Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Biomolecular sensors for advanced physiological monitoring

Abstract

Body-based biomolecular sensing systems, including wearable, implantable and consumable sensors allow comprehensive health-related monitoring. Glucose sensors have long dominated wearable bioanalysis applications owing to their robust continuous detection of glucose, which has not yet been achieved for other biomarkers. However, access to diverse biological fluids and the development of reagentless sensing approaches may enable the design of body-based sensing systems for various analytes. Importantly, enhancing the selectivity and sensitivity of biomolecular sensors is essential for biomarker detection in complex physiological conditions. In this Review, we discuss approaches for the signal amplification of biomolecular sensors, including techniques to overcome Debye and mass transport limitations, and selectivity improvement, such as the integration of artificial affinity recognition elements. We highlight reagentless sensing approaches that can enable sequential real-time measurements, for example, the implementation of thin-film transistors in wearable devices. In addition to sensor construction, careful consideration of physical, psychological and security concerns related to body-based sensor integration is required to ensure that the transition from the laboratory to the human body is as seamless as possible.

Key points

  • Glucose sensors traditionally dominate the commercial sensing market, but sensors for alternative analytes could advance personalized health care in coming decades.

  • Body-based biomolecular sensors, including wearable, implantable and ingestible sensors, provide simple and continuous access to user biomolecular data through various biological fluids.

  • Continuous monitoring requires kinetically favourable receptors and sensing mechanisms capable of detecting analytes without user intervention.

  • In addition to sensor efficacy, body-based systems require careful consideration of physical, psychological and security concerns related to device use and data handling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of biomolecular sensor development.
Fig. 2: Strategies for amplifying biomolecular interactions.
Fig. 3: Considerations for biomolecular sensor recognition element selection.
Fig. 4: Strategies for reagentless biomolecular analysis.
Fig. 5: Biological fluid considerations for body-based sensing systems.

Similar content being viewed by others

References

  1. Ji, S. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 4, 407–417 (2021).

    Article  Google Scholar 

  2. Armstrong, J. A. Urinalysis in Western culture: a brief history. Kidney Int. 71, 384–387 (2007).

    Article  Google Scholar 

  3. Karamanou, M., Protogerou, A., Tsoucalas, G., Androutsos, G. & Poulakou-Rebelakou, E. Milestones in the history of diabetes mellitus: the main contributors. World J. Diabetes 7, 1–7 (2016).

    Article  Google Scholar 

  4. Thomas, M. C., Jandeleit-Dahm, K. & Bonnet, F. Beyond glycosuria: exploring the intrarenal effects of SGLT-2 inhibition in diabetes. Diabetes Metab. 40, S17–S22 (2014).

    Article  Google Scholar 

  5. Guthrie, D. W. & Humphreys, S. S. Diabetes urine testing: an historical perspective. Diabetes Educ. 14, 521–525 (1988).

    Article  Google Scholar 

  6. Clark, L. C. Jr & Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 102, 29–45 (1962). This article describes the first electrochemical sensing platform that incorporates a biorecognition element to provide selectivity for an analyte.

    Article  Google Scholar 

  7. Clark, L. C., Kaplan, S., Matthews, E. C., Edwards, F. K. & Helmsworth, J. A. Monitor and control of blood oxygen tension and pH during total body perfusion. J. Thorac. Surg. 36, 488–496 (1958).

    Article  Google Scholar 

  8. Free, A. H., Adams, E. C., Kercher, M. L., Free, H. M. & Cook, M. H. Simple specific test for urine glucose. Clin. Chem. 3, 163–168 (1957). This article describes the first time a biorecognition element was incorporated into a sensing mechanism, despite this feat being usually misattributed to Clark and Lyons (1962).

    Article  Google Scholar 

  9. Mazzaferri, E. L., Skillman, T. G., Lanese, R. R. & Keller, M. P. Use of test strips with colour meter to measure blood-glucose. Lancet 295, 331–333 (1970).

    Article  Google Scholar 

  10. Chua, K. S. & Tan, I. K. Plasma glucose measurement with the Yellow Springs glucose analyzer. Clin. Chem. 24, 150–152 (1978).

    Article  Google Scholar 

  11. Clarke, S. F. & Foster, J. R. A history of blood glucose meters and their role in self-monitoring of diabetes mellitus. Br. J. Biomed. Sci. 69, 83–93 (2012).

    Article  Google Scholar 

  12. Matthews, D. R. et al. Pen-sized digital 30-second blood glucose meter. Lancet 329, 778–779 (1987).

    Article  Google Scholar 

  13. Ginsberg, B. H. The FDA panel advises approval of the first continuous glucose sensor. Diabetes Technol. Ther. 1, 203–204 (1999).

    Article  Google Scholar 

  14. Kelley, S. O. et al. Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. Nat. Nanotechnol. 9, 969–980 (2014).

    Article  Google Scholar 

  15. Sero, J. E. & Stevens, M. M. Nanoneedle-based materials for intracellular studies. In Bio-Nanomedicine For Cancer Therapy 191–219 (Springer, 2021).

  16. Chiappini, C. et al. Mapping local cytosolic enzymatic activity in human esophageal mucosa with porous silicon nanoneedles. Adv. Mater. 27, 5147–5152 (2015).

    Article  Google Scholar 

  17. Cao, Y. et al. Nondestructive nanostraw intracellular sampling for longitudinal cell monitoring. Proc. Natl Acad. Sci. USA 114, E1866–E1874 (2017).

