Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bioinspired chiral inorganic nanomaterials

Abstract

From small molecules to entire organisms, evolution has refined biological structures at the nanoscale, microscale and macroscale to be chiral—that is, mirror dissymmetric. Chirality results in biological, chemical and physical properties that can be influenced by circularly polarized electromagnetic fields. Chiral nanoscale materials can be designed that mimic, refine and advance biological chiral geometries, to engineer optical, physical and chemical properties for applications in photonics, sensing, catalysis and biomedicine. In this Review, we discuss the mechanisms underlying chirality transfer in nature and provide design principles for chiral nanomaterials. We highlight how chiral features emerge in inorganic materials during the chemical synthesis of chiral nanostructures, and outline key applications for inorganic chiral nanomaterials, including promising designs for biomedical applications, such as biosensing and immunomodulation. We conclude with an outlook to future opportunities and challenges, including the need for refined characterization techniques.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chirality in biology.
Fig. 2: Chiral inorganic nanomaterials synthesized from enantioselective interaction.
Fig. 3: Chiral inorganic nanomaterials synthesized by templating of worm-like helical micelles.
Fig. 4: Photon and external field-induced chiral nanostructures.
Fig. 5: Applications of bioinspired chiral inorganic nanomaterials.

Similar content being viewed by others

References

  1. Bar-Cohen, Y. Biomimetics — using nature to inspire human innovation. Bioinspir. Biomim. 1, P1–P12 (2006).

    Article  Google Scholar 

  2. Rus, D. & Tolley, M. T. Design, fabrication and control of soft robots. Nature 521, 467–475 (2015).

    Article  Google Scholar 

  3. Mussa-Ivaldi, S. Real brains for real robots. Nature 408, 305–306 (2000).

    Article  Google Scholar 

  4. Kalb, C. Leonardo’s enduring brilliance. Natl. Geogr. Mag. 56–93 (May 2019).

  5. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  Google Scholar 

  6. Garcia, R. & Herruzo, E. T. The emergence of multifrequency force microscopy. Nat. Nanotechnol. 7, 217–226 (2012).

    Article  Google Scholar 

  7. No authours listed. ‘Plenty of room’ revisited. Nat. Nanotechnol. 4, 781 (2009).

    Article  Google Scholar 

  8. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    Article  Google Scholar 

  9. Nicholas, A. K. Self-assembly of inorganic nanoparticles: ab ovo. Europhys. Lett. 119, 66008 (2017).

    Article  Google Scholar 

  10. Weiner, S. & Wagner, H. D. The material bone: structure–mechanical function relations. Annu. Rev. Mater. Sci. 28, 271–298 (1998).

    Article  Google Scholar 

  11. Seeman, N. C. & Belcher, A. M. Emulating biology: building nanostructures from the bottom up. Proc. Natl Acad. Sci. USA 99, 6451–6455 (2002).

    Article  Google Scholar 

  12. Wei, G. et al. Self-assembling peptide and protein amyloids: from structure to tailored function in nanotechnology. Chem. Soc. Rev. 46, 4661–4708 (2017).

    Article  Google Scholar 

  13. Badylak, S., Freytes, D. & Gilbert, T. Extracellular matrix as a biological scaffold material: structure and function. Acta Biomater. 5, 1–13 (2009).

    Article  Google Scholar 

  14. Kotov, N. A., Meldrum, F. C., Wu, C. & Fendler, J. H. Monoparticulate layer and Langmuir–Blodgett-type multiparticulate layers of size-quantized cadmium sulfide clusters: a colloid-chemical approach to superlattice construction. J. Phys. Chem. 98, 2735–2738 (1994).

    Article  Google Scholar 

  15. Ilton, M. et al. The principles of cascading power limits in small, fast biological and engineered systems. Science 360, eaao1082 (2018).

    Article  Google Scholar 

  16. Pulido, A. et al. Functional materials discovery using energy–structure–function maps. Nature 543, 657–664 (2017).

    Article  Google Scholar 

  17. Kotov, N. A., Dékány, I. & Fendler, J. H. Ultrathin graphite oxide–polyelectrolyte composites prepared by self-assembly: transition between conductive and non-conductive states. Adv. Mater. 8, 637–641 (1996).

    Article  Google Scholar 

  18. Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418–2421 (2002).

    Article  Google Scholar 

  19. Kotov, N. A., Dekany, I. & Fendler, J. H. Layer-by-layer self-assembly of polyelectrolyte–semiconductor nanoparticle composite films. J. Phys. Chem. 99, 13065–13069 (1995).

    Article  Google Scholar 

  20. Whitesides, G. Nanoscience, nanotechnology, and chemistry. Small 1, 172–179 (2005).

    Article  Google Scholar 

  21. Guerrero-Martínez, A., Grzelczak, M. & Liz-Marzán, L. M. Molecular thinking for nanoplasmonic design. ACS Nano 6, 3655–3662 (2012).

    Article  Google Scholar 

  22. Levin, A. et al. Biomimetic peptide self-assembly for functional materials. Nat. Rev. Chem. 4, 615–634 (2020).

    Article  Google Scholar 

  23. Kotov, N. A. (ed.) Nanoparticle Assemblies and Superstructures (CRC, 2016).

  24. Dzenis, Y. Spinning continuous fibers for nanotechnology. Science 304, 1917–1919 (2004).

    Article  Google Scholar 

  25. Gates, B. D. et al. New approaches to nanofabrication: molding, printing, and other techniques. Chem. Rev. 105, 1171–1196 (2005).

    Article  Google Scholar 

  26. Huebsch, N. & Mooney, D. J. Inspiration and application in the evolution of biomaterials. Nature 462, 426–432 (2009).

    Article  Google Scholar 

  27. Zhang, S. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol. 21, 1171–1178 (2003).

    Article  Google Scholar 

  28. Jiang, W. et al. Emergence of complexity in hierarchically organized chiral particles. Science 368, 642–648 (2020).

    Article  Google Scholar 

  29. Kotov, N. A., Meldrum, F. C., Fendler, J. H., Tombacz, E. & Dekany, I. Spreading of clay organocomplexes on aqueous solutions: construction of Langmuir–Blodgett clay organocomplex multilayer films. Langmuir 10, 3797–3804 (1994).

    Article  Google Scholar 

  30. Sarikaya, M. Biomimetics: materials fabrication through biology. Proc. Natl Acad. Sci. USA 96, 14183–14185 (1999).

    Article  Google Scholar 

  31. Barthelat, F. Biomimetics for next generation materials. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 365, 2907–2919 (2007).

    Article  MathSciNet  Google Scholar 

  32. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  Google Scholar 

  33. Buschmann, H., Thede, R. & Heller, D. New developments in the origins of the homochirality of biologically relevant molecules. Angew. Chem. Int. Ed. 39, 4033–4036 (2000).

    Article  Google Scholar 

  34. Pasteur, M. L. Recherches sur les relations qui peuvent exister entre la forme cristalline, la composition chimique et les sens de la polarisation rotatoire [French]. Ann. Chim. Phys 24, 442–460 (1848).

    Google Scholar 

  35. Thomson, K. & Baron, W. Baltimore Lectures on Molecular Dynamics and the Wave Theory of Light (C. J. Clays and Sons, 1904).

  36. Guijarro, A. & Yus, M. The Origin of Chirality in the Molecules of Life (Royal Society of Chemistry, 2008).

  37. Barron, L. D. & Barron, L. D. Molecular Light Scattering and Optical Activity (Cambridge Univ. Press, 2004).

  38. Guerrero-Martínez, A., Alonso-Gómez, J. L., Auguié, B., Cid, M. M. & Liz-Marzán, L. M. From individual to collective chirality in metal nanoparticles. Nano Today 6, 381–400 (2011).

    Article  Google Scholar 

  39. Berova, N., Bari, L., Di & Pescitelli, G. Application of electronic circular dichroism in configurational and conformational analysis of organic compounds. Chem. Soc. Rev. 36, 914 (2007).

    Article  Google Scholar 

  40. Kelly, S. & Price, N. The use of circular dichroism in the investigation of protein structure and function. Curr. Protein Pept. Sci. 1, 349–384 (2000).

    Article  Google Scholar 

  41. Vukusic, P. Evolutionary photonics with a twist. Science 325, 398–399 (2009).

    Article  Google Scholar 

  42. Sharma, V., Crne, M., Park, J. O. & Srinivasarao, M. Structural origin of circularly polarized iridescence in jeweled beetles. Science 325, 449–451 (2009). This article reports the ability of the scarab beetle to reflect structural colour from its external surfaces in the form of left-handed CPL.

    Article  Google Scholar 

  43. Pizzarello, S. & Weber, A. L. Prebiotic amino acids as asymmetric catalysts. Science 303, 1151 (2004).

    Article  Google Scholar 

  44. Parker, A. R. & Townley, H. E. Biomimetics of photonic nanostructures. Nat. Nanotechnol. 2, 347–353 (2007).

    Article  Google Scholar 

  45. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    Article  Google Scholar 

  46. Chen, W. et al. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett. 9, 2153–2159 (2009).

    Article  Google Scholar 

  47. Pendry, J. B. A Chiral route to negative refraction. Science 306, 1353–1355 (2004).

    Article  Google Scholar 

  48. Wang, B., Zhou, J., Koschny, T., Kafesaki, M. & Soukoulis, C. M. Chiral metamaterials: simulations and experiments. J. Opt. A Pure Appl. Opt. 11, 114003 (2009).

    Article  Google Scholar 

  49. Liu, Y. & Zhang, X. Metamaterials: a new frontier of science and technology. Chem. Soc. Rev. 40, 2494 (2011).

    Article  Google Scholar 

  50. Ma, W. et al. Chiral inorganic nanostructures. Chem. Rev. 117, 8041–8093 (2017).

    Article  Google Scholar 

  51. Fan, J. & Kotov, N. A. Chiral nanoceramics. Adv. Mater. 32, 1906738 (2020).

    Article  Google Scholar 

  52. Lv, J. et al. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 6, 125–145 (2022).

    Article  Google Scholar 

  53. Ahn, H.-Y. et al. Bioinspired toolkit based on intermolecular encoder toward evolutionary 4D chiral plasmonic materials. Acc. Chem. Res. 52, 2768–2783 (2019).

    Article  Google Scholar 

  54. Ozturk, S. F. & Sasselov, D. D. On the origins of life’s homochirality: inducing enantiomeric excess with spin-polarized electrons. Proc. Natl Acad. Sci. USA 119, e2204765119 (2022).

    Article  Google Scholar 

  55. Kuncha, S. K., Kruparani, S. P. & Sankaranarayanan, R. Chiral checkpoints during protein biosynthesis. J. Biol. Chem. 294, 16535–16548 (2019).

    Article  Google Scholar 

  56. Melnikov, S. V. et al. Mechanistic insights into the slow peptide bond formation with d-amino acids in the ribosomal active site. Nucleic Acids Res. 47, 2089–2100 (2019).

    Article  Google Scholar 

  57. Fujii, N. N., Takata, T. & Fujii, N. N. Quantitative analysis of isomeric (l-α-, l-β-, d-α-, d-β-)aspartyl residues in proteins from elderly donors. J. Pharm. Biomed. Anal. 116, 25–33 (2015).

    Article  Google Scholar 

  58. Sakaue, H., Kinouchi, T., Fujii, N. N., Takata, T. & Fujii, N. N. Isomeric replacement of a single aspartic acid induces a marked change in protein function: the example of ribonuclease A. ACS Omega 2, 260–267 (2017).

    Article  Google Scholar 

  59. Abdulbagi, M., Wang, L., Siddig, O., Di, B. & Li, B. d-Amino acids and d-amino acid-containing peptides: potential disease biomarkers and therapeutic targets? Biomolecules 11, 1716 (2021).

    Article  Google Scholar 

  60. Nakamura, M. & Hashimoto, T. Mechanistic insights into plant chiral growth. Symmetry 12, 2056 (2020).

    Article  Google Scholar 

  61. Thitamadee, S., Tuchihara, K. & Hashimoto, T. Microtubule basis for left-handed helical growth in arabidopsis. Nature 417, 193–196 (2002).

    Article  Google Scholar 

  62. Furutani, I. et al. The SPIRAL genes are required for directional control of cell elongation in Aarabidopsis thaliana. Development 127, 4443–4453 (2000).

    Article  Google Scholar 

  63. Lebreton, G. et al. Molecular to organismal chirality is induced by the conserved myosin 1D. Science 362, 949–952 (2018).

    Article  Google Scholar 

  64. Manson, M. D. Dynamic motors for bacterial flagella. Proc. Natl Acad. Sci. USA 107, 11151–11152 (2010).

    Article  Google Scholar 

  65. Yuan, J., Fahrner, K. A., Turner, L. & Berg, H. C. Asymmetry in the clockwise and counterclockwise rotation of the bacterial flagellar motor. Proc. Natl Acad. Sci. USA 107, 12846–12849 (2010).

    Article  Google Scholar 

  66. Mears, P. J., Koirala, S., Rao, C. V., Golding, I. & Chemla, Y. R. Escherichia coli swimming is robust against variations in flagellar number. eLife 3, e01916 (2014).

    Article  Google Scholar 

  67. Mathijssen, A. J. T. M. et al. Oscillatory surface rheotaxis of swimming E. coli bacteria. Nat. Commun. 10, 3434 (2019).

    Article  Google Scholar 

  68. DiLuzio, W. R. et al. Escherichia coli swim on the right-hand side. Nature 435, 1271–1274 (2005).

    Article  Google Scholar 

  69. Brady, P. & Cummings, M. Differential response to circularly polarized light by the jewel scarab beetle Chrysina gloriosa. Am. Nat. 175, 614–620 (2010).

    Article  Google Scholar 

  70. Warrant, E. J. Polarisation vision: beetles see circularly polarised light. Curr. Biol. 20, R610–R612 (2010).

    Article  Google Scholar 

  71. Cheng, L., Wang, L. & Karlsson, A. M. Image analyses of two crustacean exoskeletons and implications of the exoskeletal microstructure on the mechanical behavior. J. Mater. Res. 23, 2854–2872 (2008).

    Article  Google Scholar 

  72. Yang, R., Zaheri, A., Gao, W., Hayashi, C. & Espinosa, H. D. AFM identification of beetle exocuticle: Bouligand structure and nanofiber anisotropic elastic properties. Adv. Funct. Mater. 27, 1603993 (2017).

    Article  Google Scholar 

  73. Suksangpanya, N., Yaraghi, N. A., Kisailus, D. & Zavattieri, P. Twisting cracks in bouligand structures. J. Mech. Behav. Biomed. Mater. 76, 38–57 (2017).

    Article  Google Scholar 

  74. Chiou, T.-H. et al. Circular polarization vision in a stomatopod crustacean. Curr. Biol. 18, 429–434 (2008).

    Article  Google Scholar 

  75. Daly, I. M. et al. Dynamic polarization vision in mantis shrimps. Nat. Commun. 7, 12140 (2016).

    Article  Google Scholar 

  76. Natarajan, B. & Gilman, J. W. Bioinspired bouligand cellulose nanocrystal composites: a review of mechanical properties. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 376, 20170050 (2018).

    Article  Google Scholar 

  77. Zimmermann, E. A. et al. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 4, 2634 (2013).

    Article  Google Scholar 

  78. Vignolini, S. et al. Pointillist structural color in pollia fruit. Proc. Natl Acad. Sci. USA 109, 15712–15715 (2012).

    Article  Google Scholar 

  79. Visheratina, A., Kumar, P. & Kotov, N. Engineering of inorganic nanostructures with hierarchy of chiral geometries at multiple scales. AIChE J. 68, 17438 (2022).

    Article  Google Scholar 

  80. Gianoli, E. The behavioural ecology of climbing plants. AoB Plants 7, plv013 (2015).

    Article  Google Scholar 

  81. Smyth, D. R. Helical growth in plant organs: mechanisms and significance. Development 143, 3272–3282 (2016).

    Article  Google Scholar 

  82. Wang, J.-S. et al. Hierarchical chirality transfer in the growth of towel gourd tendrils. Sci. Rep. 3, 3102 (2013).

    Article  Google Scholar 

  83. Shibazaki, Y., Shimizu, M. & Kuroda, R. Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Curr. Biol. 14, 1462–1467 (2004).

    Article  Google Scholar 

  84. Schilthuizen, M. et al. Sexual selection maintains whole-body chiral dimorphism in snails. J. Evol. Biol. 20, 1941–1949 (2007).

    Article  Google Scholar 

  85. Suzuki, M., Sasaki, T., Oaki, Y. & Imai, H. Stepwise rotation of nanometric building blocks in the aragonite helix of a pteropod shell. Cryst. Growth Des. 17, 191–196 (2017).

    Article  Google Scholar 

  86. Li, L., Weaver, J. C. & Ortiz, C. Hierarchical structural design for fracture resistance in the shell of the pteropod clio pyramidata. Nat. Commun. 6, 6216 (2015).

    Article  Google Scholar 

  87. Willinger, M. G., Checa, A. G., Bonarski, J. T., Faryna, M. & Berent, K. Biogenic crystallographically continuous aragonite helices: the microstructure of the planktonic gastropod cuvierina. Adv. Funct. Mater. 26, 553–561 (2016).

    Article  Google Scholar 

  88. Jiang, W., Yi, X. & McKee, M. D. Chiral biomineralized structures and their biomimetic synthesis. Mater. Horiz. 6, 1974–1990 (2019).

    Article  Google Scholar 

  89. Zhang, T. et al. Structure and mechanical properties of a pteropod shell consisting of interlocked helical aragonite nanofibers. Angew. Chem. Int. Ed. 50, 10361–10365 (2011).

    Article  Google Scholar 

  90. Soldati, A. L., Jacob, D. E., Glatzel, P., Swarbrick, J. C. & Geck, J. Element substitution by living organisms: the case of manganese in mollusc shell aragonite. Sci. Rep. 6, 22514 (2016).

    Article  Google Scholar 

  91. Eguchi, N. O., Ujiié, H., Kawahata, H. & Taira, A. Seasonal variations in planktonic foraminifera at three sediment traps in the subarctic, transition and subtropical zones of the central north Pacific Ocean. Mar. Micropaleontol. 48, 149–163 (2003).

    Article  Google Scholar 

  92. Georgescu, M. D. Evolutionary classification of the upper cretaceous (Turonian–Lower Campanian) planktic foraminifera with incipient meridional ornamentation. J. Micropalaeontol. 29, 149–161 (2010).

    Article  Google Scholar 

  93. Addadi, L. & Weiner, S. Crystals, asymmetry and life. Nature 411, 753–755 (2001).

    Article  Google Scholar 

  94. Orme, C. A. et al. Formation of chiral morphologies through selective binding of amino acids to calcite surface steps. Nature 411, 775–779 (2001).

    Article  Google Scholar 

  95. Kabalah-Amitai, L. et al. Vaterite crystals contain two interspersed crystal structures. Science 340, 454–457 (2013).

    Article  Google Scholar 

  96. Jiang, W. et al. Chiral acidic amino acids induce chiral hierarchical structure in calcium carbonate. Nat. Commun. 8, 15066 (2017).

    Article  Google Scholar 

  97. Young, J. R. Biomineralization within vesicles: the calcite of coccoliths. Rev. Mineral. Geochem. 54, 189–215 (2003).

    Article  Google Scholar 

  98. Branson, O. et al. Nanometer-scale chemistry of a calcite biomineralization template: implications for skeletal composition and nucleation. Proc. Natl Acad. Sci. USA 113, 12934–12939 (2016).

    Article  Google Scholar 

  99. Adam, D. Chemistry Nobel 2001. Nature https://doi.org/10.1038/news011011-17 (2001).

    Article  Google Scholar 

  100. Hananel, U., Ben-Moshe, A., Diamant, H. & Markovich, G. Spontaneous and directed symmetry breaking in the formation of chiral nanocrystals. Proc. Natl Acad. Sci. USA 116, 11159–11164 (2019).

    Article  Google Scholar 

  101. Lan, X. & Wang, Q. Self-assembly of chiral plasmonic nanostructures. Adv. Mater. 28, 10499–10507 (2016).

    Article  Google Scholar 

  102. Hentschel, M., Schäferling, M., Duan, X., Giessen, H. & Liu, N. Chiral plasmonics. Sci. Adv. 3, e1602735 (2017).

    Article  Google Scholar 

  103. Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2, 367–374 (2003).

    Article  Google Scholar 

  104. Hazen, R. M. Progress in Biological Chirality (Elsevier, 2004).

  105. Sholl, D. S. Adsorption of chiral hydrocarbons on chiral platinum surfaces. Langmuir 14, 862–867 (1998).

    Article  Google Scholar 

  106. Ahmadi, A., Attard, G., Feliu, J. & Rodes, A. Surface reactivity at “chiral” platinum surfaces. Langmuir 15, 2420–2424 (1999).

    Article  Google Scholar 

  107. Shukla, N. & Gellman, A. J. Chiral metal surfaces for enantioselective processes. Nat. Mater. 19, 939–945 (2020). This article provides insight into atomic-level inorganic chirality and how such surfaces could be used for enantioselective processes.

    Article  Google Scholar 

  108. Im, S. W. et al. Chiral surface and geometry of metal nanocrystals. Adv. Mater. 32, 1905758 (2020).

    Article  Google Scholar 

  109. Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of chiral compounds from chiral Cu(643) and achiral Cu(111) surfaces. J. Am. Chem. Soc. 124, 2384–2392 (2002).

    Article  Google Scholar 

  110. Fajín, J. L. C., Gomes, J. R. B. & Cordeiro, M. N. D. S. DFT study of the adsorption of D-(L-)cysteine on flat and chiral stepped gold surfaces. Langmuir 29, 8856–8864 (2013).

    Article  Google Scholar 

  111. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318, 430–433 (2007).

    Article  Google Scholar 

  112. Nakashima, T., Kobayashi, Y. & Kawai, T. Optical activity and chiral memory of thiol-capped CdTe nanocrystals. J. Am. Chem. Soc. 131, 10342–10343 (2009).

    Article  Google Scholar 

  113. Morales-Vidal, J., López, N. & Ortuño, M. A. Chirality transfer in gold nanoparticles by l-cysteine amino acid: a first-principles study. J. Phys. Chem. C. 123, 13758–13764 (2019).

    Article  Google Scholar 

  114. Jiang, W., Pacella, M. S., Vali, H., Gray, J. J. & McKee, M. D. Chiral switching in biomineral suprastructures induced by homochiral l-amino acid. Sci. Adv. 4, eaas9819 (2018).

    Article  Google Scholar 

  115. Kulp, E. A. & Switzer, J. A. Electrochemical biomineralization: the deposition of calcite with chiral morphologies. J. Am. Chem. Soc. 129, 15120–15121 (2007).

    Article  Google Scholar 

  116. Wang, P. P., Yu, S.-J. J., Govorov, A. O. & Ouyang, M. Cooperative expression of atomic chirality in inorganic nanostructures. Nat. Commun. 8, 14312 (2017).

    Article  Google Scholar 

  117. Yeom, J. et al. Chiromagnetic nanoparticles and gels. Science 359, 309–314 (2018).

    Article  Google Scholar 

  118. Kim, H. et al. Tyrosyltyrosylcysteine-directed synthesis of chiral cobalt oxide nanoparticles and peptide conformation analysis. ACS Nano 15, 979–988 (2021).

    Article  Google Scholar 

  119. Po, H. et al. Chiral helices formation by self-assembled molecules on semiconductor flexible substrates. ACS Nano 16, 2901–2909 (2022).

    Article  Google Scholar 

  120. Ben-Moshe, A. et al. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5, 4302 (2014).

    Article  Google Scholar 

  121. Ben-Moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 372, 729–733 (2021).

    Article  Google Scholar 

  122. Varanda, L. C. et al. Size- and shape-controlled nanomaterials based on modified polyol and thermal decomposition approaches. A brief review. An. Acad. Bras. Cienc. 91, 04 (2019).

    Article  Google Scholar 

  123. Dunne, P. W., Starkey, C. L., Gimeno-Fabra, M. & Lester, E. H. The rapid size- and shape-controlled continuous hydrothermal synthesis of metal sulphide nanomaterials. Nanoscale 6, 2406–2418 (2014).

    Article  Google Scholar 

  124. Ahn, H.-Y. Y., Lee, H.-E. E., Jin, K. & Nam, K. T. Extended gold nano-morphology diagram: synthesis of rhombic dodecahedra using CTAB and ascorbic acid. J. Mater. Chem. C Mater. 1, 6861 (2013).

    Article  Google Scholar 

  125. Xia, Y., Xia, X. & Peng, H.-C. Shape-controlled synthesis of colloidal metal nanocrystals: thermodynamic versus kinetic products. J. Am. Chem. Soc. 137, 7947–7966 (2015).

    Article  Google Scholar 

  126. Grzelczak, M., Pérez-Juste, J., Mulvaney, P. & Liz-Marzán, L. M. Shape control in gold nanoparticle synthesis. Chem. Soc. Rev. 37, 1783 (2008).

    Article  Google Scholar 

  127. Hong, J. W., Lee, S.-U. U., Lee, Y. W. & Han, S. W. Hexoctahedral Au nanocrystals with high-index facets and their optical and surface-enhanced Raman scattering properties. J. Am. Chem. Soc. 134, 4565–4568 (2012).

    Article  Google Scholar 

  128. Jana, N. R., Gearheart, L. & Murphy, C. J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389–1393 (2001).

    Article  Google Scholar 

  129. Thambi, V. et al. Synthesis of complex nanoparticle geometries via PH-controlled overgrowth of gold nanorods. ACS Omega 4, 13733–13739 (2019).

    Article  Google Scholar 

  130. Personick, M. L. & Mirkin, C. A. Making sense of the mayhem behind shape control in the synthesis of gold nanoparticles. J. Am. Chem. Soc. 135, 18238–18247 (2013).

    Article  Google Scholar 

  131. Sau, T. K. & Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 126, 8648–8649 (2004).

    Article  Google Scholar 

  132. Lee, H.-E. E. et al. Concave rhombic dodecahedral Au nanocatalyst with multiple high-index facets for CO2 reduction. ACS Nano 9, 8384–8393 (2015).

    Article  Google Scholar 

  133. Lee, H.-E. et al. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556, 360–365 (2018). This article reports the use of enantioselective interaction between an inorganic surface and chiral molecules to chemically synthesize 3D chiral gold nanoparticles.

    Article  Google Scholar 

  134. Cho, N. H. et al. Uniform chiral gap synthesis for high dissymmetry factor in single plasmonic gold nanoparticle. ACS Nano 14, 3595–3602 (2020).

    Article  Google Scholar 

  135. Lee, H.-E. et al. Cysteine-encoded chirality evolution in plasmonic rhombic dodecahedral gold nanoparticles. Nat. Commun. 11, 263 (2020).

    Article  Google Scholar 

  136. Lee, Y. Y. et al. Chiral 432 helicoid ii nanoparticle synthesized with glutathione and poly(T)20 nucleotide. ChemNanoMat 6, 362–367 (2020).

    Article  Google Scholar 

  137. Kim, H. et al. γ‐Glutamylcysteine‐ and cysteinylglycine‐directed growth of chiral gold nanoparticles and their crystallographic analysis. Angew. Chem. Int. Ed. 59, 12976–12983 (2020).

    Article  Google Scholar 

  138. Cho, N. H. et al. Adenine oligomer directed synthesis of chiral gold nanoparticles. Nat. Commun. 13, 3831 (2022).

    Article  Google Scholar 

  139. Cho, N. H. et al. Cysteine induced chiral morphology in palladium nanoparticle. Part. Part. Syst. Charact. 36, 1900062 (2019).

    Article  Google Scholar 

  140. Wennerström, H. Micelles. Physical chemistry of surfactant association. Phys. Rep. 52, 1–86 (1979).

    Article  Google Scholar 

  141. van Meer, G., Voelker, D. R. & Feigenson, G. W. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9, 112–124 (2008).

    Article  Google Scholar 

  142. Holmberg, K. Surfactant-templated nanomaterials synthesis. J. Colloid Interface Sci. 274, 355–364 (2004).

    Article  Google Scholar 

  143. Seddon, A. M., Patel, H. M., Burkett, S. L. & Mann, S. Chiral templating of silica-lipid lamellar mesophase with helical tubular architecture. Angew. Chem. Int. Ed. 41, 2988–2991 (2002).

    Article  Google Scholar 

  144. Bordes, R. & Holmberg, K. Amino acid-based surfactants — do they deserve more attention? Adv. Colloid Interface Sci. 222, 79–91 (2015).

    Article  Google Scholar 

  145. Qiu, H. & Che, S. Formation mechanism of achiral amphiphile-templated helical mesoporous silicas. J. Phys. Chem. B 112, 10466–10474 (2008).

    Article  Google Scholar 

  146. Ito, T. H. et al. Generation of a chiral giant micelle. Langmuir 32, 8461–8466 (2016).

    Article  Google Scholar 

  147. Delclos, T. et al. Individualized silica nanohelices and nanotubes: tuning inorganic nanostructures using lipidic self-assemblies. Nano Lett. 8, 1929–1935 (2008).

    Article  Google Scholar 

  148. Yang, S. et al. On the origin of helical mesostructures. J. Am. Chem. Soc. 128, 10460–10466 (2006).

    Article  Google Scholar 

  149. Peng, L. et al. Spiral self-assembly of lamellar micelles into multi-shelled hollow nanospheres with unique chiral architecture. Sci. Adv. 7, eabi7403 (2021).

    Article  Google Scholar 

  150. Jin, H. et al. Control of morphology and helicity of chiral mesoporous silica. Adv. Mater. 18, 593–596 (2006).

    Article  Google Scholar 

  151. Che, S. et al. Synthesis and characterization of chiral mesoporous silica. Nature 429, 281–284 (2004). This article demonstrates the mineralization of chiral micelles into silica nanostructures with defined chiral morphologies.

    Article  Google Scholar 

  152. Wang, B. et al. Chiral mesostructured silica nanofibers of MCM-41. Angew. Chem. Int. Ed. 45, 2088–2090 (2006).

    Article  Google Scholar 

  153. Han, Y., Zhao, L. & Ying, J. Y. Entropy-driven helical mesostructure formation with achiral cationic surfactant templates. Adv. Mater. 19, 2454–2459 (2007).

    Article  Google Scholar 

  154. Zhong, S.-L., Zhang, L.-F. & Xu, A.-W. Entropically driven formation of ultralong helical mesostructured organosilica nanofibers. Small 10, 888–894 (2014).

    Article  Google Scholar 

  155. Liu, S. et al. Synthesis of chiral TiO2 nanofibre with electron transition-based optical activity. Nat. Commun. 3, 1215 (2012).

    Article  Google Scholar 

  156. Duan, Y. et al. Optically active chiral CuO “nanoflowers.” J. Am. Chem. Soc. 136, 7193–7196 (2014).

    Article  Google Scholar 

  157. Qian, Y., Duan, Y. & Che, S. Chiral nanostructured CuO films with multiple optical activities. Adv. Opt. Mater. 5, 1601013 (2017).

    Article  Google Scholar 

  158. Jana, N. R., Gearheart, L. & Murphy, C. J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. J. Phys. Chem. B 105, 4065–4067 (2001).

    Article  Google Scholar 

  159. González-Rubio, G. et al. Disconnecting symmetry breaking from seeded growth for the reproducible synthesis of high quality gold nanorods. ACS Nano 13, 4424–4435 (2019).

    Article  Google Scholar 

  160. González-Rubio, G. et al. Micelle-directed chiral seeded growth on anisotropic gold nanocrystals. Science 368, 1472–1477 (2020). This article reports the use of mixed chiral micelles as a template for the synthesis of chiral gold nanorods that exhibit plasmon modes with high dissymmetry factors.

    Article  Google Scholar 

  161. Heyvaert, W. et al. Quantification of the helical morphology of chiral gold nanorods. ACS Mater. Lett. 4, 642–649 (2022).

    Article  Google Scholar 

  162. Guerrero-Martínez, A., Pérez-Juste, J., Carbó-Argibay, E., Tardajos, G. & Liz-Marzán, L. M. Gemini-surfactant-directed self-assembly of monodisperse gold nanorods into standing superlattices. Angew. Chem. Int. Ed. 48, 9484–9488 (2009).

    Article  Google Scholar 

  163. Fernández, C. et al. Nucleation of amyloid oligomers by RepA-WH1-prionoid-functionalized gold nanorods. Angew. Chem. Int. Ed. 55, 11237–11241 (2016).

    Article  Google Scholar 

  164. Noorduin, W. L. et al. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light. Nat. Chem. 1, 729–732 (2009).

    Article  Google Scholar 

  165. Shibata, T. et al. Amplification of a slight enantiomeric imbalance in molecules based on asymmetric autocatalysis: the first correlation between high enantiomeric enrichment in a chiral molecule and circularly polarized light. J. Am. Chem. Soc. 120, 12157–12158 (1998).

    Article  Google Scholar 

  166. Wu, W. & Pauly, M. Chiral plasmonic nanostructures: recent advances in their synthesis and applications. Mater. Adv. 3, 186–215 (2022).

    Article  Google Scholar 

  167. Srivastava, S. et al. Light-controlled self-assembly of semiconductor nanoparticles into twisted ribbons. Science 327, 1355–1359 (2010).

    Article  Google Scholar 

  168. Lilly, G. D., Agarwal, A., Srivastava, S. & Kotov, N. A. Helical assemblies of gold nanoparticles. Small 7, 2004–2009 (2011).

    Article  Google Scholar 

  169. Yeom, J. et al. Chiral templating of self-assembling nanostructures by circularly polarized light. Nat. Mater. 14, 66–72 (2015).

    Article  Google Scholar 

  170. Wang, H. et al. Selectively regulating the chiral morphology of amino acid-assisted chiral gold nanoparticles with circularly polarized light. ACS Appl. Mater. Interfaces 14, 3559–3567 (2022).

    Article  Google Scholar 

  171. Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770–774 (2015).

    Article  Google Scholar 

  172. Straney, P. J. et al. Ligand-mediated deposition of noble metals at nanoparticle plasmonic hotspots. Langmuir 34, 1084–1091 (2018).

    Article  Google Scholar 

  173. Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022). This article provides an example for applications of chiral nanotechnology in immunology, and shows how chiral particles could function as vaccine adjuvants.

    Article  Google Scholar 

  174. Tian, Y. & Tatsuma, T. Mechanisms and applications of plasmon-induced charge separation at TiO2 films loaded with gold nanoparticles. J. Am. Chem. Soc. 127, 7632–7637 (2005).

    Article  Google Scholar 

  175. Saito, K. & Tatsuma, T. Chiral plasmonic nanostructures fabricated by circularly polarized light. Nano Lett. 18, 3209–3212 (2018).

    Article  Google Scholar 

  176. Morisawa, K., Ishida, T. & Tatsuma, T. Photoinduced chirality switching of metal–inorganic plasmonic nanostructures. ACS Nano 14, 3603–3609 (2020). This article reports a chiral gold nanocuboid, with CPL as the only source of chirality, with reversible deposition of lead oxide, which allows chirality to be modulated only by light.

    Article  Google Scholar 

  177. Besteiro, L. V. et al. Local growth mediated by plasmonic hot carriers: chirality from achiral nanocrystals using circularly polarized light. Nano Lett. 21, 10315–10324 (2021). This article reports computational models that describe the mechanisms for growing a chiral gold nanoparticle without the use of chiral ligands.

    Article  Google Scholar 

  178. Kim, J.-Y. et al. Assembly of gold nanoparticles into chiral superstructures driven by circularly polarized light. J. Am. Chem. Soc. 141, 11739–11744 (2019).

    Article  Google Scholar 

  179. Ayuso, D. et al. Synthetic chiral light for efficient control of chiral light–matter interaction. Nat. Photonics 13, 866–871 (2019).

    Article  Google Scholar 

  180. Spreyer, F. et al. Second harmonic optical circular dichroism of plasmonic chiral helicoid-III nanoparticles. ACS Photonics 9, 784–792 (2022).

    Article  Google Scholar 

  181. Yan, J. et al. Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity. Chem. Mater. 32, 476–488 (2020).

    Article  Google Scholar 

  182. Ohnoutek, L. et al. Third-harmonic Mie scattering from semiconductor nanohelices. Nat. Photonics 16, 126–133 (2022).

    Article  Google Scholar 

  183. Zheng, G. et al. Discrete metal nanoparticles with plasmonic chirality. Chem. Soc. Rev. 50, 3738–3754 (2021).

    Article  Google Scholar 

  184. Zhang, L., Xu, C., Liu, C. & Li, B. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal. Chim. Acta 809, 123–127 (2014).

    Article  Google Scholar 

  185. Zhang, M. & Ye, B.-C. Colorimetric chiral recognition of enantiomers using the nucleotide-capped silver nanoparticles. Anal. Chem. 83, 1504–1509 (2011).

    Article  Google Scholar 

  186. Song, G., Xu, C. & Li, B. Visual chiral recognition of mandelic acid enantiomers with L-tartaric acid-capped gold nanoparticles as colorimetric probes. Sens. Actuators B Chem. 215, 504–509 (2015).

    Article  Google Scholar 

  187. Song, L., Wang, S., Kotov, N. A. & Xia, Y. Nonexclusive fluorescent sensing for l/d enantiomers enabled by dynamic nanoparticle-nanorod assemblies. Anal. Chem. 84, 7330–7335 (2012).

    Article  Google Scholar 

  188. Tang, L. et al. Chirality-based Au@Ag nanorod dimers sensor for ultrasensitive PSA detection. ACS Appl. Mater. Interfaces 7, 12708–12712 (2015).

    Article  Google Scholar 

  189. Matuschek, M. et al. Chiral plasmonic hydrogen sensors. Small 14, 1702990 (2018).

    Article  Google Scholar 

  190. Su, H., Zheng, Q. & Li, H. Colorimetric detection and separation of chiral tyrosine based on N-acetyl-l-cysteine modified gold nanoparticles. J. Mater. Chem. 22, 6546 (2012).

    Article  Google Scholar 

  191. Miles, A. J., Janes, R. W. & Wallace, B. A. Tools and methods for circular dichroism spectroscopy of proteins: a tutorial review. Chem. Soc. Rev. 50, 8400–8413 (2021).

    Article  Google Scholar 

  192. di Gregorio, M. C., Ben Moshe, A., Tirosh, E., Galantini, L. & Markovich, G. Chiroptical study of plasmon–molecule interaction: the case of interaction of glutathione with silver nanocubes. J. Phys. Chem. C. 119, 17111–17116 (2015).

    Article  Google Scholar 

  193. Jeong, H.-H. et al. Dispersion and shape engineered plasmonic nanosensors. Nat. Commun. 7, 11331 (2016).

    Article  Google Scholar 

  194. Cai, J. et al. Chiral shell core-satellite nanostructures for ultrasensitive detection of mycotoxin. Small 14, 1703931 (2018).

    Article  Google Scholar 

  195. Sachs, J., Günther, J.-P., Mark, A. G. & Fischer, P. Chiroptical spectroscopy of a freely diffusing single nanoparticle. Nat. Commun. 11, 4513 (2020).

    Article  Google Scholar 

  196. Ma, W. et al. Detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).

    Article  Google Scholar 

  197. Kakkanattu, A., Eerqing, N., Ghamari, S. & Vollmer, F. Review of optical sensing and manipulation of chiral molecules and nanostructures with the focus on plasmonic enhancements [Invited]. Opt. Express 29, 12543 (2021).

    Article  Google Scholar 

  198. Marinakos, S. M., Chen, S. & Chilkoti, A. Plasmonic detection of a model analyte in serum by a gold nanorod sensor. Anal. Chem. 79, 5278–5283 (2007).

    Article  Google Scholar 

  199. Li, S. et al. Single- and multi-component chiral supraparticles as modular enantioselective catalysts. Nat. Commun. 10, 4826 (2019).

    Article  Google Scholar 

  200. Wu, F. et al. Synthesis of chiral Au nanocrystals with precise homochiral facets for enantioselective surface chemistry. Nano Lett. 22, 2915–2922 (2022).

    Article  Google Scholar 

  201. Wattanakit, C. et al. Enantioselective recognition at mesoporous chiral metal surfaces. Nat. Commun. 5, 3325 (2014).

    Article  Google Scholar 

  202. Yutthalekha, T. et al. Asymmetric synthesis using chiral-encoded metal. Nat. Commun. 7, 12678 (2016).

    Article  Google Scholar 

  203. Zhang, H. et al. Engineering of chiral nanomaterials for biomimetic catalysis. Chem. Sci. 11, 12937–12954 (2020).

    Article  Google Scholar 

  204. Tan, L., Yu, S., Jin, Y., Li, J. & Wang, P. Inorganic chiral hybrid nanostructures for tailored chiroptics and chirality‐dependent photocatalysis. Angew. Chemie Int. Ed. 61, e202112400 (2022).

    Google Scholar 

  205. Wei, X. et al. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nat. Chem. 12, 551–559 (2020).

    Article  Google Scholar 

  206. Sun, M. et al. Site-selective photoinduced cleavage and profiling of DNA by chiral semiconductor nanoparticles. Nat. Chem. 10, 821–830 (2018).

    Article  Google Scholar 

  207. Li, F. et al. Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively. Angew. Chem. Int. Ed. 59, 11087–11092 (2020).

    Article  Google Scholar 

  208. Smith, A. M., Mancini, M. C. & Nie, S. Second window for in vivo imaging. Nat. Nanotechnol. 4, 710–711 (2009).

    Article  Google Scholar 

  209. Li, Y. et al. A visible‐ and NIR‐light responsive photothermal therapy agent by chirality‐dependent MoO3−x nanoparticles. Adv. Funct. Mater. 30, 1906311 (2020).

    Article  Google Scholar 

  210. Zhang, M., Zhang, H., Feng, J., Zhou, Y. & Wang, B. Synergistic chemotherapy, physiotherapy and photothermal therapy against bacterial and biofilms infections through construction of chiral glutamic acid functionalized gold nanobipyramids. Chem. Eng. J. 393, 124778 (2020). This article describes chiral nanomaterials that can aid in wound healing following S. epidermidis infections in mice.

    Article  Google Scholar 

  211. Fan, Y., Ou‐yang, S., Zhou, D., Wei, J. & Liao, L. Biological applications of chiral inorganic nanomaterials. Chirality 34, 760–781 (2022).

    Article  Google Scholar 

  212. Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer–immunity cycle. Immun. Cycle. Immun. 39, 1–10 (2013).

    Google Scholar 

  213. Kakkar, T. et al. Superchiral near fields detect virus structure. Light. Sci. Appl. 9, 195 (2020).

    Article  Google Scholar 

  214. Goerlitzer, E. S. A. et al. Chiral surface lattice resonances. Adv. Mater. 32, 2001330 (2020).

    Article  Google Scholar 

  215. Choo, P. et al. Investigating reaction intermediates during the seedless growth of gold nanostars using electron tomography. ACS Nano 16, 4408–4414 (2022).

    Article  Google Scholar 

  216. Winckelmans, N. et al. Multimode electron tomography as a tool to characterize the internal structure and morphology of gold nanoparticles. J. Phys. Chem. C. 122, 13522–13528 (2018).

    Article  Google Scholar 

  217. Haberfehlner, G. et al. 3D imaging of gap plasmons in vertically coupled nanoparticles by EELS tomography. Nano Lett. 17, 6773–6777 (2017).

    Article  Google Scholar 

  218. Schwartz, J. et al. Real-time 3D analysis during electron tomography using tomviz. Nat. Commun. 13, 4458 (2022).

    Article  Google Scholar 

  219. Bals, S., Goris, B., De Backer, A., Van Aert, S. & Van Tendeloo, G. Atomic resolution electron tomography. MRS Bull. 41, 525–530 (2016).

    Article  Google Scholar 

  220. Zhou, J., Yang, Y., Ercius, P. & Miao, J. Atomic electron tomography in three and four dimensions. MRS Bull. 45, 290–297 (2020).

    Article  Google Scholar 

  221. Midgley, P. A. & Weyland, M. 3D electron microscopy in the physical sciences: the development of Z-contrast and EFTEM tomography. Ultramicroscopy 96, 413–431 (2003).

    Article  Google Scholar 

  222. Milagres de Oliveira, T. et al. 3D characterization and plasmon mapping of gold nanorods welded by femtosecond laser irradiation. ACS Nano 14, 12558–12570 (2020).

    Article  Google Scholar 

  223. Goris, B. et al. Measuring lattice strain in three dimensions through electron microscopy. Nano Lett. 15, 6996–7001 (2015).

    Article  Google Scholar 

  224. Inada, H. et al. Atomic resolution secondary electron imaging in aberration corrected STEM. Microsc. Anal. 25, S5–S8 (2011).

    Google Scholar 

  225. Rogolino, A. et al. Metal–polymer heterojunction in colloidal-phase plasmonic catalysis. J. Phys. Chem. Lett. 13, 2264–2272 (2022).

    Article  Google Scholar 

  226. Karst, J., Strohfeldt, N., Schäferling, M., Giessen, H. & Hentschel, M. Single plasmonic oligomer chiral spectroscopy. Adv. Opt. Mater. 6, 1800087 (2018).

    Article  Google Scholar 

  227. Karst, J. et al. Chiral scatterometry on chemically synthesized single plasmonic nanoparticles. ACS Nano 13, 8659–8668 (2019).

    Article  Google Scholar 

  228. Choo, P., Liu, T. & Odom, T. W. Nanoparticle shape determines dynamics of targeting nanoconstructs on cell membranes. J. Am. Chem. Soc. 143, 4550–4555 (2021).

    Article  Google Scholar 

  229. Cha, M. et al. Unifying structural descriptors for biological and bioinspired nanoscale complexes. Nat. Comput. Sci. 2, 243–252 (2022).

    Article  Google Scholar 

  230. Wang, W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem. Soc. Rev. 47, 2485–2508 (2018).

    Article  Google Scholar 

  231. Vecchio, D. A., Mahler, S. H., Hammig, M. D. & Kotov, N. A. Structural analysis of nanoscale network materials using graph theory. ACS Nano 15, 12847–12859 (2021).

    Article  Google Scholar 

  232. Manukyan, L., Montandon, S. A., Fofonjka, A., Smirnov, S. & Milinkovitch, M. C. A living mesoscopic cellular automaton made of skin scales. Nature 544, 173–179 (2017). This article reports a cellular automation method for analysing skin microstructures of ocellated lizards, shedding light on evolutionary mechanisms.

    Article  Google Scholar 

  233. Alkhazraji, E., Ghalib, A., Manzoor, K. & Alsunaidi, M. A. Plasmonic nanostructured cellular automata. EPJ Web Conf. 139, 00001 (2017).

    Article  Google Scholar 

  234. Cha, S.-H. et al. Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9, 9097–9105 (2015).

    Article  Google Scholar 

  235. Weisberg, S. B. et al. Water quality criteria for an acidifying ocean: challenges and opportunities for improvement. Ocean Coast Manag. 126, 31–41 (2016).

    Article  Google Scholar 

  236. Shafik, S., Watkins, D. K. & Shin, I. C. in Proc. Ocean Drilling Program, Scientific Results Vol. 159 (eds Mascle, J., Lohmann, G. P. & Moullade, M.) 413–431 (Ocean Drilling Program, 1998).

Download references

Acknowledgements

The authors acknowledge support by the Creative Materials Discovery Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (NRF-2017M3D1A1039377), the LG Display under LGD-SNU Incubation Program, the Spanish Ministry of Science, Innovation and Universities (MICIU) (Grant No. RTI2018-095844-B-I00), the Madrid Regional Government (Grant Nos. P2018/NMT-4389 and REACT ANTICIPA-UCM), the Office of Naval Research via Vannevar Bush DoD Fellowship to N.A.K. titled ‘Engineered Chiral Ceramics’ (ONR N000141812876), MURI N00014-20-1-2479 and COVID-19 Newton Award ‘Pathways to Complexity with “Imperfect” NPs’ (HQ00342010033). Part of this work was also supported by AFOSR FA9550-20-1-0265, Graph Theory Description of Network Material.

Author information

Authors and Affiliations

Authors

Contributions

N.H.C., J.M. and A.G.-M. wrote the manuscript and contributed equally. S.B. contributed a perspective on tomographic analysis of chiral nanomaterials. N.A.K., L.M.L.-M. and K.T.N. wrote the manuscript and guided all aspects of the work.

Corresponding authors

Correspondence to Nicholas A. Kotov, Luis M. Liz-Marzán or Ki Tae Nam.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Zhiqun Lin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, N.H., Guerrero-Martínez, A., Ma, J. et al. Bioinspired chiral inorganic nanomaterials. Nat Rev Bioeng 1, 88–106 (2023). https://doi.org/10.1038/s44222-022-00014-4

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-022-00014-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing