivery. J. Agric. Food Chem. 67, 8168–8176 (2019).

    Article  Google Scholar 

  57. Uddina, M. J. & Gill, H. S. From allergen to oral vaccine carrier: a new face of ragweed pollen. Int. J. Pharm. 545, 286–294 (2018).

    Article  Google Scholar 

  58. Alshehri, S. M. et al. Macroporous natural capsules extracted from Phoenix dactylifera L. spore and their application in oral drugs delivery. Int. J. Pharm. 504, 39–47 (2016).

    Article  Google Scholar 

  59. Gisby, M. F. et al. A synthetic gene increases TGFb3 accumulation by 75-fold in tobacco chloroplasts enabling rapid purification and folding into a biologically active molecule. Plant Biotechnol. J. 9, 618–628 (2011).

    Article  Google Scholar 

  60. Lee, S. B., Li, B., Jin, S. & Daniell, H. Expression and characterization of antimicrobial peptides Retrocyclin-101 and Protegrin-1 in chloroplasts to control viral and bacterial infections. Plant Biotechnol. J. 9, 100–115 (2011).

    Article  Google Scholar 

  61. Davoodi-Semiromi, A. et al. Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery. Plant Biotechnol. J. 8, 223–242 (2010).

    Article  Google Scholar 

  62. Suzuki, Y. A. et al. Expression, characterization, and biologic activity of recombinant human lactoferrin in rice. J. Pediatr. Gastr. Nutr. 36, 190–199 (2003).

    Article  Google Scholar 

  63. Rome, S. Biological properties of plant-derived extracellular vesicles. Food Funct. 10, 529–538 (2019).

    Article  Google Scholar 

  64. Chen, H. et al. Bacterial ghosts-based vaccine and drug delivery systems. Pharmaceutics 13, 1892 (2021).

    Article  Google Scholar 

  65. Wang, X. P. & Lu, C. P. Mice orally vaccinated with Edwardsiella tarda ghosts are significantly protected against infection. Vaccine 27, 1571–1578 (2009).

    Article  Google Scholar 

  66. Ren, T. Y. et al. Entrapping of nanoparticles in yeast cell wall microparticles for macrophage-targeted oral delivery of cabazitaxel. Mol. Pharm. 15, 2870–2882 (2018).

    Article  Google Scholar 

  67. Yin, L. et al. Bacillus spore-based oral carriers loading curcumin for the therapy of colon cancer. J. Control. Release 271, 31–44 (2018).

    Article  Google Scholar 

  68. Jones, E. J. et al. The uptake, trafficking, and biodistribution of bacteroides thetaiotaomicron generated outer membrane vesicles. Front. Microbiol. 11, 57 (2020).

    Article  Google Scholar 

  69. Shi, J. Y. et al. Biofilm-encapsulated nano drug delivery system for the treatment of colon cancer. J. Microencapsul. 37, 481–491 (2020).

    Article  Google Scholar 

  70. Tong, L. et al. Lactobacillus rhamnosus GG derived extracellular vesicles modulate gut microbiota and attenuate inflammatory in DSS-induced colitis mice. Nutrients 13, 3319 (2021).

    Article  Google Scholar 

  71. Dizman, N. et al. Nivolumab plus ipilimumab with or without live bacterial supplementation in metastatic renal cell carcinoma: a randomized phase 1 trial. Nat. Med. 28, 704–712 (2022).

    Article  Google Scholar 

  72. Jester, B. W. et al. Development of spirulina for the manufacture and oral delivery of protein therapeutics. Nat. Biotechnol. 40, 956–964 (2022).

    Article  Google Scholar 

  73. Duraj-Thatte, A. M. et al. Programmable microbial ink for 3D printing of living materials produced from genetically engineered protein nanofibers. Nat. Commun. 12, 6600 (2021).

    Article  Google Scholar 

  74. Fan, G., Wasuwanich, P., Rodriguez-Otero, M. R. & Furst, A. L. Protection of anaerobic microbes from processing stressors using metal–phenolic networks. J. Am. Chem. Soc. 144, 2438–2443 (2022). This article reports surface-modified metal–phenolic networks that protect anaerobic microbes from oxygen toxicity, ensuring their bioactivity after oral administration.

    Article  Google Scholar 

  75. Doudna, J. A. The promise and challenge of therapeutic genome editing. Nature 578, 229–236 (2020).

    Article  Google Scholar 

  76. Zheng, D. W. et al. An orally delivered microbial cocktail for the removal of nitrogenous metabolic waste in animal models of kidney failure. Nat. Biomed. Eng. 4, 853–862 (2020). This article reports the encapsulation of three faecal bacteria strains in a hydrogel microsphere that, after oral administration, can eliminate nitrogenous waste products and treat kidney failure in pigs.

    Article  Google Scholar 

  77. Martín, M. et al. Magnetic study on biodistribution and biodegradation of oral magnetic nanostructures in the rat gastrointestinal tract. Nanoscale 8, 15041 (2016).

    Article  Google Scholar 

  78. Yue, Y. et al. Antigen-bearing outer membrane vesicles as tumour vaccines produced in situ by ingested genetically engineered bacteria. Nat. Biomed. Eng. 6, 898–909 (2022).

    Article  Google Scholar 

  79. Pan, J. et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea. Nat. Commun. 13, 2117 (2022).

    Article  Google Scholar 

  80. Wang, X. Y. et al. Bioinspired oral delivery of gut microbiota by self-coating with biofilms. Sci. Adv. 6, eabb1952 (2020).

    Article  Google Scholar 

  81. Song, Q. L. et al. A bioinspired versatile spore coat nanomaterial for oral probiotics delivery. Adv. Funct. Mater. 31, 2104994 (2021).

    Article  Google Scholar 

  82. Liu, J. et al. Biomaterials coating for on-demand bacteria delivery: selective release, adhesion, and detachment. Nano Today 41, 101291 (2021).

    Article  Google Scholar 

  83. Centurion, F. et al. Cell-Mediated biointerfacial phenolic assembly for probiotic nano encapsulation. Adv. Funct. Mater. 32, 2200775 (2022).

    Article  Google Scholar 

  84. Zhang, Y. et al. Temulence therapy to orthotopic colorectal tumor via oral administration of fungi-based acetaldehyde generator. Small Methods 6, 2100951 (2022).

    Article  Google Scholar 

  85. Talebian, S. et al. Biopolymer-based multilayer microparticles for probiotic delivery to colon. Adv. Healthc. Mater. 11, 2102487 (2022).

    Article  Google Scholar 

  86. Cheng, Q. et al. A colon-targeted oral probiotics delivery system using an enzyme-triggered fuse-like microcapsule. Adv. Healthc. Mater. 10, 2001953 (2021).

    Article  Google Scholar 

  87. Verma, A. et al. Angiotensin-(1–7) expressed from Lactobacillus bacteria protect diabetic retina in mice. Trans. Vis. Sci. Tech. 9, 20 (2020).

    Article  Google Scholar 

  88. Fan, J. X. et al. Bacteria-mediated tumor therapy utilizing photothermally-controlled TNF-α expression via oral administration. Nano Lett. 18, 2373–2380 (2018).

    Article  Google Scholar 

  89. Cubillos-Ruiz, A. et al. An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nat. Biomed. Eng. 6, 910–921 (2022).

    Article  Google Scholar 

  90. Din, M. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016). This article demonstrates periodic drug release through the introduction of a timing circuit in genetically engineered bacteria.

    Article  Google Scholar 

  91. Drolia, R. et al. Receptor-targeted engineered probiotics mitigate lethal Listeria infection. Nat. Commun. 11, 6344 (2020).

    Article  Google Scholar 

  92. Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl Med. 10, eaao2586 (2018).

    Article  Google Scholar 

  93. Danino, T. et al. Programmable probiotics for detection of cancer in urine. Sci. Transl Med. 7, 289ra84 (2015).

    Article  Google Scholar 

  94. Barclay, T. G., Day, C. M., Petrovsky, N. & Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohyd. Polym. 221, 94–112 (2019).

    Article  Google Scholar 

  95. Voci, S., Fresta, M. & Cosco, D. Gliadins as versatile biomaterials for drug delivery applications. J. Control. Release 329, 385–400 (2021).

    Article  Google Scholar 

  96. Fattahi, N. et al. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J. Control. Release 326, 556–598 (2020).

    Article  Google Scholar 

  97. Cai, L. et al. Suction-cup-inspired adhesive micromotors for drug delivery. Adv. Sci. 9, 2103384 (2022).

    Article  Google Scholar 

  98. Xu, J., Strandman, S., Zhu, J. X. X., Barralet, J. & Cerruti, M. Genipin-crosslinked catechol-chitosan mucoadhesive hydrogels for buccal drug delivery. Biomaterials 37, 395–404 (2015).

    Article  Google Scholar 

  99. Zhang, X. X., Chen, G. P., Fu, X., Wang, Y. T. & Zhao, Y. J. Magneto-responsive microneedle robots for intestinal macromolecule delivery. Adv. Mater. 33, 2104932 (2021).

    Article  Google Scholar 

  100. Shtenberg, Y. et al. Mucoadhesive alginate pastes with embedded liposomes for local oral drug delivery. Int. J. Biol. Macromol. 111, 62–69 (2018).

    Article  Google Scholar 

  101. Song, Q. L. et al. An oral drug delivery system with programmed drug release and imaging properties for orthotopic colon cancer therapy. Nanoscale 11, 15958 (2019).

    Article  Google Scholar 

  102. Yin, H. S. et al. Smart pH-sensitive hydrogel based on the pineapple peel-oxidized hydroxyethyl cellulose and the hericium erinaceus residue carboxymethyl chitosan for use in drug delivery. Biomacromolecules 23, 253–264 (2022).

    Article  Google Scholar 

  103. Wang, C. P. J. et al. Biomaterials as therapeutic drug carriers for inflammatory bowel disease treatment. J. Control. Release 345, 1–19 (2022).

    Article  Google Scholar 

  104. Zhang, Y. et al. Layer-by-layer coated nanoliposomes for oral delivery of insulin. Nanoscale 13, 776–789 (2021).

    Article  Google Scholar 

  105. Li, B. et al. Micro-ecology restoration of colonic inflammation by in-situ oral delivery of antibody-laden hydrogel microcapsules. Bioact. Mater. 15, 305–315 (2022).

    Article  Google Scholar 

  106. Yang, K. et al. Prebiotics and postbiotics synergistic delivery microcapsules from microfluidics for treating colitis. Adv. Sci. 9, 2104089 (2022).

    Article  Google Scholar 

  107. Kenechukwu, F. C., Dias, M. L. & Ricci-Júnior, E. Biodegradable nanoparticles from prosopisylated cellulose as a platform for enhanced oral bioavailability of poorly water-soluble drugs. Carbohyd. Polym. 256, 117492 (2021).

    Article  Google Scholar 

  108. Pooresmaeil, M. & Namazi, H. Developments on carboxymethyl starch-based smart systems as promising drug carriers: a review. Carbohyd. Polym. 258, 117654 (2021).

    Article  Google Scholar 

  109. Layek, B. & Mandal, S. Natural polysaccharides for controlled delivery of oral therapeutics: a recent update. Carbohyd. Polym. 230, 115617 (2020).

    Article  Google Scholar 

  110. Tang, R. C., Chen, T. C. & Lin, F. H. Design strategy for a hydroxide-triggered pH-responsive hydrogel as a mucoadhesive barrier to prevent metabolism disorders. ACS Appl. Mater. Interfaces 13, 58340–58351 (2021).

    Article  Google Scholar 

  111. Zhao, C. et al. Biomimetic intestinal barrier based on microfluidic encapsulated sucralfate microcapsules. Sci. Bull. 64, 1418 (2019).

    Article  MathSciNet  Google Scholar 

  112. Gan, J. J. et al. Orally administrated nucleotide-delivery particles from microfluidics for inflammatory bowel disease treatment. Appl. Mater. Today 25, 101231 (2021).

    Article  Google Scholar 

  113. Hou, Y. et al. Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer. Biomaterials 283, 121440 (2022).

    Article  Google Scholar 

  114. Wong, C. Y., Al-Salami, H. & Dass, C. R. The role of chitosan on oral delivery of peptide-loaded nanoparticle formulation. J. Drug Target. 26, 551–562 (2018).

    Article  Google Scholar 

  115. Cesar, A. L. A. et al. New mesalamine polymeric conjugate for controlled release: preparation, characterization and biodistribution study. Eur. J. Pharm. Sci. 111, 57–64 (2018).

    Article  Google Scholar 

  116. Grigoras, A. G. Drug delivery systems using pullulan, a biocompatible polysaccharide produced by fungal fermentation of starch. Environ. Chem. Lett. 17, 1209–1223 (2019).

    Article  Google Scholar 

  117. Wu, Y. et al. Bioinspired β-glucan microcapsules deliver FK506 to lymph nodes for treatment of cardiac allograft acute rejection. Biomater. Sci. 8, 5282 (2020).

    Article  Google Scholar 

  118. Cao, Y. & Mezzenga, R. Design principles of food gels. Nat. Food 1, 106–118 (2020).

    Article  Google Scholar 

  119. Gao, C. et al. A directly swallowable and ingestible micro-supercapacitor. J. Mater. Chem. A 8, 4055–4061 (2020).

    Article  Google Scholar 

  120. Khan, F. Y., Jan, S. M. & Mushtaq, M. Clinical utility of locally-delivered collagen-based biodegradable tetracycline fibers in periodontal therapy: an in vivo study. J. Investig. Clin. Dent. 6, 307–312 (2015).

    Article  Google Scholar 

  121. Xu, S. et al. Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomater. 144, 81–95 (2022).

    Article  Google Scholar 

  122. Huang, J. et al. Layer-by-layer assembled milk protein coated magnetic nanoparticle enabled oral drug delivery with high stability in stomach and enzyme-responsive release in small intestine. Biomaterials 39, 105–113 (2015).

    Article  Google Scholar 

  123. Wei, Z. & Huang, Q. Assembly of protein−polysaccharide complexes for delivery of bioactive ingredients: a perspective paper. J. Agric. Food Chem. 67, 1344–1352 (2019).

    Article  Google Scholar 

  124. Alqahtani, M. S. et al. Food protein based core–shell nanocarriers for oral drug delivery: effect of shell composition on in vitro and in vivo functional performance of zein nanocarriers. Mol. Pharm. 14, 757–769 (2017).

    Article  Google Scholar 

  125. Bunjes, H. Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol. 62, 1637–1645 (2010).

    Article  Google Scholar 

  126. Casadei, M. A. et al. Solid lipid nanoparticles incorporated in dextran hydrogels: a new drug delivery system for oral formulations. Int. J. Pharm. 325, 140–146 (2006).

    Article  Google Scholar 

  127. Fu, X. et al. mRNA delivery by a pH-responsive DNA nano-hydrogel. Small 17, 2101224 (2021).

    Article  Google Scholar 

  128. Mo, F. L. et al. DNA hydrogel-based gene editing and drug delivery systems. Adv. Drug Deliv. Rev. 168, 79–98 (2021).

    Article  Google Scholar 

  129. Jiang, X. et al. Self-assembled DNA-THPS hydrogel as a topical antibacterial agent for wound healing. ACS Appl. Bio Mater. 2, 1262–1269 (2019).

    Article  Google Scholar 

  130. English, M. A. et al. Programmable CRISPR-responsive smart materials. Science 365, 780–785 (2019).

    Article  Google Scholar 

  131. Nomura, D. et al. Development of orally-deliverable DNA hydrogel by microemulsification and chitosan coating. Int. J. Pharm. 547, 556 (2018).

    Article  Google Scholar 

  132. Ghosh, A. et al. Gastrointestinal-resident, shape-changing microdevices extend drug release in vivo. Sci. Adv. 6, eabb4133 (2020).

    Article  Google Scholar 

  133. Zhao, C. et al. Cheerios effect inspired microbubbles as suspended and adhered oral delivery systems. Adv. Sci. 8, 2004184 (2021).

    Article  Google Scholar 

  134. Ryu, J. H. et al. Chitosan oral patches inspired by mussel adhesion. J. Control. Release 317, 57–66 (2020).

    Article  Google Scholar 

  135. Wang, Y. T. et al. Pollen-inspired microparticles with strong adhesion for drug delivery. Appl. Mater. Today 13, 303–309 (2018).

    Article  Google Scholar 

  136. Mathiowitz, E. et al. Biologically erodable microspheres as potential oral drug delivery systems. Nature 386, 410–414 (1997).

    Article  Google Scholar 

  137. Zhao, P. et al. Nanoparticle-assembled bioadhesive coacervate coating with prolonged gastrointestinal retention for inflammatory bowel disease therapy. Nat. Commun. 12, 7162 (2021).

    Article  Google Scholar 

  138. Li, J. et al. Gastrointestinal synthetic epithelial linings. Sci. Transl Med. 12, eabc0441 (2020).

    Article  Google Scholar 

  139. Liu, C. et al. Design of virus-mimicking polyelectrolyte complexes for enhanced oral insulin delivery. J. Pharm. Sci. 108, 3408–3415 (2019).

    Article  MathSciNet  Google Scholar 

  140. Lamson, N. G., Berger, A., Fein, K. C. & Whitehead, K. A. Anionic nanoparticles enable the oral delivery of proteins by enhancing intestinal permeability. Nat. Biomed. Eng. 4, 84–96 (2020).

    Article  Google Scholar 

  141. Yang, Y. et al. Rapid transport of germ-mimetic nanoparticles with dual conformational polyethylene glycol chains in biological tissues. Sci. Adv. 6, eaay9937 (2020).

    Article  Google Scholar 

  142. Menina, S. et al. Bioinspired liposomes for oral delivery of colistin to combat intracellular infections by salmonella enterica. Adv. Healthc. Mater. 8, 1900564 (2019).

    Article  Google Scholar 

  143. Shen, Y. R., Hu, Y. M. & Qiu, L. Y. Nano-vesicles based on phospholipid-like amphiphilic polyphosphazenes to orally deliver ovalbumin antigen for evoking anti-tumor immune response. Acta Biomater. 106, 267–277 (2020).

    Article  Google Scholar 

  144. Zhu, X. et al. Sub-50 nm nanoparticles with biomimetic surfaces to sequentially overcome the mucosal diffusion barrier and the epithelial absorption barrier. Adv. Funct. Mater. 26, 2728–2738 (2016).

    Article  Google Scholar 

  145. Surwase, S. S. et al. Engineered nanoparticles inside a microparticle oral system for enhanced mucosal and systemic immunity. ACS Appl. Mater. Interfaces 14, 11124–11143 (2022).

    Article  Google Scholar 

  146. Zhao, C., Chen, G. P., Wang, H., Zhao, Y. J. & Chai, R. J. Bio-inspired intestinal scavenger from microfluidic electrospray for detoxifying lipopolysaccharide. Bioact. Mater. 6, 1653–1662 (2021).

    Article  Google Scholar 

  147. Ze, Q. et al. Soft robotic origami crawler. Sci. Adv. 8, eabm7834 (2022).

    Article  Google Scholar 

  148. Abramson, A. et al. Oral mRNA delivery using capsule-mediated gastrointestinal tissue injections. Matter 5, 1–13 (2022).

    Article  Google Scholar 

  149. Byeon, J. C. et al. Recent formulation approaches to oral delivery of herbal medicines. J. Pharm. Investig. 49, 17–26 (2019).

    Article  Google Scholar 

  150. Miao, Y. B. et al. Engineering nano- and microparticles as oral delivery vehicles to promote intestinal lymphatic drug transport. Adv. Mater. 33, 2104139 (2021).

    Article  Google Scholar 

  151. Valverde, M. G. et al. Biomimetic models of the glomerulus. Nat. Rev. Nephrol. 18, 241–257 (2022).

    Article  Google Scholar 

  152. He, M., Zhu, L., Yang, N., Li, H. & Yang, Q. Recent advances of oral film as platform for drug delivery. Int. J. Pharm. 604, 120759 (2021).

    Article  Google Scholar 

  153. Hua, S. Advances in drug formulation of the sublingual and buccal routes for gastrointestinal drug delivery. Front. Pharmacol. 10, 1328 (2019).

    Article  Google Scholar 

  154. Fonseca-Santos, B. & Chorilli, M. An overview of polymeric dosage forms in buccal drug delivery: state of art, design of formulations and their in vivo performance evaluation. Mater. Sci. Eng. C. Mater. Biol. Appl. 86, 129–143 (2018).

    Article  Google Scholar 

  155. Jacob, S. et al. An updated overview of the emerging role of patch and film-based buccal delivery systems. Pharmaceutics 13, 1206 (2021).

    Article  Google Scholar 

  156. Nguyen, O. O. T. et al. Oral cavity: an open horizon for nanopharmaceuticals. J. Pharm. Invest. 51, 413–424 (2021).

    Article  Google Scholar 

  157. Camargo, L. G. et al. Development of bioadhesive polysaccharide-based films for topical release of the immunomodulatory agent imiquimod on oral mucosa lesions. Eur. Polym. J. 151, 110422 (2021).

    Article  Google Scholar 

  158. Alrimawi, B. H., Chan, M. Y., Ooi, X. Y., Chan, S. Y. & Goh, C. F. The interplay between drug and sorbitol contents determines the mechanical and swelling properties of potential rice starch films for buccal drug delivery. Polymers 13, 578 (2021).

    Article  Google Scholar 

  159. Macedo, A. S. et al. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release 320, 125–141 (2020).

    Article  Google Scholar 

  160. Oezcelik, A. & DeMeester, S. R. General anatomy of the esophagus. Thorac. Surg. Clin. 21, 289–297 (2011).

    Article  Google Scholar 

  161. Liu, H. et al. Esophagus-Inspired actuator for solid transportation via the synergy of lubrication and contractile deformation. Adv. Sci. 8, 2102800 (2021).

    Article  Google Scholar 

  162. Lin, C., Liu, W., Xie, J., Li, W. & Zhou, Z. The lubricating function of mucin at the gastroscope device-esophagus interface. Tribol. Lett. 68, 82 (2020).

    Article  Google Scholar 

  163. Lottrup, C., Khan, A., Rangan, V. & Clarke, J. O. Esophageal physiology–an overview of esophageal disorders from a pathophysiological point of view. Ann. NY Acad. Sci. 1481, 182–197 (2020).

    Article  Google Scholar 

  164. Raman, R. et al. Light-degradable hydrogels as dynamic triggers for gastrointestinal applications. Sci. Adv. 6, eaay0065 (2020).

    Article  Google Scholar 

  165. Babaee, S. et al. Temperature-responsive biometamaterials for gastrointestinal applications. Sci. Transl Med. 11, eaau8581 (2019). This article reports a flower-like, shape-memory, reconfigurable oesophageal delivery device that remains folded during oral administration, deploys to penetrate the mucosa and deliver drugs, and refolds upon contact with warm water.

    Article  Google Scholar 

  166. Sathish, D., Himabindu, S., Kumar, Y. S., Shayeda & Rao, Y. M. Floating drug delivery systems for prolonging gastric residence time: a review. Curr. Drug Deliv. 8, 494–510 (2011).

    Article  Google Scholar 

  167. Prescott, L. F. Gastrointestinal absorption of drugs. Med. Clin. North Am. 58, 907–916 (1974).

    Article  Google Scholar 

  168. Chen, Q. et al. SIDT1-dependent absorption in the stomach mediates host uptake of dietary and orally administered microRNAs. Cell. Res. 31, 247–258 (2021).

    Article  Google Scholar 

  169. Biswas, N. & Sahoo, R. K. Tapioca starch blended alginate mucoadhesive-floating beads for intragastric delivery of Metoprolol Tartrate. Int. J. Biol. Macromol. 83, 61–70 (2016).

    Article  Google Scholar 

  170. Abramson, A. et al. Oral delivery of systemic monoclonal antibodies, peptides and small molecules using gastric auto-injectors. Nat. Biotechnol. 40, 103–109 (2022).

    Article  Google Scholar 

  171. Angsantikul, P. et al. Coating nanoparticles with gastric epithelial cell membrane for targeted antibiotic delivery against helicobacter pylori infection. Adv. Therap. 1, 1800016 (2018).

    Article  Google Scholar 

  172. Cheng, Z. J. et al. Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. Regen. Biomater. 8, rbab008 (2021).

    Article  Google Scholar 

  173. Walker, D., Käsdorf, B. T., Jeong, H.-H., Lieleg, O. & Fischer, P. Enzymatically active biomimetic micropropellers for the penetration of mucin gels. Sci. Adv. 1, e150050 (2015).

    Article  Google Scholar 

  174. Choi, H., Jeong, S. H., Kim, T. Y., Yi, J. & Hahn, S. K. Bioinspired urease-powered micromotor as an active oral drug delivery carrier in stomach. Bioact. Mater. 9, 54–62 (2022).

    Article  Google Scholar 

  175. de Ávila, B. E. F. et al. Micromotor-enabled active drug delivery for in vivo treatment of stomach infection. Nat. Commun. 8, 272 (2017). This article reports clarithromycin-loaded gastric micromotors that are propelled by the gas-producing reaction of Mg and H+ to release drugs in the stomach for the treatment of H. pylori infection.

    Article  Google Scholar 

  176. Stojanović, O. et al. Dietary excess regulates absorption and surface of gut epithelium through intestinal PPARα. Nat. Commun. 12, 7031 (2021).

    Article  Google Scholar 

  177. Lee, S. H. et al. Strategic approaches for colon targeted drug delivery: an overview of recent advancements. Pharmaceutics 12, 68 (2020).

    Article  Google Scholar 

  178. Maher, S., Mrsny, R. J. & Brayden, D. J. Intestinal permeation enhancers for oral peptide delivery. Adv. Drug Deliv. Rev. 106, 277–319 (2016).

    Article  Google Scholar 

  179. Hewes, S. A. et al. In vitro models of the small intestine: engineering challenges and engineering solutions. Tissue Eng. Part B Rev. 26, 313–326 (2020).

    Article  Google Scholar 

  180. Yue, H., Chang, X., Liu, J., Zhou, D. & Li, L. Wheel-like magnetic-driven microswarm with a band-aid imitation for patching up microscale intestinal perforation. ACS Appl. Mater. Interfaces 14, 8743–8752 (2022).

    Article  Google Scholar 

  181. Gagnière, J. et al. Gut microbiota imbalance and colorectal cancer. World J. Gastroenterol. 22, 501–518 (2016).

    Article  Google Scholar 

  182. Paulraj, T., Riazanova, A. V. & Svagan, A. J. Bioinspired capsules based on nanocellulose, xyloglucan and pectin–the influence of capsule wall composition on permeability properties. Acta Biomater. 69, 196–205 (2018).

    Article  Google Scholar 

  183. Ma, Y. et al. Oral nanotherapeutics based on Antheraea pernyi silk fibroin for synergistic treatment of ulcerative colitis. Biomaterials 282, 121410 (2022).

    Article  Google Scholar 

  184. Zhou, J. J. et al. An injectable peptide hydrogel constructed of natural antimicrobial peptide J-1 and ADP shows anti-infection, hemostasis, and antiadhesion efficacy. ACS Nano 16, 7636–7650 (2022).

    Article  Google Scholar 

  185. Yu, J. et al. Active generation and magnetic actuation of microrobotic swarms in bio-fluids. Nat. Commun. 10, 5631 (2019).

    Article  Google Scholar 

  186. Wu, Z. et al. A swarm of slippery micropropellers penetrates the vitreous body of the eye. Sci. Adv. 4, eaat4388 (2018).

    Article  Google Scholar 

  187. Schudel, A. et al. Programmable multistage drug delivery to lymph nodes. Nat. Nanotechnol. 15, 491–499 (2020).

    Article  Google Scholar 

  188. Luo, C. et al. Stimulus-responsive nanomaterials containing logic gates for biomedical applications. Cell Rep. Phys. Sci. 2, 100350 (2021).

    Article  Google Scholar 

  189. Zhang, P. et al. A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates. Nat. Chem. 12, 381–390 (2020).

    Article  Google Scholar 

  190. Harimoto, T. et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. 40, 1259–1269 (2022).

    Article  Google Scholar 

  191. Nikolaev, M. et al. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578 (2020).

    Article  Google Scholar 

  192. Jing, B. et al. Chitosan oligosaccharides regulate the occurrence and development of enteritis in a human gut-on-a-chip. Front. Cell Dev. Biol. 10, 877892 (2022).

    Article  Google Scholar 

  193. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  Google Scholar 

  194. Joslin, E. P. The routine treatment of diabetes with insulin. J. Am. Med. Assoc. 80, 1581–1583 (1923).

    Article  Google Scholar 

  195. Harrison, G. A. Insulin in alcoholic solution by the mouth. Br. Med. J. 1923, 1204–1205 (1923).

    Article  Google Scholar 

  196. Eiseman, B., Silen, W., Bascom, G. S. & Kauvar, A. J. Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44, 854–859 (1958).

    Google Scholar 

  197. Donlan, A. N. & Petri, W. A. Jr. Mucosal immunity and the eradication of polio. Science 368, 362–363 (2020).

    Article  Google Scholar 

  198. Sessa, G. & Weissmann, G. Phospholipid spherules (liposomes) as a model for biological membranes. J. Lipid Res. 9, 310–318 (1968).

    Article  Google Scholar 

  199. Gregoriadis, G. & Ryman, B. Liposomes as carriers of enzymes or drugs: a new approach to the treatment of storage diseases. Biochem. J. 124, 58 (1971).

    Article  Google Scholar 

  200. Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Helling, R. B. Construction of biologically functional bacterial plasmids in vitro. Proc. Natl Acad. Sci. USA 70, 3240–3244 (1973).

    Article  Google Scholar 

  201. Dapergolas, G. & Gregoriadis, G. Hypoglycemic effect of liposome-entrapped insulin administrated intragastrically into rats. Lancet 2, 824–827 (1976).

    Article  Google Scholar 

  202. Pan, B. T. & Johnstone, R. M. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33, 967–978 (1983).

    Article  Google Scholar 

  203. Hari, P. R., Chandy, T. & Sharma, C. P. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J. Microencapsul. 13, 319–329 (1996).

    Article  Google Scholar 

  204. Cassandra, W. How antiviral pill molnupiravir shot ahead in the COVID drug hunt. Nature https://doi.org/10.1038/d41586-021-02783-1 (2021). This news article reports the first oral antiviral COVID-19 treatment.

    Article  Google Scholar 

  205. Zhong, H., Chan, G., Hu, Y., Hu, H. & Ouyang, D. A comprehensive map of FDA-approved pharmaceutical products. Pharmaceutics 10, 263 (2018).

    Article  Google Scholar 

  206. Ebied, A. M., Elmariah, H. & Cooper-DeHoff, R. M. New drugs approved in 2021. Am. J. Med. 135, 836–839 (2022).

    Article  Google Scholar 

  207. Zocco, M. A. et al. Efficacy of lactobacillus GG in maintaining remission of ulcerative colitis. Aliment. Pharmacol. Ther. 23, 1567–1574 (2006).

    Article  Google Scholar 

  208. Braat, H. et al. A phase I trial with transgenic bacteria expressing Interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2020YFA0908200), the National Natural Science Foundation of China (T2225003 and 52073060), the Guangdong Basic and Applied Basic Research Foundation (2021B1515120054) and the Shenzhen Fundamental Research Program (JCYJ20190813152616459 and JCYJ20210324133214038).

Author information

Authors and Affiliations

Authors

Contributions

X.Z. gathered information, wrote the manuscript, and prepared the figures and tables. G.C. discussed the manuscript and drafted the figures. H.Z. edited the manuscript. L.S. discussed and edited the manuscript. Y.Z. conceived the concept and reviewed the outline.

Corresponding authors

Correspondence to Luoran Shang or Yuanjin Zhao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Guangjun Nie, Giovanni Traverso, So-Yoon Yang, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Dexedrine: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=017078

Guidance for industry and food and drug administration staff: applying human factors and usability engineering to medical devices: https://www.fda.gov/media/80481/download

Guidance for industry: design and analysis of shedding studies for virus or bacteria-based gene therapy and oncolytic products: https://www.fda.gov/media/89036/download

Guidance for industry: size, shape, and other physical attributes of generic tablets and capsules: https://www.fda.gov/media/87344/download

NIH guidelines for research involving recombinant or synthetic nucleic acid molecules: https://osp.od.nih.gov/wp-content/uploads/NIH_Guidelines.pdf

Plenity establishment registration and device listing: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfRL/rl.cfm?lid=644831&lpcd=QFQ

Rapamune: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=021110

Rybelsus: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=213051

S6(R1) Preclinical safety evaluation of biotechnology-derived pharmaceuticals: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/s6r1-preclinical-safety-evaluation-biotechnology-derived-pharmaceuticals

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Chen, G., Zhang, H. et al. Bioinspired oral delivery devices. Nat Rev Bioeng 1, 208–225 (2023). https://doi.org/10.1038/s44222-022-00006-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-022-00006-4

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research