    Article  Google Scholar 

  18. Siciliano, V. et al. Engineering modular intracellular protein sensor–actuator devices. Nat. Commun. 9, 1881 (2018).

    Article  Google Scholar 

  19. Poste, G. Bring on the biomarkers. Nature 469, 156–157 (2011).

    Article  Google Scholar 

  20. Yang, Y. et al. A laser-engraved wearable sensor for sensitive detection of uric acid and tyrosine in sweat. Nat. Biotechnol. 38, 217–224 (2020).

    Article  Google Scholar 

  21. Weinhofer, I. et al. Neurofilament light chain as a potential biomarker for monitoring neurodegeneration in X-linked adrenoleukodystrophy. Nat. Commun. 12, 1816 (2021).

    Article  Google Scholar 

  22. Kwong, G. A. et al. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat. Rev. Cancer 21, 655–668 (2021). This review describes the development of synthetic biomarkers, including their function at the physiological level, their design and how they advance biomolecular sensing.

    Article  Google Scholar 

  23. Nishihara, T. et al. Beta-galactosidase-responsive synthetic biomarker for targeted tumor detection. Chem. Commun. 54, 11745–11748 (2018).

    Article  Google Scholar 

  24. Chan, L. W. et al. Engineering synthetic breath biomarkers for respiratory disease. Nat. Nanotechnol. 15, 792–800 (2020).

    Article  Google Scholar 

  25. Aalipour, A. et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat. Biotechnol. 37, 531–539 (2019).

    Article  Google Scholar 

  26. Chen, J. et al. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 12, 3375 (2021).

    Article  Google Scholar 

  27. Liu, S. et al. Metal–organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord. Chem. Rev. 424, 213520 (2020).

    Article  Google Scholar 

  28. Huang, Y., Ren, J. & Qu, X. Nanozymes: classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 119, 4357–4412 (2019).

    Article  Google Scholar 

  29. Hu, W.-C. et al. Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector. Anal. Chem. 93, 8544–8552 (2021).

    Article  Google Scholar 

  30. Huang, L., Chen, J., Gan, L., Wang, J. & Dong, S. Single-atom nanozymes. Sci. Adv. 5, eaav5490 (2019).

    Article  Google Scholar 

  31. Jiao, L. et al. Single-atom catalysts boost signal amplification for biosensing. Chem. Soc. Rev. 50, 750–765 (2021).

    Article  Google Scholar 

  32. Wang, Z. et al. Accelerated discovery of superoxide-dismutase nanozymes via high-throughput computational screening. Nat. Commun. 12, 6866 (2021).

    Article  Google Scholar 

  33. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  Google Scholar 

  34. McConnell, E. M. et al. Biosensing with DNAzymes. Chem. Soc. Rev. 50, 8954–8994 (2021).

    Article  Google Scholar 

  35. Borggräfe, J. et al. Time-resolved structural analysis of an RNA-cleaving DNA catalyst. Nature 601, 144–149 (2022).

    Article  Google Scholar 

  36. Liu, K., Lat, P. K., Yu, H.-Z. & Sen, D. CLICK-17, a DNA enzyme that harnesses ultra-low concentrations of either Cu+ or Cu2+ to catalyze the azide–alkyne ‘click’ reaction in water. Nucleic Acids Res. 48, 7356–7370 (2020).

    Google Scholar 

  37. Liu, M. et al. Programming a topologically constrained DNA nanostructure into a sensor. Nat. Commun. 7, 12074 (2016).

    Article  Google Scholar 

  38. Kang, D.-K. et al. Rapid detection of single bacteria in unprocessed blood using integrated comprehensive droplet digital detection. Nat. Commun. 5, 5427 (2014).

    Article  Google Scholar 

  39. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  Google Scholar 

  40. de Angelis, F. et al. Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photon. 5, 682–687 (2011).

    Article  Google Scholar 

  41. Morales-Narváez, E., Guix, M., Medina-Sánchez, M., Mayorga-Martinez, C. C. & Merkoçi, A. Micromotor enhanced microarray technology for protein detection. Small 10, 2542–2548 (2014).

    Article  Google Scholar 

  42. Lin, M. et al. Programmable engineering of a biosensing interface with tetrahedral DNA nanostructures for ultrasensitive DNA detection. Angew. Chem. 127, 2179–2183 (2015).

    Article  Google Scholar 

  43. Zhang, P. et al. Ultrasensitive detection of circulating exosomes with a 3D-nanopatterned microfluidic chip. Nat. Biomed. Eng. 3, 438–451 (2019).

    Article  Google Scholar 

  44. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018). This review describes the evolution of organic electrochemical transistors, including their fabrication, various configurations and their ability to amplify biochemical signals.

    Article  Google Scholar 

  45. Rivnay, J. et al. Organic electrochemical transistors with maximum transconductance at zero gate bias. Adv. Mater. 25, 7010–7014 (2013).

    Article  Google Scholar 

  46. Pappa, A. M. et al. Direct metabolite detection with an n-type accumulation mode organic electrochemical transistor. Sci. Adv. 4, eaat0911 (2018).

    Article  Google Scholar 

  47. Liang, Y., Wu, C., Figueroa-Miranda, G., Offenhäusser, A. & Mayer, D. Amplification of aptamer sensor signals by four orders of magnitude via interdigitated organic electrochemical transistors. Biosens. Bioelectron. 144, 111668 (2019).

    Article  Google Scholar 

  48. Ersman, P. A. et al. All-printed large-scale integrated circuits based on organic electrochemical transistors. Nat. Commun. 10, 5053 (2019).

    Article  Google Scholar 

  49. Jarczewska, M., Rębiś, J., Górski, Ł. & Malinowska, E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta 189, 45–54 (2018).

    Article  Google Scholar 

  50. Reiber, T., Zavoiura, O., Dose, C. & Yushchenko, D. A. Fluorophore multimerization as an efficient approach towards bright protein labels. Eur. J. Org. Chem. 2021, 2817–2830 (2021).

    Article  Google Scholar 

  51. Nakatsuka, N. et al. Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing. Science 362, 319–324 (2018).

    Article  Google Scholar 

  52. Kesler, V., Murmann, B. & Soh, H. T. Going beyond the Debye length: overcoming charge screening limitations in next-generation bioelectronic sensors. ACS Nano 14, 16194–16201 (2020).

    Article  Google Scholar 

  53. Fu, K. et al. Accelerated electron transfer in nanostructured electrodes improves the sensitivity of electrochemical biosensors. Adv. Sci. 8, 2102495 (2021).

    Article  Google Scholar 

  54. Lee, D. et al. Ionic contrast across a lipid membrane for Debye length extension: towards an ultimate bioelectronic transducer. Nat. Commun. 12, 3741 (2021).

    Article  Google Scholar 

  55. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  Google Scholar 

  56. Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. 5, 3346–3364 (2020).

    Article  Google Scholar 

  57. King, R. C. et al. Application of data fusion techniques and technologies for wearable health monitoring. Med. Eng. Phys. 42, 1–12 (2017).

    Article  Google Scholar 

  58. Habib, C., Makhoul, A., Darazi, R. & Salim, C. Self-adaptive data collection and fusion for health monitoring based on body sensor networks. IEEE Trans. Ind. Inf. 12, 2342–2352 (2016).

    Article  Google Scholar 

  59. Yu, X., Yang, Y.-P., Dikici, E., Deo, S. K. & Daunert, S. Beyond antibodies as binding partners: the role of antibody mimetics in bioanalysis. Annu. Rev. Anal. Chem. 10, 293–320 (2017).

    Article  Google Scholar 

  60. Belbruno, J. J. Molecularly imprinted polymers. Chem. Rev. 119, 94–119 (2019).

    Article  Google Scholar 

  61. Muyldermans, S. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82, 775–797 (2013).

    Article  Google Scholar 

  62. Silverman, J. et al. Multivalent avimer proteins evolved by exon shuffling of a family of human receptor domains. Nat. Biotechnol. 23, 1556–1561 (2005).

    Article  Google Scholar 

  63. Tiede, C. et al. Affimer proteins are versatile and renewable affinity reagents. eLife 6, e24903 (2017).

    Article  Google Scholar 

  64. Löfblom, J. et al. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett. 584, 2670–2680 (2010).

    Article  Google Scholar 

  65. Bratkovič, T. Progress in phage display: evolution of the technique and its applications. Cell. Mol. Life Sci. 67, 749–767 (2010).

    Article  Google Scholar 

  66. Bradbury, A. R. M., Sidhu, S., Dübel, S. & McCafferty, J. Beyond natural antibodies: the power of in vitro display technologies. Nat. Biotechnol. 29, 245–254 (2011).

    Article  Google Scholar 

  67. Tuerk, C. & Gold, L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505–510 (1990).

    Article  Google Scholar 

  68. Ellington, A. D. & Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818–822 (1990).

    Article  Google Scholar 

  69. Qian, S., Chang, D., He, S. & Li, Y. Aptamers from random sequence space: accomplishments, gaps and future considerations. Anal. Chim. Acta 1196, 339511 (2022).

    Article  Google Scholar 

  70. Yu, H., Alkhamis, O., Canoura, J., Liu, Y. & Xiao, Y. Advances and challenges in small-molecule DNA aptamer isolation, characterization, and sensor development. Angew. Chem. Int. Edn 60, 16800–16823 (2021).

    Article  Google Scholar 

  71. Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022). This article demonstrates a fully integrated body-based sensing platform for the continuous detection of cortisol using field-effect transistors and aptamer recognition elements.

    Article  Google Scholar 

  72. Zhao, C. et al. Implantable aptamer-field-effect transistor neuroprobes for in vivo neurotransmitter monitoring. Sci. Adv. 7, eabj7422 (2021).

    Article  Google Scholar 

  73. Frutiger, A. et al. Nonspecific binding — fundamental concepts and consequences for biosensing applications. Chem. Rev. 121, 8095–8160 (2021). This review provides a detailed analysis of non-specific binding, including its history, physiological causes and solutions to overcome its effects.

    Article  Google Scholar 

  74. Gawande, B. N. et al. Selection of DNA aptamers with two modified bases. Proc. Natl Acad. Sci. USA 114, 2898–2903 (2017).

    Article  Google Scholar 

  75. Yoshikawa, A. M. et al. Discovery of indole-modified aptamers for highly specific recognition of protein glycoforms. Nat. Commun. 12, 7106 (2021).

    Article  Google Scholar 

  76. Wang, J. et al. Multiparameter particle display (MPPD): a quantitative screening method for the discovery of highly specific aptamers. Angew. Chem. Int. Edn Engl. 129, 762–765 (2017).

    Article  Google Scholar 

  77. Zhou, J. & Rossi, J. Aptamers as targeted therapeutics: current potential and challenges. Nat. Rev. Drug. Discov. 16, 181–202 (2017).

    Article  Google Scholar 

  78. Gerling, T., Kube, M., Kick, B. & Dietz, H. Sequence-programmable covalent bonding of designed DNA assemblies. Sci. Adv. 4, eaau1157 (2018).

    Article  Google Scholar 

  79. Anastassacos, F. M., Zhao, Z., Zeng, Y. & Shih, W. M. Glutaraldehyde cross-linking of oligolysines coating DNA origami greatly reduces susceptibility to nuclease degradation. J. Am. Chem. Soc. 142, 3311–3315 (2020).

    Article  Google Scholar 

  80. Biedermann, F. & Schneider, H.-J. Experimental binding energies in supramolecular complexes. Chem. Rev. 116, 5216–5300 (2016).

    Article  Google Scholar 

  81. Bixler, G. D. & Bhushan, B. Biofouling: lessons from nature. Phil. Trans. R. Soc. A 370, 2381–2417 (2012).

    Article  Google Scholar 

  82. Ostuni, E. et al. Self-assembled monolayers that resist the adsorption of proteins and the adhesion of bacterial and mammalian cells. Langmuir 17, 6336–6343 (2001).

    Article  Google Scholar 

  83. Liu, S. & Guo, W. Anti-biofouling and healable materials: preparation, mechanisms, and biomedical applications. Adv. Funct. Mater. 28, 1800596 (2018).

    Article  Google Scholar 

  84. Li, S. et al. Slippery liquid-infused microphase separation surface enables highly robust anti-fouling, anti-corrosion, anti-icing and anti-scaling coating on diverse substrates. Chem. Eng. J. 431, 133945 (2022).

    Article  Google Scholar 

  85. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  Google Scholar 

  86. Chan, D. et al. Combinatorial polyacrylamide hydrogels for preventing biofouling on implantable biosensors. Adv. Mater. 34, 2109764 (2022).

    Article  Google Scholar 

  87. del Río, J. S., Henry, O. Y. F., Jolly, P. & Ingber, D. E. An antifouling coating that enables affinity-based electrochemical biosensing in complex biological fluids. Nat. Nanotechnol. 14, 1143–1149 (2019).

    Article  Google Scholar 

  88. Timilsina, S. S. et al. Ultrarapid method for coating electrochemical sensors with antifouling conductive nanomaterials enables highly sensitive multiplexed detection in whole blood. Adv. Healthc. Mater. 11, 2102244 (2022).

    Article  Google Scholar 

  89. Shiddiky, M. J. A., Vaidyanathan, R., Rauf, S., Tay, Z. & Trau, M. Molecular nanoshearing: an innovative approach to shear off molecules with AC-induced nanoscopic fluid flow. Sci. Rep. 4, 3716 (2014).

    Article  Google Scholar 

  90. Xue, L. et al. Solid-state nanopore sensors. Nat. Rev. Mater. 5, 931–951 (2020).

    Article  Google Scholar 

  91. Yang, B., Jiang, X., Fang, X. & Kong, J. Wearable chem-biosensing devices: from basic research to commercial market. Lab Chip 21, 4285–4310 (2021).

    Article  Google Scholar 

  92. Fercher, C., Jones, M. L., Mahler, S. M. & Corrie, S. R. Recombinant antibody engineering enables reversible binding for continuous protein biosensing. ACS Sens. 6, 764–776 (2021).

    Article  Google Scholar 

  93. Wilson, B. D. & Soh, H. T. Re-evaluating the conventional wisdom about binding assays. Trends Biochem. Sci. 45, 639–649 (2020).

    Article  Google Scholar 

  94. Goode, J. A., Rushworth, J. V. H. & Millner, P. A. Biosensor regeneration: a review of common techniques and outcomes. Langmuir 31, 6267–6276 (2015).

    Article  Google Scholar 

  95. Delport, F. et al. Real-time monitoring of DNA hybridization and melting processes using a fiber optic sensor. Nanotechnology 23, 065503 (2012).

    Article  Google Scholar 

  96. Gilles, P. N., Wu, D. J., Foster, C. B., Dillon, P. J. & Chanock, S. J. Single nucleotide polymorphic discrimination by an electronic dot blot assay on semiconductor microchips. Nat. Biotechnol. 17, 365–370 (1999).

    Article  Google Scholar 

  97. Clifford, A. et al. Strategies for biomolecular analysis and continuous physiological monitoring. J. Am. Chem. Soc. 143, 5281–5294 (2021).

    Article  Google Scholar 

  98. Xiao, Y., Lubin, A. A., Heeger, A. J. & Plaxco, K. W. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew. Chem. Int. Edn Engl. 44, 5456–5459 (2005).

    Article  Google Scholar 

  99. Arroyo-Currás, N. et al. Real-time measurement of small molecules directly in awake, ambulatory animals. Proc. Natl Acad. Sci. USA 114, 645–650 (2017).

    Article  Google Scholar 

  100. Dauphin-Ducharme, P., Ploense, K. L., Arroyo-Currás, N., Kippin, T. E. & Plaxco, K. W. Electrochemical aptamer-based sensors: a platform approach to high-frequency molecular monitoring in situ in the living body. Biomed. Eng. Technol. 2393, 479–492 (2022).

    Article  Google Scholar 

  101. Ferguson, B. S. et al. Real-time, aptamer-based tracking of circulating therapeutic agents in living animals. Sci. Transl. Med. 5, 213ra165 (2013).

    Article  Google Scholar 

  102. Idili, A., Gerson, J., Kippin, T. & Plaxco, K. W. Seconds-resolved, in situ measurements of plasma phenylalanine disposition kinetics in living rats. Anal. Chem. 93, 4023–4032 (2021).

    Article  Google Scholar 

  103. Seo, J. W. et al. Real-time monitoring of drug pharmacokinetics within tumor tissue in live animals. Sci. Adv. 8, eabk2901 (2022). This article describes the real-time monitoring of doxorubicin in animal tumour tissue, demonstrating the effectiveness of reagentless sensing approaches in animal models.

    Article  Google Scholar 

  104. Fan, C., Plaxco, K. W. & Heeger, A. J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proc. Natl Acad. Sci. USA 100, 9134–9137 (2003).

    Article  Google Scholar 

  105. Xiao, Y., Lubin, A. A., Baker, B. R., Plaxco, K. W. & Heeger, A. J. Single-step electronic detection of femtomolar DNA by target-induced strand displacement in an electrode-bound duplex. Proc. Natl Acad. Sci. USA 103, 16677–16680 (2006).

    Article  Google Scholar 

  106. Li, C. et al. Design of DNA nanostructure-based interfacial probes for the electrochemical detection of nucleic acids directly in whole blood. Chem. Sci. 9, 979–984 (2018).

    Article  Google Scholar 

  107. Yu, H. L. L., Maslova, A. & Hsing, I.-M. Rational design of electrochemical DNA biosensors for point-of-care applications. ChemElectroChem 4, 795–805 (2017).

    Article  Google Scholar 

  108. Wang, M. et al. A reagentless triplex DNA junctions-based electrochemical DNA sensor using signal amplification strategy of CHA and tetraferrocene. Sens. Actuators B 358, 131496 (2022).

    Article  Google Scholar 

  109. Ranallo, S., Porchetta, A. & Ricci, F. DNA-based scaffolds for sensing applications. Anal. Chem. 91, 44–59 (2019).

    Article  Google Scholar 

  110. Parolo, C. et al. E-DNA scaffold sensors and the reagentless, single-step, measurement of HIV-diagnostic antibodies in human serum. Microsyst. Nanoeng. 6, 13 (2020).

    Article  Google Scholar 

  111. Cash, K. J., Ricci, F. & Plaxco, K. W. An electrochemical sensor for the detection of protein–small molecule interactions directly in serum and other complex matrices. J. Am. Chem. Soc. 131, 6955–6957 (2009).

    Article  Google Scholar 

  112. White, R. J. et al. Wash-free, electrochemical platform for the quantitative, multiplexed detection of specific antibodies. Anal. Chem. 84, 1098–1103 (2012).

    Article  Google Scholar 

  113. Ogden, N. E., Kurnik, M., Parolo, C. & Plaxco, K. W. An electrochemical scaffold sensor for rapid syphilis diagnosis. Analyst 144, 5277–5283 (2019).

    Article  Google Scholar 

  114. Ricci, F., Bonham, A. J., Mason, A. C., Reich, N. O. & Plaxco, K. W. Reagentless, electrochemical approach for the specific detection of double- and single-stranded DNA binding proteins. Anal. Chem. 81, 1608–1614 (2009).

    Article  Google Scholar 

  115. Kurnik, M., Pang, E. Z. & Plaxco, K. W. An electrochemical biosensor architecture based on protein folding supports direct real-time measurements in whole blood. Angew. Chem. Int. Edn 59, 18442–18445 (2020).

    Article  Google Scholar 

  116. Kang, D. et al. New architecture for reagentless, protein-based electrochemical biosensors. J. Am. Chem. Soc. 139, 12113–12116 (2017).

    Article  Google Scholar 

  117. Das, J. et al. Reagentless biomolecular analysis using a molecular pendulum. Nat. Chem. 13, 428–434 (2021).

    Article  Google Scholar 

  118. Yousefi, H. et al. Detection of SARS-CoV-2 viral particles using direct, reagent-free electrochemical sensing. J. Am. Chem. Soc. 143, 1722–1727 (2021).

    Article  Google Scholar 

  119. Bertok, T. et al. Electrochemical impedance spectroscopy based biosensors: mechanistic principles, analytical examples and challenges towards commercialization for assays of protein cancer biomarkers. ChemElectroChem 6, 989–1003 (2019).

    Article  Google Scholar 

  120. Flauzino, J. M. R. et al. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens. Bioelectron. 195, 113628 (2022).

    Article  Google Scholar 

  121. Cecchetto, J., Fernandes, F. C. B., Lopes, R. & Bueno, P. R. The capacitive sensing of NS1 Flavivirus biomarker. Biosens. Bioelectron. 87, 949–956 (2017).

    Article  Google Scholar 

  122. Capaldo, P. et al. Circulating disease biomarker detection in complex matrices: real-time, in situ measurements of DNA/miRNA hybridization via electrochemical impedance spectroscopy. ACS Sens. 1, 1003–1010 (2016).

    Article  Google Scholar 

  123. Luo, X., Xu, M., Freeman, C., James, T. & Davis, J. J. Ultrasensitive label free electrical detection of insulin in neat blood serum. Anal. Chem. 85, 4129–4134 (2013).

    Article  Google Scholar 

  124. Kergoat, L., Piro, B., Berggren, M., Horowitz, G. & Pham, M.-C. Advances in organic transistor-based biosensors: from organic electrochemical transistors to electrolyte-gated organic field-effect transistors. Anal. Bioanal. Chem. 402, 1813–1826 (2012).

    Article  Google Scholar 

  125. Hajian, R. et al. Detection of unamplified target genes via CRISPR–Cas9 immobilized on a graphene field-effect transistor. Nat. Biomed. Eng. 3, 427–437 (2019).

    Article  Google Scholar 

  126. Wang, L. et al. Rapid and ultrasensitive electromechanical detection of ions, biomolecules and SARS-CoV-2 RNA in unamplified samples. Nat. Biomed. Eng. 6, 276–285 (2022).

    Article  Google Scholar 

  127. Tai, T. Y. et al. Design and demonstration of tunable amplified sensitivity of AlGaN/GaN high electron mobility transistor (HEMT)-based biosensors in human serum. Anal. Chem. 91, 5953–5960 (2019).

    Article  Google Scholar 

  128. Tyagi, S., Bratu, D. P. & Kramer, F. R. Multicolor molecular beacons for allele discrimination. Nat. Biotechnol. 16, 49–53 (1998).

    Article  Google Scholar 

  129. Tuleuova, N. et al. Development of an aptamer beacon for detection of interferon-gamma. Anal. Chem. 82, 1851–1857 (2010).

    Article  Google Scholar 

  130. Bai, Y., Shu, T., Su, L. & Zhang, X. Functional nucleic acid-based fluorescence polarization/anisotropy biosensors for detection of biomarkers. Anal. Bioanal. Chem. 412, 6655–6665 (2020).

    Article  Google Scholar 

  131. Kruse, M. et al. Measuring influenza A virus and peptide interaction using electrically controllable DNA nanolevers. Adv. Mater. Technol. 7, 2101141 (2021).

    Article  Google Scholar 

  132. Nguyen, P. Q. et al. Wearable materials with embedded synthetic biology sensors for biomolecule detection. Nat. Biotechnol. 39, 1366–1374 (2021).

    Article  Google Scholar 

  133. Oh, S.-H. et al. Nanophotonic biosensors harnessing van der Waals materials. Nat. Commun. 12, 3824 (2021).

    Article  Google Scholar 

  134. Aitekenov, S., Gaipov, A. & Bukasov, R. Review: Detection and quantification of proteins in human urine. Talanta 223, 121718 (2021).

    Article  Google Scholar 

  135. Ploussard, G. & de La Taille, A. Urine biomarkers in prostate cancer. Nat. Rev. Urol. 7, 101–109 (2010).

    Article  Google Scholar 

  136. Gray, M. et al. Implantable biosensors and their contribution to the future of precision medicine. Vet. J. 239, 21–29 (2018).

    Article  Google Scholar 

  137. Soler, M. et al. Multiplexed nanoplasmonic biosensor for one-step simultaneous detection of Chlamydia trachomatis and Neisseria gonorrhoeae in urine. Biosens. Bioelectron. 94, 560–567 (2017).

    Article  Google Scholar 

  138. Zhang, J. et al. A wearable self-powered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients. Sens. Actuators B 341, 130046 (2021).

    Article  Google Scholar 

  139. Lager, W. et al. Implantable electrocatalytic glucose sensor. Horm. Metab. Res. 26, 526–530 (1994).

    Article  Google Scholar 

  140. Topkas, E., Keith, P., Dimeski, G., Cooper-White, J. & Punyadeera, C. Evaluation of saliva collection devices for the analysis of proteins. Clin. Chim. Acta 413, 1066–1070 (2012).

    Article  Google Scholar 

  141. Zhang, C.-Z. et al. Saliva in the diagnosis of diseases. Int. J. Oral. Sci. 8, 133–137 (2016).

    Article  Google Scholar 

  142. Bel’skaya, L. V., Sarf, E. A. & Kosenok, V. K. Age and gender characteristics of the biochemical composition of saliva: correlations with the composition of blood plasma. J. Oral Biol. Craniofac. Res. 10, 59–65 (2020).

    Article  Google Scholar 

  143. Lin, C. et al. Toward the development of a glucose dehydrogenase-based saliva glucose sensor without the need for sample preparation. J. Diabetes Sci. Technol. 12, 83–89 (2018).

    Article  Google Scholar 

  144. Arakawa, T. et al. Mouthguard biosensor with telemetry system for monitoring of saliva glucose: a novel cavitas sensor. Biosens. Bioelectron. 84, 106–111 (2016).

    Article  Google Scholar 

  145. García-Carmona, L. et al. Pacifier biosensor: toward noninvasive saliva biomarker monitoring. Anal. Chem. 91, 13883–13891 (2019).

    Article  Google Scholar 

  146. Kevadiya, B. D. et al. Diagnostics for SARS-CoV-2 infections. Nat. Mater. 20, 593–605 (2021).

    Article  Google Scholar 

  147. Bariya, M., Nyein, H. Y. Y. & Javey, A. Wearable sweat sensors. Nat. Electron. 1, 160–171 (2018).

    Article  Google Scholar 

  148. la Count, T. D., Jajack, A., Heikenfeld, J. & Kasting, G. B. Modeling glucose transport from systemic circulation to sweat. J. Pharm. Sci. 108, 364–371 (2019).

    Article  Google Scholar 

  149. He, W. et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 5, eaax0649 (2019).

    Article  Google Scholar 

  150. Pérez, D. & Orozco, J. Wearable electrochemical biosensors to measure biomarkers with complex blood-to-sweat partition such as proteins and hormones. Microchim. Acta 189, 127 (2022).

    Article  Google Scholar 

  151. Cizza, G. et al. Elevated neuroimmune biomarkers in sweat patches and plasma of premenopausal women with major depressive disorder in remission: the P.O.W.E.R. study. Biol. Psychiat. 64, 907–911 (2008).

    Article  Google Scholar 

  152. Qiao, L., Benzigar, M. R., Subramony, J. A., Lovell, N. H. & Liu, G. Advances in sweat wearables: sample extraction, real-time biosensing, and flexible platforms. ACS Appl. Mater. Interf. 12, 34337–34361 (2020).

    Article  Google Scholar 

  153. Jagannath, B. et al. Novel approach to track the lifecycle of inflammation from chemokine expression to inflammatory proteins in sweat using electrochemical biosensor. Adv. Mater. Technol. 7, 2101356 (2022).

    Article  Google Scholar 

  154. Jagannath, B. et al. Temporal profiling of cytokines in passively expressed sweat for detection of infection using wearable device. Bioeng. Transl. Med. 6, e10220 (2021).

    Article  Google Scholar 

  155. Heikenfeld, J. et al. Accessing analytes in biofluids for peripheral biochemical monitoring. Nat. Biotechnol. 37, 407–419 (2019). This review discusses opportunities and challenges for biomolecular sensing in various biological fluids, with information on biological fluid generation, analyte partitioning and sampling technologies.

    Article  Google Scholar 

  156. Kaya, T. et al. Wearable sweat sensors: background and current trends. Electroanalysis 31, 411–421 (2019).

    Article  Google Scholar 

  157. You, J. et al. Tear fluid protein biomarkers. Adv. Clin. Chem. 62, 151–196 (2013).

    Article  Google Scholar 

  158. Farandos, N. M., Yetisen, A. K., Monteiro, M. J., Lowe, C. R. & Yun, S. H. Contact lens sensors in ocular diagnostics. Adv. Healthc. Mater. 4, 792–810 (2015).

    Article  Google Scholar 

  159. la Belle, J. T. et al. Self-monitoring of tear glucose: the development of a tear based glucose sensor as an alternative to self-monitoring of blood glucose. Chem. Commun. 52, 9197–9204 (2016).

    Article  Google Scholar 

  160. Kim, J. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 8, 14997 (2017).

    Article  Google Scholar 

  161. Elsherif, M., Hassan, M. U., Yetisen, A. K. & Butt, H. Wearable contact lens biosensors for continuous glucose monitoring using smartphones. ACS Nano 12, 5452–5462 (2018).

    Article  Google Scholar 

  162. Kim, J., Campbell, A. S., de Ávila, B. E. F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  Google Scholar 

  163. Sempionatto, J. R., Jeerapan, I., Krishnan, S. & Wang, J. Wearable chemical sensors: emerging systems for on-body analytical chemistry. Anal. Chem. 92, 378–396 (2020).

    Article  Google Scholar 

  164. Stuchell, R. N., Feldman, J. J., Farris, R. L. & Mandel, I. D. The effect of collection technique on tear composition. Invest. Ophthalmol. Vis. Sci. 25, 374–377 (1984).

    Google Scholar 

  165. Kim, Y. & Prausnitz, M. R. Sensitive sensing of biomarkers in interstitial fluid. Nat. Biomed. Eng. 5, 3–5 (2021).

    Article  Google Scholar 

  166. Vermeer, B. J., Reman, F. C. & van Gent, C. M. The determination of lipids and proteins in suction blister fluid. J. Investig. Dermatol. 73, 303–305 (1979).

    Article  Google Scholar 

  167. Basu, A. et al. Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes 62, 4083–4087 (2013).

    Article  Google Scholar 

  168. Soni, A. et al. A practical approach to continuous glucose monitoring (rtCGM) and FreeStyle Libre systems (isCGM) in children and young people with type 1 diabetes. Diabetes Res. Clin. Pract. 184, 109196 (2022).

    Article  Google Scholar 

  169. Samant, P. P. et al. Sampling interstitial fluid from human skin using a microneedle patch. Sci. Transl. Med. 12, eaaw0285 (2020).

    Article  Google Scholar 

  170. Samant, P. P. & Prausnitz, M. R. Mechanisms of sampling interstitial fluid from skin using a microneedle patch. Proc. Natl Acad. Sci. USA 115, 4583–4588 (2018).

    Article  Google Scholar 

  171. Friedel, M. et al. Opportunities and challenges in the diagnostic utility of dermal interstitial fluid. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-022-00998-9 (2023). This Perspective provides a detailed analysis of the opportunities and challenges related to interstitial-fluid-based sensing and provides a roadmap for future interstitial fluid sensor development.

    Article  Google Scholar 

  172. Vasilescu, A., Hrinczenko, B., Swain, G. M. & Peteu, S. F. Exhaled breath biomarker sensing. Biosens. Bioelectron. 182, 113193 (2021).

    Article  Google Scholar 

  173. Chen, H. et al. Automated in vivo nanosensing of breath-borne protein biomarkers. Nano Lett. 18, 4716–4726 (2018).

    Article  Google Scholar 

  174. Ates, H. C. & Dincer, C. Wearable breath analysis. Nat. Rev. Bioeng. 1, 80–82 (2023).

    Article  Google Scholar 

  175. McBurney, M. I. et al. Establishing what constitutes a healthy human gut microbiome: state of the science, regulatory considerations, and future directions. J. Nutr. 149, 1882–1895 (2019).

    Article  Google Scholar 

  176. Melton, S. D., Genta, R. M. & Souza, R. F. Biomarkers and molecular diagnosis of gastrointestinal and pancreatic neoplasms. Nat. Rev. Gastroenterol. Hepatol. 7, 620–628 (2010).

    Article  Google Scholar 

  177. Salama, R., Arshavsky-Graham, S., Sella-Tavor, O., Massad-Ivanir, N. & Segal, E. Design considerations of aptasensors for continuous monitoring of biomarkers in digestive tract fluids. Talanta 239, 123124 (2022).

    Article  Google Scholar 

  178. Ruiz-Valdepeñas Montiel, V. et al. Direct electrochemical biosensing in gastrointestinal fluids. Anal. Bioanal. Chem. 411, 4597–4604 (2019).

    Article  Google Scholar 

  179. Mimee, M. et al. An ingestible bacterial-electronic system to monitor gastrointestinal health. Science 360, 915–918 (2018).

    Article  Google Scholar 

  180. Beardslee, L. A. et al. Ingestible sensors and sensing systems for minimally invasive diagnosis and monitoring: the next frontier in minimally invasive screening. ACS Sens. 5, 891–910 (2020).

    Article  Google Scholar 

  181. Yang, Y. & Gao, W. Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019).

    Article  Google Scholar 

  182. Wang, L., Xu, T. & Zhang, X. Multifunctional conductive hydrogel-based flexible wearable sensors. TrAC Trends Anal. Chem. 134, 116130 (2021).

    Article  Google Scholar 

  183. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  Google Scholar 

  184. Park, Y.-G. et al. Liquid metal-based soft electronics for wearable healthcare. Adv. Healthc. Mater. 10, 2002280 (2021).

    Article  Google Scholar 

  185. Libanori, A., Chen, G., Zhao, X., Zhou, Y. & Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 5, 142–156 (2022).

    Article  Google Scholar 

  186. Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Article  Google Scholar 

  187. Shah, S. R., Tatara, A. M., D’Souza, R. N., Mikos, A. G. & Kasper, F. K. Evolving strategies for preventing biofilm on implantable materials. Mater. Today 16, 177–182 (2013).

    Article  Google Scholar 

  188. Kim, J. et al. Edible electrochemistry: food materials based electrochemical sensors. Adv. Healthc. Mater. 6, 1700770 (2017).

    Article  Google Scholar 

  189. Yin, L. et al. A passive perspiration biofuel cell: high energy return on investment. Joule 5, 1888–1904 (2021).

    Article  Google Scholar 

  190. Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    Article  Google Scholar 

  191. Ali, F., Raza, W., Li, X., Gul, H. & Kim, K.-H. Piezoelectric energy harvesters for biomedical applications. Nano Energy 57, 879–902 (2019).

    Article  Google Scholar 

  192. Jeong, Y. R., Lee, G., Park, H. & Ha, J. S. Stretchable, skin-attachable electronics with integrated energy storage devices for biosignal monitoring. Acc. Chem. Res. 52, 91–99 (2019).

    Article  Google Scholar 

  193. Hajiaghajani, A. et al. Textile-integrated metamaterials for near-field multibody area networks. Nat. Electron. 4, 808–817 (2021).

    Article  Google Scholar 

  194. Chung, J., Sepunaru, L. & Plaxco, K. W. On the disinfection of electrochemical aptamer-based sensors. ECS Sens. Plus 1, 011604 (2022).

    Article  Google Scholar 

  195. Zhang, Y., Bindra, D. S., Barrau, M.-B. & Wilson, G. S. Application of cell culture toxicity tests to the development of implantable biosensors. Biosens. Bioelectron. 6, 653–661 (1991).

    Article  Google Scholar 

  196. Avula, M. N., Rao, A. N., McGill, L. D., Grainger, D. W. & Solzbacher, F. Foreign body response to subcutaneous biomaterial implants in a mast cell-deficient Kit(w-Sh) murine model. Acta Biomater. 10, 1856–1863 (2014).

    Article  Google Scholar 

  197. Fang, Y.-M. & Chang, C.-C. Users’ psychological perception and perceived readability of wearable devices for elderly people. Behav. Inf. Technol. 35, 225–232 (2016).

    Article  Google Scholar 

  198. Pycroft, L. & Aziz, T. Z. Security of implantable medical devices with wireless connections: the dangers of cyber-attacks. Expert Rev. Med. Devices 15, 403–406 (2018).

    Article  Google Scholar 

  199. Sadowski, J., Viljoen, S. & Whittaker, M. Everyone should decide how their digital data are used — not just tech companies. Nature 595, 169–171 (2021).

    Article  Google Scholar 

  200. Teymourian, H. et al. Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sens. 5, 2679–2700 (2020).

    Article  Google Scholar 

  201. Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of Levodopa: toward Parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Article  Google Scholar 

  202. Sempionatto, J. R., Montiel, V. R.-V., Vargas, E., Teymourian, H. & Wang, J. Wearable and mobile sensors for personalized nutrition. ACS Sens. 6, 1745–1760 (2021).

    Article  Google Scholar 

  203. Thabit, H. & Hovorka, R. Coming of age: the artificial pancreas for type 1 diabetes. Diabetologia 59, 1795–1805 (2016).

    Article  Google Scholar 

  204. Biosensors market size by type (wearable, non-wearable), by technology (electrochemical, optical, thermal, piezoelectric), by medical application (blood glucose testing, cholesterol testing, blood gas analysis, pregnancy testing, drug discovery. Global Market Insights https://www.gminsights.com/industry-analysis/biosensors-market (2022).

Download references

Acknowledgements

The authors thank A. Jiao for her illustrative contributions to the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of the manuscript. C.D.F. and S.O.K. edited the manuscript.

Corresponding author

Correspondence to Shana O. Kelley.

Ethics declarations

Competing interests

S.O.K. and H.Y. are cofounders and equity holders in Arma Biosciences, which is commercializing new sensing technologies.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Chunhai Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flynn, C.D., Chang, D., Mahmud, A. et al. Biomolecular sensors for advanced physiological monitoring. Nat Rev Bioeng 1, 560–575 (2023). https://doi.org/10.1038/s44222-023-00067-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-023-00067-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing