Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Vibration-based cell engineering

Abstract

Cell engineering has the aim of producing cells with controlled phenotype for medical use, for example, for cell therapy, cell transplantation or drug discovery. However, chemical induction of cell phenotypes, in particular, the use of inductive media and growth factors, often lacks specificity, might be unsuitable for clinical use and remains costly and difficult to scale up. Alternatively, mechanotransductive stimulation can be applied to engineer cells with specific phenotypes. In this Review, we discuss vibration as a mechanotransductive cell-engineering tool for both in vitro phenotypic control and in vivo regenerative therapy. We examine how vibration devices can be designed to provide specific frequencies and amplitudes to which cells respond through either adhesion-induced or channel-induced mechanotransduction pathways. We further highlight key applications of vibrational stimulation for bone regeneration as well as whole-body vibration as regenerative therapy, identifying important mechanisms of action and gaps in translational pipelines.

Key points

  • Cells can respond to their mechanical environment through phenotypic and functional changes.

  • Vibration is being explored for cell engineering to modify cellular growth, motility and differentiation.

  • Various vibration parameters (frequency, amplitude and duration) are being explored for cell engineering, but their relation to mechanotransductive signalling and phenotypic changes are yet to be fully understood.

  • Vibrational stimulation might be clinically applied for cell therapy or regenerative medicine, but scalibility and optimization of parameters remain challenging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

USD 39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Vibrational mechanosensing.
Fig. 2: Vibration devices and phenotypic control.
Fig. 3: Vibrational mechanotransduction.

Similar content being viewed by others

References

  1. Jaklenec, A., Stamp, A., Deweerd, E., Sherwin, A. & Langer, R. Progress in the tissue engineering and stem cell industry “are we there yet?”. Tissue Eng. B 18, 155–166 (2012).

    Article  Google Scholar 

  2. McPherson, J. M. & Tubo, R. Autologous chondrocyte transplantation (Carticel®): lessons learned and future challenges. In Vitro Cell. Dev. Biol. 40, 6A (2004).

    Google Scholar 

  3. Starzl, T. E. History of clinical transplantation. World J. Surg. 24, 759–782 (2000).

    Article  Google Scholar 

  4. Childs, P. G., Reid, S., Salmeron-Sanchez, M. & Dalby, M. J. Hurdles to uptake of mesenchymal stem cells and their progenitors in therapeutic products. Biochem. J. 477, 3349–3366 (2020).

    Article  Google Scholar 

  5. Yin, J. Q., Zhu, J. & Ankrum, J. A. Manufacturing of primed mesenchymal stromal cells for therapy. Nat. Biomed. Eng. 3, 90–104 (2019).

    Article  Google Scholar 

  6. Martins, J. P. et al. Towards an advanced therapy medicinal product based on mesenchymal stromal cells isolated from the umbilical cord tissue: quality and safety data. Stem Cell Res. Ther. 5, 9 (2014).

    Article  Google Scholar 

  7. Rozwadowska, N. et al. Optimization of human myoblasts culture under different media conditions for application in the in vitro studies. Am. J. Stem Cell 11, 1–11 (2022).

    Google Scholar 

  8. Sonnet, W. & Aznar‐López, C. Treatment of delayed-union fractures of long bones with minimally invasive administration of allogeneic bone-forming cells differentiated from mesenchymal stem cells: a pilot clinical trial. Bone Innov. 1, 3–7 (2019).

    Google Scholar 

  9. Czapla, J. et al. The effect of culture media on large-scale expansion and characteristic of adipose tissue-derived mesenchymal stromal cells. Stem Cell Res. Ther. 10, 235 (2019).

    Article  Google Scholar 

  10. Gualdi, T. et al. In vitro osteodifferentiation of intact human amniotic membrane is not beneficial in the context of bone repair. Cell Tissue Bank. 20, 435–446 (2019).

    Article  Google Scholar 

  11. Wang, N., Tytell, J. D. & Ingber, D. E. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10, 75–82 (2009).

    Article  Google Scholar 

  12. Vining, K. H. & Mooney, D. J. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18, 728–742 (2017).

    Article  Google Scholar 

  13. Wang, N. Review of cellular mechanotransduction. J. Phys. D 50, 233002 (2017).

    Article  Google Scholar 

  14. Brusatin, G., Panciera, T., Gandin, A., Citron, A. & Piccolo, S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat. Mater. 17, 1063–1075 (2018).

    Article  Google Scholar 

  15. Melo-Fonseca, F. et al. Reengineering bone–implant interfaces for improved mechanotransduction and clinical outcomes. Stem Cell Rev. Rep. 16, 1121–1138 (2020).

    Article  Google Scholar 

  16. Discher, D. E., Janmey, P. & Wang, Y.-L. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    Article  Google Scholar 

  17. Cantini, M., Donnelly, H., Dalby, M. J. & Salmeron‐Sanchez, M. The plot thickens: the emerging role of matrix viscosity in cell mechanotransduction. Adv. Healthc. Mater. 9, 1901259 (2020).

    Article  Google Scholar 

  18. Luciano, M. et al. Cell monolayers sense curvature by exploiting active mechanics and nuclear mechanoadaptation. Nat. Phys. 17, 1382–1390 (2021).

    Article  Google Scholar 

  19. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nat. Cell Biol. 19, 742–751 (2017).

    Article  Google Scholar 

  20. Klumpers, D. D., Zhao, X., Mooney, D. J. & Smit, T. H. Cell mediated contraction in 3D cell-matrix constructs leads to spatially regulated osteogenic differentiation. Integr. Biol. 5, 1174–1183 (2013).

    Article  Google Scholar 

  21. Hodgkinson, T. et al. The use of nanovibration to discover specific and potent bioactive metabolites that stimulate osteogenic differentiation in mesenchymal stem cells. Sci. Adv. 7, eabb7921 (2021).

    Article  Google Scholar 

  22. Mirmalek-Sani, S. H. et al. Characterization and multipotentiality of human fetal femur-derived cells: implications for skeletal tissue regeneration. Stem Cell 24, 1042–1053 (2006).

    Article  Google Scholar 

  23. Wu, J. et al. Joint construction of micro-vibration stimulation and BCP scaffolds for enhanced bioactivity and self-adaptability tissue engineered bone grafts. J. Mater. Chem. B 8, 4278–4288 (2020).

    Article  Google Scholar 

  24. ElDeeb, A. M. & Abdel-Aziem, A. A. Effect of whole-body vibration exercise on power profile and bone mineral density in postmenopausal women with osteoporosis: a randomized controlled trial. J. Manip. Physiol. Ther. 43, 384–393 (2020).

    Article  Google Scholar 

  25. Cooper, N. P., Vavakou, A. & van der Heijden, M. Vibration hotspots reveal longitudinal funneling of sound-evoked motion in the mammalian cochlea. Nat. Commun. 9, 3054 (2018).

    Article  Google Scholar 

  26. Brown, G. N., Sattler, R. L. & Guo, X. E. Experimental studies of bone mechanoadaptation: bridging in vitro and in vivo studies with multiscale systems. Interface Focus. 6, 20150071 (2016).

    Article  Google Scholar 

  27. Malone, A. M. et al. Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc. Natl Acad. Sci. USA 104, 13325–13330 (2007).

    Article  Google Scholar 

  28. Wang, J., Sun, Y.-X. & Li, J. The role of mechanosensor Piezo1 in bone homeostasis and mechanobiology. Dev. Biol. 493, 80–88 (2022).

    Article  Google Scholar 

  29. Vanmunster, M. et al. Mechanosensors control skeletal muscle mass, molecular clocks, and metabolism. Cell. Mol. Life Sci. 79, 321 (2022).

    Article  Google Scholar 

  30. Jaalouk, D. E. & Lammerding, J. Mechanotransduction gone awry. Nat. Rev. Mol. Cell Biol. 10, 63–73 (2009).

    Article  Google Scholar 

  31. Jiao, Y. et al. The crescendo pulse frequency of shear stress stimulates the endothelialization of bone marrow mesenchymal stem cells on the luminal surface of decellularized scaffold in the bioreactor. Bioengineered 13, 7925–7938 (2022).

    Article  Google Scholar 

  32. Tan, Y. et al. Low-intensity pulsed ultrasound stimulates proliferation of stem/progenitor cells: what we need to know to translate basic science research into clinical applications. Asian J. Androl. 23, 602 (2021).

    Article  Google Scholar 

  33. Markides, H. et al. Translation of remote control regenerative technologies for bone repair. npj Regen. Med. 3, 9 (2018).

    Article  Google Scholar 

  34. Corrigan, M. A. et al. TRPV4-mediates oscillatory fluid shear mechanotransduction in mesenchymal stem cells in part via the primary cilium. Sci. Rep. 8, 3824 (2018).

    Article  Google Scholar 

  35. Hahn, C. & Schwartz, M. A. Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10, 53–62 (2009).

    Article  Google Scholar 

  36. Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    Article  Google Scholar 

  37. Beijer, N. R. et al. Dynamic adaptation of mesenchymal stem cell physiology upon exposure to surface micropatterns. Sci. Rep. 9, 9099 (2019).

    Article  Google Scholar 

  38. Pemberton, G. D. et al. Nanoscale stimulation of osteoblastogenesis from mesenchymal stem cells: nanotopography and nanokicking. Nanomedicine 10, 547–560 (2015).

    Article  Google Scholar 

  39. Walther, B. K. et al. Mechanotransduction-on-chip: vessel-chip model of endothelial YAP mechanobiology reveals matrix stiffness impedes shear response. Lab Chip 21, 1738–1751 (2021).

    Article  Google Scholar 

  40. Yarishkin, O. et al. Mechanotransduction and dynamic outflow regulation in trabecular meshwork requires Piezo1 channels. Preprint at bioRxiv https://doi.org/10.1101/2020.06.30.180653 (2020).

  41. Melica, M. E. et al. Substrate stiffness modulates renal progenitor cell properties via a ROCK-mediated mechanotransduction mechanism. Cells 8, 1561 (2019).

    Article  Google Scholar 

  42. Brown, T. D. Techniques for mechanical stimulation of cells in vitro: a review. J. Biomech. 33, 3–14 (2000).

    Article  Google Scholar 

  43. Stavenschi, E., Labour, M.-N. & Hoey, D. A. Oscillatory fluid flow induces the osteogenic lineage commitment of mesenchymal stem cells: the effect of shear stress magnitude, frequency, and duration. J. Biomech. 55, 99–106 (2017).

    Article  Google Scholar 

  44. Tsimbouri, P. M. et al. Stimulation of 3D osteogenesis by mesenchymal stem cells using a nanovibrational bioreactor. Nat. Biomed. Eng. 1, 758–770 (2017).

    Article  Google Scholar 

  45. Song, Z., Banks, R. W. & Bewick, G. S. Modelling the mechanoreceptor’s dynamic behaviour. J. Anat. 227, 243–254 (2015).

    Article  Google Scholar 

  46. Sawada, Y., Murase, M. & Sokabe, M. The gating mechanism of the bacterial mechanosensitive channel MscL revealed by molecular dynamics simulations: from tension sensing to channel opening. Channels 6, 317–331 (2012).

    Article  Google Scholar 

  47. Appel, H. M. & Cocroft, R. B. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175, 1257–1266 (2014).

    Article  Google Scholar 

  48. von Muggenthaler, E. The felid purr: a healing mechanism? J. Acoust. Soc. Am. 110, 2666–2666 (2001).

    Article  Google Scholar 

  49. Nikukar, H. et al. Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction. ACS Nano 7, 2758–2767 (2013).

    Article  Google Scholar 

  50. Yang, C., Tibbitt, M. W., Basta, L. & Anseth, K. S. Mechanical memory and dosing influence stem cell fate. Nat. Mater. 13, 645–652 (2014).

    Article  Google Scholar 

  51. Thompson, M., Woods, K., Newberg, J., Oxford, J. T. & Uzer, G. Low-intensity vibration restores nuclear YAP levels and acute YAP nuclear shuttling in mesenchymal stem cells subjected to simulated microgravity. npj Microgravity 6, 35 (2020).

    Article  Google Scholar 

  52. Kanchanawong, P. et al. Nanoscale architecture of integrin-based cell adhesions. Nature 468, 580–584 (2010).

    Article  Google Scholar 

  53. Kilian, K. A., Bugarija, B., Lahn, B. T. & Mrksich, M. Geometric cues for directing the differentiation of mesenchymal stem cells. Proc. Natl Acad. Sci. USA 107, 4872–4877 (2010).

    Article  Google Scholar 

  54. Lee, W. et al. The osteogenic differentiation of human dental pulp stem cells through G0/G1 arrest and the p-ERK/Runx-2 pathway by sonic vibration. Int. J. Mol. Sci. 22, 10167 (2021).

    Article  Google Scholar 

  55. Zhou, Y. et al. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: effect of microvibration and role of ERK1/2 activation. Eur. Cell Mater. 22, 12–25 (2011).

    Article  Google Scholar 

  56. Lu, Y. et al. Vibration loading promotes osteogenic differentiation of bone marrow-derived mesenchymal stem cells via p38 MAPK signaling pathway. J. Biomech. 71, 67–75 (2018).

    Article  Google Scholar 

  57. Wu, R. W. et al. Piezoelectric microvibration mitigates estrogen loss-induced osteoporosis and promotes piezo1, microRNA-29a, and Wnt3a signaling in osteoblasts. Int. J. Mol. Sci. 22, 9476 (2021).

    Article  Google Scholar 

  58. Bas, G. et al. Low intensity vibrations augment mesenchymal stem cell proliferation and differentiation capacity during in vitro expansion. Sci. Rep. 10, 9369 (2020).

    Article  Google Scholar 

  59. Halonen, H. T., Ihalainen, T. O., Hyväri, L., Miettinen, S. & Hyttinen, J. A. Cell adhesion and culture medium dependent changes in the high frequency mechanical vibration induced proliferation, osteogenesis, and intracellular organization of human adipose stem cells. J. Mech. Behav. Biomed. Mater. 101, 103419 (2020).

    Article  Google Scholar 

  60. Hou, W., Zhang, D., Feng, X. & Zhou, Y. Low magnitude high frequency vibration promotes chondrogenic differentiation of bone marrow stem cells with involvement of β-catenin signaling pathway. Arch. Oral. Biol. 118, 104860 (2020).

    Article  Google Scholar 

  61. Safavi, A. S. et al. Efficacy of mechanical vibration in regulating mesenchymal stem cells gene expression. In Vitro Cell. Dev. Biol. Anim. 55, 387–394 (2019).

    Article  Google Scholar 

  62. Anggayasti, W. L., Imashiro, C., Kuribara, T., Totani, K. & Takemura, K. Low‐frequency mechanical vibration induces apoptosis of A431 epidermoid carcinoma cells. Eng. Life Sci. 20, 232–238 (2020).

    Article  Google Scholar 

  63. Zhao, Q., Lu, Y., Gan, X. & Yu, H. Low magnitude high frequency vibration promotes adipogenic differentiation of bone marrow stem cells via P38 MAPK signal. PLoS ONE 12, e0172954 (2017).

    Article  Google Scholar 

  64. Pongkitwitoon, S., Uzer, G., Rubin, J. & Judex, S. Cytoskeletal configuration modulates mechanically induced changes in mesenchymal stem cell osteogenesis, morphology, and stiffness. Sci. Rep. 6, 34791 (2016).

    Article  Google Scholar 

  65. Tapia-Rojo, R., Alonso-Caballero, Á. & Fernández, J. M. Talin folding as the tuning fork of cellular mechanotransduction. Proc. Natl Acad. Sci. USA 117, 21346–21353 (2020).

    Article  Google Scholar 

  66. Griffin, X. L., Parsons, N., Costa, M. L. & Metcalfe, D. Ultrasound and shockwave therapy for acute fractures in adults. Cochrane Datab. Syst. Rev. 3, CD008579 (2014).

    Google Scholar 

  67. Lam, T. et al. Effect of whole body vibration (WBV) therapy on bone density and bone quality in osteopenic girls with adolescent idiopathic scoliosis: a randomized, controlled trial. Osteopor. Int. 24, 1623–1636 (2013).

    Article  Google Scholar 

  68. Ambattu, L. A. & Yeo, L. Y. Sonomechanobiology: vibrational stimulation of cells and its therapeutic implications. Biophys. Rev. 4, 021301 (2023).

    Article  Google Scholar 

  69. Ling, L. et al. Low‐intensity pulsed ultrasound activates ERK1/2 and PI3K‐Akt signalling pathways and promotes the proliferation of human amnion‐derived mesenchymal stem cells. Cell Prolif. 50, e12383 (2017).

    Article  Google Scholar 

  70. Wang, Y. et al. Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression. Int. J. Mol. Med. 42, 322–330 (2018); corrigendum 49, 38 (2022).

  71. Wang, Y. et al. Study of bilineage differentiation of human-bone-marrow-derived mesenchymal stem cells in oxidized sodium alginate/N-succinyl chitosan hydrogels and synergistic effects of RGD modification and low-intensity pulsed ultrasound. Acta Biomater. 10, 2518–2528 (2014).

    Article  Google Scholar 

  72. Snehota, M., Vachutka, J., Ter Haar, G., Dolezal, L. & Kolarova, H. Therapeutic ultrasound experiments in vitro: review of factors influencing outcomes and reproducibility. Ultrasonics 107, 106167 (2020).

    Article  Google Scholar 

  73. Gupta, D. et al. Traditional multiwell plates and petri dishes limit the evaluation of the effects of ultrasound on cells in vitro. Ultrasound Med. Biol. 48, 1745–1761 (2022).

    Article  Google Scholar 

  74. Campsie, P. et al. Design, construction and characterisation of a novel nanovibrational bioreactor and cultureware for osteogenesis. Sci. Rep. 9, 12944 (2019).

    Article  Google Scholar 

  75. Prè, D. et al. High-frequency vibration treatment of human bone marrow stromal cells increases differentiation toward bone tissue. Bone Marrow Res. 2013, 803450 (2013).

    Article  Google Scholar 

  76. Uzer, G. et al. Separating fluid shear stress from acceleration during vibrations in vitro: identification of mechanical signals modulating the cellular response. Cell. Mol. Bioeng. 5, 266–276 (2012).

    Article  Google Scholar 

  77. Ito, Y. et al. Effects of vibration on differentiation of cultured PC12 cells. Biotechnol. Bioeng. 108, 592–599 (2011).

    Article  Google Scholar 

  78. Choi, S. & Kuchenbecker, K. J. Vibrotactile display: perception, technology, and applications. Proc. IEEE 101, 2093–2104 (2012).

    Article  Google Scholar 

  79. Dong, S. Review on piezoelectric, ultrasonic, and magnetoelectric actuators. J. Adv. Dielectr. 2, 1230001 (2012).

    Article  Google Scholar 

  80. Hensel, K., Mienkina, M. P. & Schmitz, G. Analysis of ultrasound fields in cell culture wells for in vitro ultrasound therapy experiments. Ultrasound Med. Biol. 37, 2105–2115 (2011).

    Article  Google Scholar 

  81. Patel, U. S. et al. Ultrasound field characterization and bioeffects in multiwell culture plates. J. Ther. Ultrasound 3, 8 (2015).

    Article  Google Scholar 

  82. LaGier, A. J., Elbe, A., Thamke, A. & Anderson, P. Vibration, a treatment for migraine, linked to calpain driven changes in actin cytoskeleton. PLoS ONE 17, e0262058 (2022).

    Article  Google Scholar 

  83. Tirkkonen, L. et al. The effects of vibration loading on adipose stem cell number, viability and differentiation towards bone-forming cells. J. R. Soc. Interf. 8, 1736–1747 (2011).

    Article  Google Scholar 

  84. Bacabac, R. G. et al. Bone cell responses to high-frequency vibration stress: does the nucleus oscillate within the cytoplasm? FASEB J. 20, 858–864 (2006).

    Article  Google Scholar 

  85. Prè, D., Ceccarelli, G., Benedetti, L., Magenes, G. & De Angelis, M. G. Effects of low-amplitude, high-frequency vibrations on proliferation and differentiation of SAOS-2 human osteogenic cell line. Tissue Eng. C 15, 669–679 (2009).

    Article  Google Scholar 

  86. Prè, D. et al. The differentiation of human adipose-derived stem cells (hASCs) into osteoblasts is promoted by low amplitude, high frequency vibration treatment. Bone 49, 295–303 (2011).

    Article  Google Scholar 

  87. Nikukar, H. et al. Production of nanoscale vibration for stimulation of human mesenchymal stem cells. J. Biomed. Nanotechnol. 12, 1478–1488 (2016).

    Article  Google Scholar 

  88. Childs, P. G. et al. Use of nanoscale mechanical stimulation for control and manipulation of cell behaviour. Acta Biomater. 34, 159–168 (2016).

    Article  Google Scholar 

  89. Orapiriyakul, W. et al. Nanovibrational stimulation of mesenchymal stem cells induces therapeutic reactive oxygen species and inflammation for three-dimensional bone tissue engineering. ACS Nano 14, 10027–10044 (2020).

    Article  Google Scholar 

  90. Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    Article  MathSciNet  Google Scholar 

  91. Gao, H. et al. Low-level mechanical vibration enhances osteoblastogenesis via a canonical Wnt signaling-associated mechanism. Mol. Med. Rep. 16, 317–324 (2017).

    Article  Google Scholar 

  92. Enomoto, U., Imashiro, C. & Takemura, K. Collective cell migration of fibroblasts is affected by horizontal vibration of the cell culture dish. Eng. Life Sci. 20, 402–411 (2020).

    Article  Google Scholar 

  93. Mojena-Medina, D. et al. Design, implementation, and validation of a piezoelectric device to study the effects of dynamic mechanical stimulation on cell proliferation, migration and morphology. Sensors 20, 2155 (2020).

    Article  Google Scholar 

  94. Ota, T., Chiba, M. & Hayashi, H. Vibrational stimulation induces osteoblast differentiation and the upregulation of osteogenic gene expression in vitro. Cytotechnology 68, 2287–2299 (2016).

    Article  Google Scholar 

  95. Sancilio, S. et al. Effects of focused vibrations on human satellite cells. Int. J. Mol. Sci. 23, 6026 (2022).

    Article  Google Scholar 

  96. Takeuchi, R. et al. Effects of vibration and hyaluronic acid on activation of three-dimensional cultured chondrocytes. Arthritis Rheum. 54, 1897–1905 (2006).

    Article  Google Scholar 

  97. Grosman-Dziewiszek, P. et al. Influence of 40 Hz and 100 Hz vibration on SH-SY5Y cells growth and differentiation—a preliminary study. Molecules 27, 3337 (2022).

    Article  Google Scholar 

  98. Lin, C. Y. et al. Yoda1 enhanced low-magnitude high-frequency vibration on osteocytes in regulation of MDA-MB-231 breast cancer cell migration. Cancers 14, 3395 (2022).

    Article  Google Scholar 

  99. Uzer, G. et al. Cell mechanosensitivity to extremely low-magnitude signals is enabled by a LINCed nucleus. Stem Cell 33, 2063–2076 (2015).

    Article  Google Scholar 

  100. Lau, E. et al. Effect of low-magnitude, high-frequency vibration on osteogenic differentiation of rat mesenchymal stromal cells. J. Orthop. Res. 29, 1075–1080 (2011).

    Article  Google Scholar 

  101. Uzer, G., Pongkitwitoon, S., Ete Chan, M. & Judex, S. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 46, 2296–2302 (2013).

    Article  Google Scholar 

  102. Lorusso, D., Nikolov, H. N., Holdsworth, D. W. & Dixon, S. J. Vibration of osteoblastic cells using a novel motion-control platform does not acutely alter cytosolic calcium, but desensitizes subsequent responses to extracellular ATP. J. Cell. Physiol. 235, 5096–5110 (2020).

    Article  Google Scholar 

  103. Coughlin, T. R. & Niebur, G. L. Fluid shear stress in trabecular bone marrow due to low-magnitude high-frequency vibration. J. Biomech. 45, 2222–2229 (2012).

    Article  Google Scholar 

  104. Ambattu, L. A., Gelmi, A. & Yeo, L. Y. Short-duration high frequency megahertz-order nanomechanostimulation drives early and persistent osteogenic differentiation in mesenchymal stem cells. Small 18, 2106823 (2022).

    Article  Google Scholar 

  105. Kennedy, J. W. et al. Nanovibrational stimulation inhibits osteoclastogenesis and enhances osteogenesis in co-cultures. Sci. Rep. 11, 22741 (2021).

    Article  Google Scholar 

  106. Tong, Z., Duncan, R. & Jia, X. Modulating the behaviors of mesenchymal stem cells via the combination of high-frequency vibratory stimulations and fibrous scaffolds. Tissue Eng. A 19, 1862–1878 (2013).

    Article  Google Scholar 

  107. Stein, G. S. & Lian, J. B. Molecular mechanisms mediating proliferation/differentiation interrelationships during progressive development of the osteoblast phenotype. Endocr. Rev. 14, 424–442 (1993).

    Article  Google Scholar 

  108. Yang, J. et al. Nanotopographical induction of osteogenesis through adhesion, bone morphogenic protein cosignaling, and regulation of microRNAs. ACS Nano 8, 9941–9953 (2014).

    Article  Google Scholar 

  109. Li, Y. H. et al. Primary cilia respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts. Am. J. Physiol. Cell Physiol. 318, C73–c82 (2020).

    Article  Google Scholar 

  110. Judex, S. & Pongkitwitoon, S. Differential efficacy of 2 vibrating orthodontic devices to alter the cellular response in osteoblasts, fibroblasts, and osteoclasts. Dose Response 16, 1559325818792112 (2018).

    Article  Google Scholar 

  111. Marędziak, M., Lewandowski, D., Tomaszewski, K. A., Kubiak, K. & Marycz, K. The effect of low-magnitude low-frequency vibrations (LMLF) on osteogenic differentiation potential of human adipose derived mesenchymal stem cells. Cell Mol. Bioeng. 10, 549–562 (2017).

    Article  Google Scholar 

  112. Rosenberg, N., Levy, M. & Francis, M. Experimental model for stimulation of cultured human osteoblast-like cells by high frequency vibration. Cytotechnology 39, 125–130 (2002).

    Article  Google Scholar 

  113. Marycz, K. et al. Low-frequency, low-magnitude vibrations (LFLM) enhances chondrogenic differentiation potential of human adipose derived mesenchymal stromal stem cells (hASCs). PeerJ 4, e1637 (2016).

    Article  Google Scholar 

  114. Chen, X., He, F., Zhong, D.-Y. & Luo, Z.-P. Acoustic-frequency vibratory stimulation regulates the balance between osteogenesis and adipogenesis of human bone marrow-derived mesenchymal stem cells. Biomed. Res. Int. 2015, 540731 (2015).

    Google Scholar 

  115. Baskan, O., Mese, G. & Ozcivici, E. Low-intensity vibrations normalize adipogenesis-induced morphological and molecular changes of adult mesenchymal stem cells. Proc. Inst. Mech. Eng. H 231, 160–168 (2017).

    Article  Google Scholar 

  116. Baskan, O., Sarigil, O., Mese, G. & Ozcivici, E. Frequency-specific sensitivity of 3T3-L1 preadipocytes to low-intensity vibratory stimulus during adipogenesis. In Vitro Cell. Dev. Biol. Anim. 58, 452–461 (2022).

    Article  Google Scholar 

  117. Cashion, A. T. et al. Programmable mechanobioreactor for exploration of the effects of periodic vibratory stimulus on mesenchymal stem cell differentiation. Biores. Open Access 3, 19–28 (2014).

    Article  Google Scholar 

  118. Zhang, C. et al. Influence of different intensities of vibration on proliferation and differentiation of human periodontal ligament stem cells. Arch. Med. Sci. 11, 638–646 (2015).

    Article  Google Scholar 

  119. Lee, J., Abdeen, A. A., Tang, X., Saif, T. A. & Kilian, K. A. Geometric guidance of integrin mediated traction stress during stem cell differentiation. Biomaterials 69, 174–183 (2015).

    Article  Google Scholar 

  120. Kilian, K. A. & Mrksich, M. Directing stem cell fate by controlling the affinity and density of ligand-receptor interactions at the biomaterials interface. Angew. Chem. Int. Edn 51, 4891–4895 (2012).

    Article  Google Scholar 

  121. McBeath, R., Pirone, D. M., Nelson, C. M., Bhadriraju, K. & Chen, C. S. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6, 483–495 (2004).

    Article  Google Scholar 

  122. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    Article  Google Scholar 

  123. Ross, E. A. et al. Nanotopography reveals metabolites that maintain the immunomodulatory phenotype of mesenchymal stromal cells. Nat. Commun. 14, 753 (2023).

    Article  Google Scholar 

  124. Tsimbouri, P. M. et al. Using nanotopography and metabolomics to identify biochemical effectors of multipotency. ACS Nano 6, 10239–10249 (2012).

    Article  Google Scholar 

  125. Knight, C. G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40 (2000).

    Article  Google Scholar 

  126. Dalby, M. J., Garcia, A. J. & Salmeron-Sanchez, M. Receptor control in mesenchymal stem cell engineering. Nat. Rev. Mater. 3, 17091 (2018).

  127. Dalby, M. J., Gadegaard, N. & Oreffo, R. O. Harnessing nanotopography and integrin-matrix interactions to influence stem cell fate. Nat. Mater. 13, 558–569 (2014).

    Article  Google Scholar 

  128. Elosegui-Artola, A. et al. Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat. Cell Biol. 18, 540–548 (2016).

    Article  Google Scholar 

  129. Bennett, M. et al. Molecular clutch drives cell response to surface viscosity. Proc. Natl Acad. Sci. USA 115, 1192–1197 (2018).

    Article  Google Scholar 

  130. Malmstrom, J. et al. Focal complex maturation and bridging on 200 nm vitronectin but not fibronectin patches reveal different mechanisms of focal adhesion formation. Nano Lett. 11, 2264–2271 (2011).

    Article  Google Scholar 

  131. Elosegui-Artola, A. et al. Force triggers YAP nuclear entry by regulating transport across nuclear pores. Cell 171, 1397–1410.e14 (2017).

    Article  Google Scholar 

  132. Kim, J.-M. et al. The ERK MAPK pathway is essential for skeletal development and homeostasis. Int. J. Mol. Sci. 20, 1803 (2019).

    Article  Google Scholar 

  133. Ge, C. et al. Reciprocal control of osteogenic and adipogenic differentiation by ERK/MAP kinase phosphorylation of Runx2 and PPARγ transcription factors. J. Cell Physiol. 231, 587–596 (2016).

    Article  Google Scholar 

  134. Chen, Y. et al. Beta-catenin signaling pathway is crucial for bone morphogenetic protein 2 to induce new bone formation. J. Biol. Chem. 282, 526–533 (2007).

    Article  Google Scholar 

  135. Hou, W. W., Zhu, Z. L., Zhou, Y., Zhang, C. X. & Yu, H. Y. Involvement of Wnt activation in the micromechanical vibration-enhanced osteogenic response of osteoblasts. J. Orthopaedic Sci. 16, 598–605 (2011).

    Article  Google Scholar 

  136. Miyazaki, A. et al. Coordination of WNT signaling and ciliogenesis during odontogenesis by piezo type mechanosensitive ion channel component 1. Sci. Rep. 9, 14762 (2019).

    Article  Google Scholar 

  137. Liu, Y. et al. Hydrogen sulfide maintains mesenchymal stem cell function and bone homeostasis via regulation of Ca2+ channel sulfhydration. Cell Stem Cell 15, 66–78 (2014).

    Article  Google Scholar 

  138. Gaur, T. et al. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem. 280, 33132–33140 (2005).

    Article  Google Scholar 

  139. Choi, Y. et al. Sound waves induce neural differentiation of human bone marrow-derived mesenchymal stem cells via ryanodine receptor-induced calcium release and Pyk2 activation. Appl. Biochem. Biotechnol. 180, 682–694 (2016).

    Article  Google Scholar 

  140. Coste, B. et al. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483, 176–181 (2012).

    Article  Google Scholar 

  141. Kefauver, J. M., Ward, A. B. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020).

    Article  Google Scholar 

  142. Li, Y. H. et al. Crosstalk between the COX2–PGE2–EP4 signaling pathway and primary cilia in osteoblasts after mechanical stimulation. J. Cell Physiol. 236, 4764–4777 (2021).

    Article  Google Scholar 

  143. Loi, F. et al. Inflammation, fracture and bone repair. Bone 86, 119–130 (2016).

    Article  Google Scholar 

  144. Ranzinger, J. et al. Nanoscale arrangement of apoptotic ligands reveals a demand for a minimal lateral distance for efficient death receptor activation. Nano Lett. 9, 4240–4245 (2009).

    Article  Google Scholar 

  145. Varum, S. et al. Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS ONE 6, e20914 (2011).

    Article  Google Scholar 

  146. Varum, S. et al. Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain. Stem Cell Res. 3, 142–156 (2009).

    Article  Google Scholar 

  147. Marín-Cascales, E. et al. Whole-body vibration training and bone health in postmenopausal women: a systematic review and meta-analysis. Medicine 97, e11918 (2018).

    Article  Google Scholar 

  148. Leighton, R., Phillips, M., Bhandari, M. & Zura, R. Low intensity pulsed ultrasound (LIPUS) use for the management of instrumented, infected, and fragility non-unions: a systematic review and meta-analysis of healing proportions. BMC Musculoskelet. Disord. 22, 1–9 (2021).

    Article  Google Scholar 

  149. Auersperg, V. & Trieb, K. Extracorporeal shock wave therapy: an update. EFORT Open. Rev. 5, 584–592 (2020).

    Article  Google Scholar 

  150. Köllmer, M., Buhrman, J. S., Zhang, Y. & Gemeinhart, R. A. Markers are shared between adipogenic and osteogenic differentiated mesenchymal stem cells. J. Dev. Biol. Tissue Eng. 5, 18 (2013).

    Article  Google Scholar 

  151. Pel, J. et al. Platform accelerations of three different whole-body vibration devices and the transmission of vertical vibrations to the lower limbs. Med. Eng. Phys. 31, 937–944 (2009).

    Article  Google Scholar 

  152. Rehn, B., Lidström, J., Skoglund, J. & Lindström, B. Effects on leg muscular performance from whole‐body vibration exercise: a systematic review. Scand. J. Med. Sci. Sports 17, 2–11 (2007).

    Article  Google Scholar 

  153. Sitjà-Rabert, M. et al. Efficacy of whole body vibration exercise in older people: a systematic review. Disabil. Rehabil. 34, 883–893 (2012).

    Article  Google Scholar 

  154. Chanou, K., Gerodimos, V., Karatrantou, K. & Jamurtas, A. Whole-body vibration and rehabilitation of chronic diseases: a review of the literature. J. Sports Sci. Med. 11, 187 (2012).

    Google Scholar 

  155. Cardinale, M. & Wakeling, J. Whole body vibration exercise: are vibrations good for you? Br. J. Sports Med. 39, 585–589 (2005).

    Article  Google Scholar 

  156. Fischer, M. et al. Long-term effects of whole-body vibration on human gait: a systematic review and meta-analysis. Front. Neurol. 10, 627 (2019).

    Article  Google Scholar 

  157. Slatkovska, L., Alibhai, S., Beyene, J. & Cheung, A. Effect of whole-body vibration on BMD: a systematic review and meta-analysis. Osteoporos. Int. 21, 1969–1980 (2010).

    Article  Google Scholar 

  158. DadeMatthews, O. O. et al. Systematic review and meta-analyses on the effects of whole-body vibration on bone health. Complement. Ther. Med. 65, 102811 (2022).

    Article  Google Scholar 

  159. Peretti, A. L., Ciqueleiro, R. T., Flores, L. J. F. & Bertolini, G. R. F. Use of whole-body vibration as osteoporosis treatment in postmenopausal women: a systematic review. Eur. J. Clin. Exp. Med. 17, 146–152 (2019).

    Article  Google Scholar 

  160. Leung, K. S. et al. Low‐magnitude high‐frequency vibration accelerates callus formation, mineralization, and fracture healing in rats. J. Orthop. Res. 27, 458–465 (2009).

    Article  Google Scholar 

  161. Shi, H.-F., Cheung, W.-H., Qin, L., Leung, A. H.-C. & Leung, K.-S. Low-magnitude high-frequency vibration treatment augments fracture healing in ovariectomy-induced osteoporotic bone. Bone 46, 1299–1305 (2010).

    Article  Google Scholar 

  162. Wong, R. M. Y. et al. Fibrinolysis as a target to enhance osteoporotic fracture healing by vibration therapy in a metaphyseal fracture model. Bone Jt Res. 10, 41–50 (2021).

    Article  Google Scholar 

  163. Chow, S. et al. Mechanical stimulation enhanced estrogen receptor expression and callus formation in diaphyseal long bone fracture healing in ovariectomy-induced osteoporotic rats. Osteoporos. Int. 27, 2989–3000 (2016).

    Article  Google Scholar 

  164. Haffner-Luntzer, M., Lackner, I., Liedert, A., Fischer, V. & Ignatius, A. Effects of low-magnitude high-frequency vibration on osteoblasts are dependent on estrogen receptor α signaling and cytoskeletal remodeling. Biochem. Biophys. Res. Commun. 503, 2678–2684 (2018).

    Article  Google Scholar 

  165. Chow, S. et al. Vibration treatment modulates macrophage polarisation and enhances early inflammatory response in oestrogen-deficient osteoporotic-fracture healing. Eur. Cell Mater. 38, 228–245 (2019).

    Article  Google Scholar 

  166. Jawed, Y., Beli, E., March, K., Kaleth, A. & Loghmani, M. T. Whole-body vibration training increases stem/progenitor cell circulation levels and may attenuate inflammation. Military Med. 185, 404–412 (2020).

    Article  Google Scholar 

  167. Jing, D. et al. Effect of low-level mechanical vibration on osteogenesis and osseointegration of porous titanium implants in the repair of long bone defects. Sci. Rep. 5, 17134 (2015).

    Article  Google Scholar 

  168. Wang, J. et al. Vibration and β‐hydroxy‐β‐methylbutyrate treatment suppresses intramuscular fat infiltration and adipogenic differentiation in sarcopenic mice. J. Cachexia, Sarcopenia Muscle 11, 564–577 (2020).

    Article  Google Scholar 

  169. Judex, S. & Rubin, C. Is bone formation induced by high-frequency mechanical signals modulated by muscle activity? J. Musculoskelet. Neuronal Interact. 10, 3 (2010).

    Google Scholar 

  170. Seo, B. R. et al. Skeletal muscle regeneration with robotic actuation–mediated clearance of neutrophils. Sci. Transl. Med. 13, eabe8868 (2021).

    Article  Google Scholar 

  171. Lara-Castillo, N. et al. In vivo mechanical loading rapidly activates β-catenin signaling in osteocytes through a prostaglandin mediated mechanism. Bone 76, 58–66 (2015).

    Article  Google Scholar 

  172. Liu, C. et al. Effects of mechanical loading on cortical defect repair using a novel mechanobiological model of bone healing. Bone 108, 145–155 (2018).

    Article  Google Scholar 

  173. Birmingham, E. et al. Mechanical stimulation of bone marrow in situ induces bone formation in trabecular explants. Ann. Biomed. Eng. 43, 1036–1050 (2015).

    Article  Google Scholar 

  174. Zhao, C., Liu, H., Tian, C., Zhang, C. & Wang, W. Multi-scale numerical simulation on mechano-transduction of osteocytes in different gravity fields. Comput. Meth. Biomech. Biomed. Eng. 26, 1419–1430 (2023).

    Article  Google Scholar 

  175. Williams, J. A. et al. Developing and investigating a nanovibration intervention for the prevention/reversal of bone loss following spinal cord injury. ACS Nano 18, 17630–17641 (2024).

    Article  Google Scholar 

  176. McKnight, C. L., Doman, D. A., Brown, J. A., Bance, M. & Adamson, R. B. Direct measurement of the wavelength of sound waves in the human skull. J. Acoust. Soc. Am. 133, 136–145 (2013).

    Article  Google Scholar 

  177. McLeod, R., Roberts, W., Perry, I., Richardson, B. & Culling, J. Scanning laser Doppler vibrometry of the cranium when stimulated by a B71 bone transducer. Appl. Acoust. 142, 53–58 (2018).

    Article  Google Scholar 

  178. Dobrev, I. et al. Sound wave propagation on the human skull surface with bone conduction stimulation. Hearing Res. 355, 1–13 (2017).

    Article  Google Scholar 

  179. Busse, J. W. et al. Re-evaluation of low intensity pulsed ultrasound in treatment of tibial fractures (TRUST): randomized clinical trial. BMJ 355, i5351 (2016).

    Google Scholar 

  180. Poolman, R. W. et al. Low intensity pulsed ultrasound (LIPUS) for bone healing: a clinical practice guideline. BMJ 356, j576 (2017).

    Article  Google Scholar 

  181. Dolgin, E. Sizzling interest in lab-grown meat belies lack of basic research. Nature 566, 161–163 (2019).

    Article  Google Scholar 

  182. Stout, A. J. et al. Simple and effective serum-free medium for sustained expansion of bovine satellite cells for cell cultured meat. Commun. Biol. 5, 466 (2022).

    Article  Google Scholar 

  183. Coords, M. et al. The effects of low-intensity pulsed ultrasound upon diabetic fracture healing. J. Orthop. Res. 29, 181–188 (2011).

    Article  Google Scholar 

  184. Curtis, A. S. et al. Cell interactions at the nanoscale: piezoelectric stimulation. IEEE Trans. Nanobiosci. 12, 247–254 (2013).

    Article  Google Scholar 

  185. Karimi, E. et al. Nanoscale vibration could promote tenogenic differentiation of umbilical cord mesenchymal stem cells. In Vitro Cell. Dev. Biol. Anim. 59, 401–409 (2023).

    Article  Google Scholar 

  186. Kim, I. S., Song, Y. M., Lee, B. & Hwang, S. J. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli. J. Dent. Res. 91, 1135–1140 (2012).

    Article  Google Scholar 

  187. Demiray, L. & Ozcivici, E. Bone marrow stem cells adapt to low-magnitude vibrations by altering their cytoskeleton during quiescence and osteogenesis. Turk. J. Biol. 39, 88–97 (2015).

    Article  Google Scholar 

  188. Pravitharangul, A., Suttapreyasri, S. & Leethanakul, C. Iliac and mandible osteoblasts exhibit varied responses to LMHF vibration. Cell Biol. Int. 42, 1349–1357 (2018).

    Article  Google Scholar 

  189. Chen, B. et al. Low-magnitude, high-frequency vibration promotes the adhesion and the osteogenic differentiation of bone marrow-derived mesenchymal stem cells cultured on a hydroxyapatite-coated surface: The direct role of Wnt/β-catenin signaling pathway activation. Int. J. Mol. Med. 38, 1531–1540 (2016).

    Article  Google Scholar 

  190. Macione, J. et al. Stimulation of osteoblast differentiation with guided ultrasound waves. J. Ther. Ultrasound 3, 12 (2015).

    Article  Google Scholar 

  191. Chu, Y. C., Lim, J., Hwang, W. H., Lin, Y. X. & Wang, J. L. Piezoelectric stimulation by ultrasound facilitates chondrogenesis of mesenchymal stem cells. J. Acoust. Soc. Am. 148, El58 (2020).

    Article  Google Scholar 

  192. Hortobagyi, D. et al. In vitro mechanical vibration down-regulates pro-inflammatory and pro-fibrotic signaling in human vocal fold fibroblasts. PLoS ONE 15, e0241901 (2020).

    Article  Google Scholar 

  193. García-López, S., Villanueva, R. E., Massó-Rojas, F., Páez-Arenas, A. & Meikle, M. C. Micro-vibrations at 30 Hz on bone cells cultivated in vitro produce soluble factors for osteoclast inhibition and osteoblast activity. Arch. Oral. Biol. 110, 104594 (2020).

    Article  Google Scholar 

  194. Sun, T. et al. Effects of mechanical vibration on cell morphology, proliferation, apoptosis, and cytokine expression/secretion in osteocyte-like MLO-Y4 cells exposed to high glucose. Cell Biol. Int. 44, 216–228 (2019).

    Article  Google Scholar 

  195. Wang, C.-Z. et al. Low-magnitude vertical vibration enhances myotube formation in C2C12 myoblasts. J. Appl. Physiol. 109, 840–848 (2010).

    Article  Google Scholar 

  196. Lin, Y. H. et al. The essential role of stathmin in myoblast C2C12 for vertical vibration-induced myotube formation. Biomolecules 11, 1583 (2021).

    Article  Google Scholar 

  197. Choi, Y. K., Cho, H., Seo, Y. K., Yoon, H. H. & Park, J. K. Stimulation of sub-sonic vibration promotes the differentiation of adipose tissue-derived mesenchymal stem cells into neural cells. Life Sci. 91, 329–337 (2012).

    Article  Google Scholar 

  198. Cho, H., Seo, Y.-K., Yoon, H.-H., Choi, Y.-K. & Park, J.-K. Neural differentiation of umbilical cord mesenchymal stem cells by sub-sonic vibration. Life Sci. 90, 591–599 (2012).

    Article  Google Scholar 

  199. Cho, H., Park, H. J. & Seo, Y. K. Induction of PLXNA4 gene during neural differentiation in human umbilical-cord-derived mesenchymal stem cells by low-intensity sub-sonic vibration. Int. J. Mol. Sci. 23, 1522 (2022).

    Article  Google Scholar 

  200. Benjakul, S., Leethanakul, C. & Jitpukdeebodintra, S. Low magnitude high frequency vibration induces RANKL via cyclooxygenase pathway in human periodontal ligament cells in vitro. J. Oral. Biol. Craniofac. Res. 9, 251–255 (2019).

    Article  Google Scholar 

  201. Ye, M. et al. Vibration induces BAFF overexpression and aberrant O-glycosylation of IgA1 in cultured human tonsillar mononuclear cells in IgA nephropathy. Biomed. Res. Int. 2016, 9125960 (2016).

    Article  Google Scholar 

  202. Touchstone, H. et al. Recovery of stem cell proliferation by low intensity vibration under simulated microgravity requires LINC complex. npj Microgravity 5, 11 (2019).

    Article  Google Scholar 

  203. Robertson, S. N. et al. Reduction of Pseudomonas aeruginosa biofilm formation through the application of nanoscale vibration. J. Biosci. Bioeng. 129, 379–386 (2020).

    Article  Google Scholar 

  204. Tanaka, S. M. et al. Effects of broad frequency vibration on cultured osteoblasts. J. Biomech. 36, 73–80 (2003).

    Article  Google Scholar 

  205. Ballikaya, S. et al. Process data of allogeneic ex vivo-expanded ABCB5+ mesenchymal stromal cells for human use: off-the-shelf GMP-manufactured donor-independent ATMP. Stem Cell Res. Ther. 11, 482 (2020).

    Article  Google Scholar 

  206. Simaria, A. S. et al. Allogeneic cell therapy bioprocess economics and optimization: single‐use cell expansion technologies. Biotechnol. Bioeng. 111, 69–83 (2014).

    Article  Google Scholar 

  207. Lawson, T. et al. Process development for expansion of human mesenchymal stromal cells in a 50L single-use stirred tank bioreactor. Biochem. Eng. J. 120, 49–62 (2017).

    Article  Google Scholar 

  208. Karnieli, O. et al. A consensus introduction to serum replacements and serum-free media for cellular therapies. Cytotherapy 19, 155–169 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

We thank EPSRC for grants EP/N013905/1 and EP/P001114/1.

Author information

Authors and Affiliations

Authors

Contributions

O.J.-L., P.G.C. and M.J.D. led the writing of the review, with all authors involved in contributing to different sections. All authors critically read the review.

Corresponding authors

Correspondence to Peter G. Childs or Matthew J. Dalby.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Bioengineering thanks Benoit Ladoux, Sylvain Gabriele, Marine Luciano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

The failure of a phase IIb trial of ALLOB: https://www.fiercebiotech.com/biotech/bone-therapeutics-final-asset-buried-after-failure-phase-2-fracture-study

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Johnson-Love, O., Salmeron-Sanchez, M., Reid, S. et al. Vibration-based cell engineering. Nat Rev Bioeng 3, 408–429 (2025). https://doi.org/10.1038/s44222-025-00273-x

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s44222-025-00273-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing