Abstract
Haptic devices enable communication via touch, augmenting visual and auditory displays, or by offering alternative channels of communication when vision and hearing are unavailable. Because of the different types of haptic stimuli that are perceivable by users — vibration, skin stretch, pressure and temperature, among others — devices can be designed to communicate complex information by delivering multiple types of haptic stimuli simultaneously. These multi-sensory haptic devices are often designed to be wearable and have been developed for use in a wide variety of applications, including communication, entertainment and rehabilitation. Multi-sensory haptic devices present unique challenges to designers because human perceptual acuity can vary widely depending on the wearable location on the body and/or the heterogeneity in human perceptual performance, particularly when multiple cues are presented simultaneously. Additionally, packaging haptic systems in a wearable form factor presents its own engineering challenges such as cue masking, device mounting and actuator capabilities, among others. Thus, in this Review, we discuss the state-of-the-art and specific obstacles present in the field to produce multi-sensory devices that enhance the human capacity for haptic interaction and information transmission.
Key points
-
The translation of wearable multi-sensory haptic devices relies on a robust understanding of human haptic perception so that feedback modalities can be combined to optimally enhance user performance in a given application domain.
-
The contact mechanics at the haptic interface between device and skin varies between users with an unknown effect on haptic perception.
-
In addition to traditional electromechanical actuation, new methods, such as polymeric, fluidic and thermal actuation, now exist.
-
When designing wearable haptic devices, body location, the device interface to the body, user comfort and preserving the integrity of the haptic feedback must be considered.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to the full article PDF.
USD 39.95
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Kuchenbecker, K. J., Fiene, J. & Niemeyer, G. Improving contact realism through event-based haptic feedback. IEEE Transacti. Vis. Comput. Graph. 12, 219–230 (2006).
Hayward, V., Astley, O. R., Cruz-Hernandez, M., Grant, D. & Robles-De-La-Torre, G. Haptic interfaces and devices. Sens. Rev. 24, 16–29 (2004).
Sigrist, R., Rauter, G., Riener, R. & Wolf, P. Augmented visual, auditory, haptic, and multimodal feedback in motor learning: a review. Psychon. Bull. Rev. 20, 21–53 (2013).
Visell, Y. Tactile sensory substitution: models for enaction in HCI. Interact. Comput. 21, 38–53 (2009).
Bach-y-Rita, P., Collins, C., Saunders, F. A., White, B. W. & Scadden, L. A. Vision substitution by tactile image projection. Nature 221, 963–964 (1969).
Brooks, F. Jr, Ouhyoung, M., Batter, J. & Kilpatrick, P. Project GROPE — haptic displays for scientific visualization. ACM SIGGRAPH Comput. Graphics 24, 177–185 (1990).
Adilkhanov, A., Rubagotti, M. & Kappassov, Z. Haptic devices: wearability-based taxonomy and literature review. IEEE Access 10, 91923–91947 (2022).
Zhu, M. et al. Soft, wearable robotics and haptics: technologies, trends, and emerging applications. Proc. IEEE 110, 246–272 (2022). This paper provides a review of emerging topics in wearable soft robotic systems, design considerations and strategies, and applications, and poses future challenges and opportunities for the field of soft wearable robotics.
Pacchierotti, C. et al. Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE Trans. Haptics 10, 580–600 (2017). This paper provides a review of wearable haptic feedback systems that have been designed to be worn on the fingertips and hands.
Wang, D. et al. Toward whole-hand kinesthetic feedback: a survey of force feedback gloves. IEEE Trans. Haptics 12, 189–204 (2019).
Jones, L. A. & Lederman, S. J. Human Hand Function (Oxford University Press, 2006).
Grunwald, M. Human Haptic Perception: Basics and Applications (Birkhäuser, 2008).
Westling, G. & Johansson, R. S. Responses in glabrous skin mechanoreceptors during precision grip in humans. Exp. Brain Res. 66, 128–140 (1987).
Corniani, G. & Saal, H. P. Tactile innervation densities across the whole body. J. Neurophysiol. 124, 1229–1240 (2020).
Klatzky, R. L. & Lederman, S. J. in Handbook of Psychology: Experimental Psychology Vol. 4 (eds Healy, A. F. & Proctor R. W.) 147–176 (John Wiley & Sons, Inc., 2003). This book chapter provides a comprehensive review of touch, including aspects of neurophysiology, sensation, perception, and haptic memory.
Dahiya, R. S., Metta, G., Valle, M. & Sandini, G. Tactile sensing — from humans to humanoids. IEEE Trans. Robot. 26, 1–20 (2010).
Saal, H. & Bensmaia, S. Touch is a team effort: interplay of submodalities in cutaneous sensibility. Trends Neurosci. 37, 689–697 (2014). This opinion paper argues that the cortical neurons responsible for touch sensation, which receive inputs from multiple afferent types, should be grouped based on their function rather than on their composition.
Jones, L. Thermal touch. Scholarpedia 4, 7955 (2009).
Hensel, H. in Somatosensory System (ed. Iggo, A.) 79–110 (Springer, 1973).
Lu, J., Liu, Z., Brooks, J. & Lopes, P. Chemical haptics: Rendering haptic sensations via topical stimulants. In 34th Annual ACM Symposium on User Interface Software and Technology 239–257 (ACM, 2021).
Jenmalm, P., Birznieks, I., Goodwin, A. W. & Johansson, R. S. Influence of object shape on responses of human tactile afferents under conditions characteristic of manipulation. Eur. J. Neurosci. 18, 164–176 (2003).
Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177 (2004).
Chortos, A., Liu, J. & Bao, Z. Pursuing prosthetic electronic skin. Nat. Mater. 15, 937–950 (2016).
Johnson, K. L. & Johnson, K. L. Contact Mechanics (Cambridge University Press, 1987).
Kolarsick, P. A., Kolarsick, M. A. & Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurses Assoc. 3, 203–213 (2011).
Fryar, C. D., Carroll, M. D., Gu, Q., Afful, J. & Ogden, C. L. Anthropometric reference data for children and adults: United States, 2015-2018. Vital Health Stat. 3 36, 1–44 (2021).
Kirk, E. & Kvorning, S. Quantitative measurements of the elastic properties of the skin and subcutaneous tissue in young and old individuals. J. Gerontol. 4, 273–284 (1949).
Tang, W. et al. Tactile perception of skin and skin cream. Tribol. Lett. 59, 1–13 (2015).
Caliens, A. et al. Does hormonal skin aging exist? A study of the influence of different hormone therapy regimens on the skin of postmenopausal women using non-invasive measurement techniques. Dermatology 193, 289–294 (1996).
Johnson, K. O., Yoshioka, T. & Vega-Bermudez, F. Tactile functions of mechanoreceptive afferents innervating the hand. J. Clin. Neurophysiol. 17, 539–558 (2000).
Vallbo, A., Olausson, H., Wessberg, J. & Kakuda, N. Receptive field characteristics of tactile units with myelinated afferents in hairy skin of human subjects. J. Physiol. 483, 783–795 (1995).
Olausson, H., Wessberg, J. & Kakuda, N. Tactile directional sensibility: peripheral neural mechanisms in man. Brain Res. 866, 178–187 (2000).
Edin, B. B. Quantitative analysis of static strain sensitivity in human mechanoreceptors from hairy skin. J. Neurophysiol. 67, 1105–1113 (1992).
Lundström, R. J. Responses of mechanoreceptive afferent units in the glabrous skin of the human hand to vibration. Scand. J. Work. Environ. Health 12, 413–416 (1986).
Logozzo, S., Valigi, M. C. & Malvezzi, M. A methodology to evaluate contact areas and indentations of human fingertips based on 3d techniques for haptic purposes. MethodsX 9, 101781 (2022).
Xu, C., Wang, Y. & Gerling, G. J. Individual performance in compliance discrimination is constrained by skin mechanics but improved under active control. In 2021 IEEE World Haptics Conference (WHC) 445–450 (IEEE, 2021).
Jor, J. W., Parker, M. D., Taberner, A. J., Nash, M. P. & Nielsen, P. M. Computational and experimental characterization of skin mechanics: identifying current challenges and future directions. Wiley Interdiscip. Rev. Syst. Biol. Med. 5, 539–556 (2013).
Delalleau, A., Josse, G., Lagarde, J.-M., Zahouani, H. & Bergheau, J.-M. Characterization of the mechanical properties of skin by inverse analysis combined with the indentation test. J. Biomech. 39, 1603–1610 (2006).
Kvistedal, Y. & Nielsen, P. Estimating material parameters of human skin in vivo. Biomech. Model. Mechanobiol. 8, 1–8 (2009).
Hendriks, F. et al. A numerical-experimental method to characterize the non-linear mechanical behaviour of human skin. Skin Res. Technol. 9, 274–283 (2003).
Carpenter, C. W. et al. Human ability to discriminate surface chemistry by touch. Mater. Horizons 5, 70–77 (2018).
Lipomi, D. J., Dhong, C., Carpenter, C. W., Root, N. B. & Ramachandran, V. S. Organic haptics: intersection of materials chemistry and tactile perception. Adv. Funct. Mater. 30, 1906850 (2019).
Vardar, Y., Güçlü, B. & Basdogan, C. Tactile masking by electrovibration. IEEE Trans. Haptics 11, 623–635 (2018).
Craig, J. C. & Evans, P. M. Tactile selective attention and temporal masking. Percept. Psychophys. 57, 511–518 (1995).
Sullivan, J. L. et al. Multi-sensory stimuli improve distinguishability of cutaneous haptic cues. IEEE Trans. Haptics 13, 286–297 (2020).
Zook, Z. A., Fleck, J. J. & O’Malley, M. K. Effect of tactile masking on multi-sensory haptic perception. IEEE Trans. Haptics 15, 212–221 (2021).
Low, A. K., Zook, Z. A., Fleck, J. J. & O’Malley, M. K. Effects of interfering cue separation distance and amplitude on the haptic detection of skin stretch. IEEE Trans. Haptics 14, 254–259 (2021).
Spence, C. & Gallace, A. Recent developments in the study of tactile attention. Can. J. Exp. Psychol. 61, 196–207 (2007).
Halfen, E. J., Magnotti, J. F., Rahman, M. S. & Yau, J. M. Principles of tactile search over the body. J. Neurophysiol. 123, 1955–1968 (2020).
Gray, R., Mohebbi, R. & Tan, H. Z. The spatial resolution of crossmodal attention: implications for the design of multimodal interfaces. ACM Trans. Appl. Percept. 6, 4 (2009).
Bensmaïa, S. J., Killebrew, J. H. & Craig, J. C. Influence of visual motion on tactile motion perception. J. Neurophysiol. 96, 1625–1637 (2006).
Spence, C. Multisensory attention and tactile information-processing. Behav. Brain Res. 135, 57–64 (2002).
Gibson, J. J. Observations on active touch. Psychol. Rev. 69, 477–491 (1962).
Chica, A. B., Sanabria, D., Lupiáñez, J. & Spence, C. Comparing intramodal and crossmodal cuing in the endogenous orienting of spatial attention. Exp. Brain Res. 179, 353–364 (2007).
Yin, J., Hinchet, R., Shea, H. & Majidi, C. Wearable soft technologies for haptic sensing and feedback. Adv. Funct. Mater. 31, 2007428 (2021).
Shultz, C. D., Peshkin, M. A. & Colgate, J. E. Surface haptics via electroadhesion: Expanding electrovibration with Johnsen and Rahbek. In 2015 IEEE World Haptics Conference (WHC) 57–62 (IEEE, 2015).
Strong, R. M. & Troxel, D. E. An electrotactile display. IEEE Trans. Man Machine Syst 11, 72–79 (1970).
Kajimoto, H. Electrotactile display with real-time impedance feedback using pulse width modulation. IEEE Trans. Haptics 5, 184–188 (2012).
Kourtesis, P., Argelaguet, F., Vizcay, S., Marchal, M. & Pacchierotti, C. Electrotactile feedback applications for hand and arm interactions: a systematic review, meta-analysis, and future directions. IEEE Trans. Haptics 15, 479–496 (2022).
Jung, Y. H. et al. A wireless haptic interface for programmable patterns of touch across large areas of the skin. Nat. Electron. 5, 374–385 (2022).
Vizcay, S., Kourtesis, P., Argelaguet, F., Pacchierotti, C. & Marchal, M. Design, evaluation and calibration of wearable electrotactile interfaces for enhancing contact information in virtual reality. Comput. Graph. 111, 199–212 (2023).
Deyo, R. A., Walsh, N. E., Martin, D. C., Schoenfeld, L. S. & Ramamurthy, S. A controlled trial of transcutaneous electrical nerve stimulation (TENS) and exercise for chronic low back pain. New Engl. J. Med. 322, 1627–1634 (1990).
Johnson, M. I. Transcutaneous electrical nerve stimulation (TENS) and TENS-like devices: do they provide pain relief? Pain Rev 8, 121–158 (2001).
Sluka, K. A. & Walsh, D. Transcutaneous electrical nerve stimulation: basic science mechanisms and clinical effectiveness. J. Pain 4, 109–121 (2003).
Keef, C. V. et al. Virtual texture generated using elastomeric conductive block copolymer in a wireless multimodal haptic glove. Adv. Intell. Syst. 2, 2000018 (2020).
Schara, S., Blau, R., Church, D. C., Pokorski, J. K. & Lipomi, D. J. Polymer chemistry for haptics, soft robotics, and human–machine interfaces. Adv. Funct. Mater. 31, 202008375 (2021).
Biswas, S. & Visell, Y. Emerging material technologies for haptics. Adv. Mater. Technol. 4, 1900042 (2019).
Whitesides, G. M. Physical-organic chemistry: a Swiss army knife. Isr. J. Chem. 56, 66–82 (2016).
Annapooranan, R., Wang, Y. & Cai, S. Highly durable and tough liquid crystal elastomers. ACS Appl. Mater. Interfaces 14, 2006–2014 (2022).
Zhao, H. et al. A wearable soft haptic communicator based on dielectric elastomer actuators. Soft Robot. 7, 451–461 (2020).
Bae, J.-H. & Chang, S.-H. PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: a review. Funct. Compos. Struct. 1, 12003 (2019).
He, Q. et al. Electrospun liquid crystal elastomer microfiber actuator. Sci. Robot. 6, eabi9704 (2021).
Jeon, J.-H., Kang, S.-P., Lee, S. & Oh, I.-K. Novel biomimetic actuator based on SPEEK and PVDF. Sens. Actuators B Chem. 143, 357–364 (2009).
Jumet, B., Bell, M. D., Sanchez, V. & Preston, D. J. A data-driven review of soft robotics. Adv. Intell. Syst. 4, 2100163 (2022).
Rothemund, P. et al. A soft, bistable valve for autonomous control of soft actuators. Sci. Robot. 3, eaar7986 (2018).
Decker, C. et al. Programmable soft valves for digital and analog control. Proc. Natl Acad. Sci. USA 119, e2205922119 (2022).
Vo, V. T. et al. Sheet-based fluidic diodes for embedded fluidic circuitry in soft devices. Adv. Intell. Syst. 6, 2300785 (2024).
Drotman, D., Jadhav, S., Sharp, D., Chan, C. & Tolley, M. T. Electronics-free pneumatic circuits for controlling soft-legged robots. Sci. Robot. 6, eaay2627 (2021).
van Laake, L. C., de Vries, J., Malek Kani, S. & Overvelde, J. T. A fluidic relaxation oscillator for reprogrammable sequential actuation in soft robots. Matter 5, 2898–2917 (2022).
Rajappan, A., Liu, Z., Yap, T. F., Rasheed, R. M. & Preston, D. J. Embedded fluidic sensing and control with soft open-cell foams Adv. Funct. Mater. 34, 2403379 (2024).
Rajappan, A. et al. Logic-enabled textiles. Proc. Natl Acad. Sci. USA 119, e2202118119 (2022).
Wu, X., Kim, S.-H., Zhu, H., Ji, C.-H. & Allen, M. G. A refreshable braille cell based on pneumatic microbubble actuators. J. Microelectromech. Syst. 21, 908–916 (2012).
Kitamura, E., Nabae, H., Endo, G. & Suzumori, K. Self-excitation pneumatic soft actuator inspired by vocal cords. Sens. Actuators A Phys. 331, 112816 (2021).
Sonar, H. A., Gerratt, A. P., Lacour, S. P. & Paik, J. Closed-loop haptic feedback control using a self-sensing soft pneumatic actuator skin. Soft Robot. 7, 22–29 (2020).
Young, E. M., Memar, A. H., Agarwal, P. & Colonnese, N. Bellowband: A pneumatic wristband for delivering local pressure and vibration. In 2019 IEEE World Haptics Conference (WHC) 55–60 (IEEE, 2019).
Do, B. H., Okamura, A. M., Yamane, K. & Blumenschein, L. H. Macro-mini actuation of pneumatic pouches for soft wearable haptic displays. In 2021 IEEE International Conference on Robotics and Automation (ICRA) 14499–14505 (IEEE, 2021).
Zook, Z. A., Jumet, B., Yousaf, A., Preston, D. J. & O’Malley, M. K. Multiscale textile-based haptic interactions. Adv. Intell. Syst. 6, 2300897 (2024).
Shi, G. et al. Fluidic haptic interface for mechano-tactile feedback. IEEE Trans. Haptics 13, 204–210 (2020).
Akther, A., Castro, J. O., Shaegh, S. A. M., Rezk, A. R. & Yeo, L. Y. Miniaturised acoustofluidic tactile haptic actuator. Soft Matter 15, 4146–4152 (2019).
Kellaris, N., Gopaluni Venkata, V., Smith, G. M., Mitchell, S. K. & Keplinger, C. Peano-hasel actuators: muscle-mimetic, electrohydraulic transducers that linearly contract on activation. Sci. Robot. 3, eaar3276 (2018).
Leroy, E., Hinchet, R. & Shea, H. Multimode hydraulically amplified electrostatic actuators for wearable haptics. Adv. Mater. 32, 2002564 (2020).
Heisser, R. H. et al. Valveless microliter combustion for densely packed arrays of powerful soft actuators. Proc. Natl Acad. Sci. USA 118, e2106553118 (2021).
Sanchez, V., Walsh, C. J. & Wood, R. J. Textile technology for soft robotic and autonomous garments. Adv. Funct. Mater. 31, 2008278 (2021). This article reviews the state of the art in textile-based actuation, sensing and signalling, including a section specifically focused on applications in haptics and relevant technical requirements and metrics.
Zhu, M., Do, T. N., Hawkes, E. & Visell, Y. Fluidic fabric muscle sheets for wearable and soft robotics. Soft Robot. 7, 179–197 (2020).
Zhu, M. et al. PneuSleeve: In-fabric multimodal actuation and sensing in a soft, compact, and expressive haptic sleeve. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–12 (ACM, 2020).
Wu, W. & Culbertson, H. Wearable haptic pneumatic device for creating the illusion of lateral motion on the arm. In 2019 IEEE World Haptics Conference (WHC) 193–198 (IEEE, 2019).
Jumet, B. et al. Fluidically programmed wearable haptic textiles. Device 1, 100059 (2023).
Grasso, G., Rosset, S. & Shea, H. Fully 3D-printed, stretchable, and conformable haptic interfaces. Adv. Funct. Mater. 33, 2213821 (2023).
Cai, S., Ke, P., Narumi, T. & Zhu, K. ThermAirGlove: A pneumatic glove for thermal perception and material identification in virtual reality. In 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 248–257 (IEEE, 2020).
Goetz, D. T., Owusu-Antwi, D. K. & Culbertson, H. PATCH: Pump-actuated thermal compression haptics. In 2020 IEEE Haptics Symposium (HAPTICS) 643–649 (IEEE, 2020).
Zhang, B. & Sra, M. PneuMod: A modular haptic device with localized pressure and thermal feedback. In Proc. 27th ACM Symposium on Virtual Reality Software and Technology 1–7 (ACM, 2021).
Liu, Y., Nishikawa, S., Seong, Y. A., Niiyama, R. & Kuniyoshi, Y. ThermoCaress: A wearable haptic device with illusory moving thermal stimulation. In Proc. 2021 CHI Conference on Human Factors in Computing Systems 1–12 (ACM, 2021).
Gabardi, M., Leonardis, D., Solazzi, M. & Frisoli, A. Development of a miniaturized thermal module designed for integration in a wearable haptic device. In 2018 IEEE Haptics Symposium (HAPTICS) 100–105 (IEEE, 2018).
Zhu, K., Perrault, S., Chen, T., Cai, S. & Peiris, R. L. A sense of ice and fire: exploring thermal feedback with multiple thermoelectric-cooling elements on a smart ring. Int. J. Hum. Comput. Stud. 130, 234–247 (2019).
Soucy, N., Ranasinghe, N., Rossow, A., James, M. N. & Peiris, R. THED: A wrist-worn thermal display to perceive spatial thermal sensations in virtual reality. In Proc. Future Technologies Conference (FTC) 2020 Vol. 2 (eds Arai, K. et al.) 809–829 (Springer, 2020).
Lee, J. et al. Stretchable skin-like cooling/heating device for reconstruction of artificial thermal sensation in virtual reality. Adv. Funct. Mater. 30, 1909171 (2020).
Choi, C. et al. Surface haptic rendering of virtual shapes through change in surface temperature. Sci. Robot. 7, eabl4543 (2022).
Han, T. et al. Mouillé: Exploring wetness illusion on fingertips to enhance immersive experience in VR. In Proc. 2020 CHI Conference on Human Factors in Computing Systems 1–10 (ACM, 2020).
Wang, W. D., Ding, Z., Lee, Y. & Han, X. Engineering liquid-vapor phase transition for refreshable haptic interfaces. Research 2022, 9839815 (2022).
Lee, J., Kim, D., Sul, H. & Ko, S. H. Thermo-haptic materials and devices for wearable virtual and augmented reality. Adv. Funct. Mater. 31, 2007376 (2021). This report describes state-of-the-art devices for thermal haptic cues — considering both materials and mechanisms — and presents essential challenges to be addressed.
Edin, B. B. & Johansson, N. Skin strain patterns provide kinaesthetic information to the human central nervous system. J. Physiol. 487, 243–251 (1995).
Edin, B. B. Cutaneous afferents provide information about knee joint movements in humans. J. Physiol. 531, 289–297 (2001).
Cordo, P., Gurfinkel, V. S., Bevan, L. & Kerr, G. K. Proprioceptive consequences of tendon vibration during movement. J. Neurophysiol. 74, 1675–1688 (1995).
Konyo, M., Yamada, H., Okamoto, S. & Tadokoro, S. Alternative display of friction represented by tactile stimulation without tangential force. In Haptics: Perception, Devices and Scenarios. EuroHaptics 2008 (ed. Ferre, M.) 619–629 (Springer, 2008).
Chinello, F., Pacchierotti, C., Malvezzi, M. & Prattichizzo, D. A three revolute-revolute-spherical wearable fingertip cutaneous device for stiffness rendering. IEEE Trans. Haptics 11, 39–50 (2017).
Aggravi, M., Pausé, F., Giordano, P. R. & Pacchierotti, C. Design and evaluation of a wearable haptic device for skin stretch, pressure, and vibrotactile stimuli. IEEE Robotics Autom. Lett. 3, 2166–2173 (2018).
Bark, K., Wheeler, J., Shull, P., Savall, J. & Cutkosky, M. Rotational skin stretch feedback: a wearable haptic display for motion. IEEE Trans. Haptics 3, 166–176 (2010).
Bianchi, M., Battaglia, E., Poggiani, M., Ciotti, S. & Bicchi, A. A wearable fabric-based display for haptic multi-cue delivery. In 2016 IEEE Haptics Symposium (HAPTICS) 277–283 (IEEE, 2016).
Ertan, S., Lee, C., Willets, A., Tan, H. Z. & Pentland, A. A wearable haptic navigation guidance system. In Second International Symposium on Wearable Computers 164–165 (IEEE, 1998).
Cha, J., Eid, M., Rahal, L. & Saddik, A. E. HugMe: An interpersonal haptic communication system. In 2008 IEEE International Workshop on Haptic Audio visual Environments and Games 99–102 (IEEE, 2008).
Teh, J. K. S. et al. Huggy pajama: a parent and child hugging communication system. In Proc. 8th International Conference on Interaction Design and Children 290–291 (ACM, 2009).
Actronika. Skinetic by Actronika https://www.skinetic.actronika.com/ (2023).
McDaniel, T., Krishna, S., Balasubramanian, V., Colbry, D. & Panchanathan, S. Using a haptic belt to convey non-verbal communication cues during social interactions to individuals who are blind. In 2008 IEEE International Workshop on Haptic Audio visual Environments and Games 13–18 (IEEE, 2008).
Edwards, N. et al. A pragmatic approach to the design and implementation of a vibrotactile belt and its applications. In 2009 IEEE International Workshop on Haptic Audio visual Environments and Games 13–18 (IEEE, 2009).
Chinello, F., Pacchierotti, C., Bimbo, J., Tsagarakis, N. G. & Prattichizzo, D. Design and evaluation of a wearable skin stretch device for haptic guidance. IEEE Robotics Autom. Lett. 3, 524–531 (2018).
Clark, J. P., Kim, S. Y. & O’Malley, M. K. The rice haptic rocker: Altering the perception of skin stretch through mapping and geometric design. In 2018 IEEE Haptics Symposium (HAPTICS) 192–197 (IEEE, 2018).
Brown, J. D. et al. An empirical evaluation of force feedback in body-powered prostheses. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 215–226 (2016).
Pacchierotti, C., Meli, L., Chinello, F., Malvezzi, M. & Prattichizzo, D. Cutaneous haptic feedback to ensure the stability of robotic teleoperation systems. Int. J. Robotics Res. 34, 1773–1787 (2015).
Pezent, E., Agarwal, P., Hartcher-O’Brien, J., Colonnese, N. & O’Malley, M. K. Design, control, and psychophysics of tasbi: a force-controlled multimodal haptic bracelet. IEEE Trans. Robotics 38, 2962–2978 (2022).
Dunne, L. E. & Smyth, B. Psychophysical elements of wearability. In Proc. SIGCHI Conference on Human Factors in Computing Systems 299–302 (ACM, 2007).
Dim, N. K. & Ren, X. Investigation of suitable body parts for wearable vibration feedback in walking navigation. Int. J. Human-Computer Stud. 97, 34–44 (2017).
Huiju Park, M. S. Q. X., Jie, P. & Fan, J. Designing wearable computing devices for improved comfort and user acceptance. Ergonomics 62, 1474–1484 (2019).
Courtney, A. & Ng, M. Hong Kong female hand dimensions and machine guarding. Ergonomics 27, 187–193 (1984).
Obi, O. F. Hand anthropometry survey of rural farm workers in south-eastern Nigeria. Ergonomics 59, 603–611 (2016).
Young, E. M. & Kuchenbecker, K. J. Implementation of a 6-DOF parallel continuum manipulator for delivering fingertip tactile cues. IEEE Trans. Haptics 12, 295–306 (2019).
Reuter, E.-M., Voelcker-Rehage, C., Vieluf, S. & Godde, B. Touch perception throughout working life: effects of age and expertise. Exp. Brain Res. 216, 287–297 (2012).
Young, E. M., Gueorguiev, D., Kuchenbecker, K. J. & Pacchierotti, C. Compensating for fingertip size to render tactile cues more accurately. IEEE Trans. Haptics 13, 144–151 (2020).
Seifi, H. Personalizing Haptics (Springer, 2019).
Malvezzi, M., Chinello, F., Prattichizzo, D. & Pacchierotti, C. Design of personalized wearable haptic interfaces to account for fingertip size and shape. IEEE Trans. Haptics 14, 266–272 (2021).
Mackanic, D. G., Chang, T.-H., Huang, Z., Cui, Y. & Bao, Z. Stretchable electrochemical energy storage devices. Chem. Soc. Rev. 49, 4466–4495 (2020).
Cacucciolo, V. et al. Stretchable pumps for soft machines. Nature 572, 516–519 (2019).
Cacucciolo, V., Nabae, H., Suzumori, K. & Shea, H. Electrically-driven soft fluidic actuators combining stretchable pumps with thin McKibben muscles. Front. Robot. AI 6, 146 (2020).
Shveda, R. A. et al. A wearable textile-based pneumatic energy harvesting system for assistive robotics. Sci. Adv. 8, eabo2418 (2022).
Li, D. et al. Touch iot enabled by wireless self-sensing and haptic-reproducing electronic skin. Sci. Adv. 8, eade2450 (2022).
Pezent, E., Macklin, A., Yau, J. M., Colonnese, N. & O’Malley, M. K. Multisensory pseudo-haptics for rendering manual interactions with virtual objects. Adv. Intell. Syst. 5, 2200303 (2023). This paper presents a multisensory wearable haptic bracelet that provides reliable touch feedback for visuohaptic interactions in virtual reality.
Vlam, V., Wiertlewski, M. & Vardar, Y. Focused vibrotactile stimuli from a wearable sparse array of actuators. IEEE Trans. Haptics 16, 511–517 (2023).
Tanaka, Y., Shen, A., Kong, A. & Lopes, P. Full-hand electro-tactile feedback without obstructing palmar side of hand. In Proc. 2023 CHI Conference on Human Factors in Computing Systems 1–15 (ACM, 2023).
Tan, H., Gray, R., Young, J. J. & Taylor, R. A haptic back display for attentional and directional cueing. Haptics-e http://hdl.handle.net/1773/34886 (2003).
Erp, J. B. F. V., Veen, H. A. H. C. V., Jansen, C. & Dobbins, T. Waypoint navigation with a vibrotactile waist belt. ACM Trans. Appl. Percept. 2, 106–117 (2005).
Kuang, L., Aggravi, M., Giordano, P. R. & Pacchierotti, C. Wearable cutaneous device for applying position/location haptic feedback in navigation applications. In 2022 IEEE Haptics Symposium (HAPTICS) 1–6 (2022).
Haptic. Wearworks — Haptic https://haptic.works/wayband (2024).
Spiers, A. J. & Dollar, A. M. Design and evaluation of shape-changing haptic interfaces for pedestrian navigation assistance. IEEE Trans. Haptics 10, 17–28 (2017).
Nakade, T., Fuchs, R., Bleuler, H. & Schiffmann, J. Haptics based multi-level collaborative steering control for automated driving. Commun. Eng. 2, 2 (2023).
Wang, H.-C. et al. Enabling independent navigation for visually impaired people through a wearable vision-based feedback system. In 2017 IEEE International Conference on Robotics and Automation (ICRA) 6533–6540 (IEEE, 2017).
Barontini, F., Catalano, M. G., Pallottino, L., Leporini, B. & Bianchi, M. Integrating wearable haptics and obstacle avoidance for the visually impaired in indoor navigation: a user-centered approach. IEEE Trans. Haptics 14, 109–122 (2021).
Abdi, E., Kulic, D. & Croft, E. Haptics in teleoperated medical interventions: force measurement, haptic interfaces and their influence on user’s performance. IEEE Trans. Biomed. Eng. 67, 3438–3451 (2020).
Freschi, C. et al. Technical review of the da Vinci surgical telemanipulator. Int. J. Med. Robot. 9, 396–406 (2013).
Diolaiti, N., Niemeyer, G., Barbagli, F. & Salisbury, J. K. Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot. 22, 256–268 (2006).
Hannaford, B. & Okamura, A. M. in Springer Handbook of Robotics (eds Siciliano, B. & Khatib, O.) 1063–1084 (Springer, 2016).
Fishel, J. A. et al. Tactile telerobots for dull, dirty, dangerous, and inaccessible tasks. In 2020 IEEE International Conference on Robotics and Automation (ICRA) 11305–11310 (IEEE, 2020).
Lenz, C. & Behnke, S. Bimanual telemanipulation with force and haptic feedback through an anthropomorphic avatar system. Robot. Auton. Syst. 161, 104338 (2023).
Abd, M. A., Bornstein, M., Tognoli, E. & Engeberg, E. D. Armband with soft robotic actuators and vibrotactile stimulators for bimodal haptic feedback from a dexterous artificial hand. In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) 13–20 (IEEE, 2018).
Uddin, M. W., Zhang, X. & Wang, D. A pneumatic-driven haptic glove with force and tactile feedback. In 2016 International Conference on Virtual Reality and Visualization (ICVRV) 304–311 (IEEE, 2016).
Chinello, F., Malvezzi, M., Prattichizzo, D. & Pacchierotti, C. A modular wearable finger interface for cutaneous and kinesthetic interaction: control and evaluation. IEEE Trans. Ind. Electron. 67, 706–716 (2019).
Fani, S. et al. Simplifying telerobotics: wearability and teleimpedance improves human-robot interactions in teleoperation. IEEE Robot. Autom. Mag. 25, 77–88 (2018).
Khurshid, R. M., Fitter, N., Fedalei, E. & Kuchenbecker, K. Effects of grip-force, contact, and acceleration feedback on a teleoperated pick-and-place task. IEEE Trans. Haptics 10, 40–53 (2017).
Dunkelberger, N. et al. A multisensory approach to present phonemes as language through a wearable haptic device. IEEE Trans. Haptics 14, 188–199 (2021).
Tan, H. Z. et al. Acquisition of 500 english words through a TActile Phonemic Sleeve (TAPS). IEEE Trans. Haptics 13, 745–760 (2020).
Liu, X. & Dohler, M. Vibrotactile alphabets: time and frequency patterns to encode information. IEEE Trans. Haptics 14, 161–173 (2021).
Engelmann, S. & Rosov, R. Tactual hearing experiment with deaf and hearing subjects. Except. Child. 41, 243–253 (1975).
Bark, K. et al. Effects of vibrotactile feedback on human learning of arm motions. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 51–63 (2014).
Sullivan, J. L., Pandey, S., Byrne, M. D. & O’Malley, M. K. Haptic feedback based on movement smoothness improves performance in a perceptual-motor task. IEEE Trans. Haptics 15, 382–391 (2022).
Chuah, S. H.-W. Why and who will adopt extended reality technology? literature review, synthesis, and future research agenda. SSRN https://doi.org/10.2139/ssrn.3300469 (2018).
Edwards, B. I., Bielawski, K. S., Prada, R. & Cheok, A. D. Haptic virtual reality and immersive learning for enhanced organic chemistry instruction. Virtual Real. 23, 363–373 (2019).
van der Meijden, O. A. J. & Schijven, M. P. The value of haptic feedback in conventional and robot-assisted minimal invasive surgery and virtual reality training: a current review. Surg. Endosc. 23, 1180–1190 (2009).
Ruthenbeck, G. S. & Reynolds, K. J. Virtual reality for medical training: the state-of-the-art. J. Simul. 9, 16–26 (2015).
Perret, J. & Vander Poorten, E. Touching virtual reality: A review of haptic gloves. In ACTUATOR 2018; 6th International Conference on New Actuators 1–5 (VDE, 2018).
Yang, T.-H. et al. Magnetorheological fluid haptic shoes for walking in VR. IEEE Trans. Haptics 14, 83–94 (2021).
Bermejo, C. & Hui, P. A survey on haptic technologies for mobile augmented reality. ACM Comput. Surv. (CSUR) 54, 1–35 (2021).
Meli, L. et al. The hBracelet: a wearable haptic device for the distributed mechanotactile stimulation of the upper limb. IEEE Robot. Autom. Lett. 3, 2198–2205 (2018).
Salazar, S. V., Pacchierotti, C., de Tinguy, X., Maciel, A. & Marchal, M. Altering the stiffness, friction, and shape perception of tangible objects in virtual reality using wearable haptics. IEEE Trans. Haptics 13, 167–174 (2020).
Asano, S., Okamoto, S. & Yamada, Y. Vibrotactile stimulation to increase and decrease texture roughness. IEEE Trans. Hum. Mach. Syst 45, 393–398 (2014).
De Tinguy, X., Pacchierotti, C., Marchal, M. & Lécuyer, A. Enhancing the stiffness perception of tangible objects in mixed reality using wearable haptics. In Proc. 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) 81–90 (IEEE, 2018).
Battaglia, E. et al. Skin stretch haptic feedback to convey closure information in anthropomorphic, under-actuated upper limb soft prostheses. IEEE Trans. Haptics 12, 508–520 (2019).
Yildiz, K. A., Shin, A. Y. & Kaufman, K. R. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J. Neuroeng. Rehabil. 17, 43 (2020).
Klaes, C. et al. A cognitive neuroprosthetic that uses cortical stimulation for somatosensory feedback. J. Neural Eng. 11, 056024 (2014).
Berkovic, A. et al. A multi-modal haptic armband for finger-level sensory feedback from a prosthetic hand. In Haptics: Science, Technology, Applications: 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics (eds Seifi, H. et al.) 138–146 (Springer, 2022).
Cheesborough, J. E., Smith, L. H., Kuiken, T. A. & Dumanian, G. A. Targeted muscle reinnervation and advanced prosthetic arms. Semin. Plastic Surg. 29, 62–72 (2015).
Marasco, P. D., Kim, K., Colgate, J. E., Peshkin, M. A. & Kuiken, T. A. Robotic touch shifts perception of embodiment to a prosthesis in targeted reinnervation amputees. Brain 134, 747–758 (2011).
Marasco, P. D. et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 10, eaao6990 (2018).
Krichevets, A. N., Sirotkina, E., Yevsevicheva, I. & Zeldin, L. Computer games as a means of movement rehabilitation. Disabil. Rehabil. 17, 100–105 (1995).
Sarac, M., Solazzi, M. & Frisoli, A. Design requirements of generic hand exoskeletons and survey of hand exoskeletons for rehabilitation, assistive, or haptic use. IEEE Trans. Haptics 12, 400–413 (2019).
Rose, C. G. & O’Malley, M. K. Hybrid rigid-soft hand exoskeleton to assist functional dexterity. IEEE Robot. Autom. Lett. 4, 73–80 (2018).
Dupont, P. E. et al. A decade retrospective of medical robotics research from 2010 to 2020. Sci. Robot. 6, eabi8017 (2021). This review article identifies and analyses prominent themes in medical robotics research over the past decade, including several application domains that are relevant to wearable haptics (such as prosthetics, exoskeletons and rehabilitation robots).
Powell, D. & O’Malley, M. K. The task-dependent efficacy of shared-control haptic guidance paradigms. IEEE Trans. Haptics 5, 208–219 (2012).
Basalp, E., Wolf, P. & Marchal-Crespo, L. Haptic training: which types facilitate (re)learning of which motor task and for whom? answers by a review. IEEE Trans. Haptics 14, 722–739 (2021).
Bessler, J. et al. Safety assessment of rehabilitation robots: a review identifying safety skills and current knowledge gaps. Front. Robot. AI 8, 602878 (2021).
Camardella, C., Gabardi, M., Frisoli, A. & Leonardis, D. Wearable haptics in a modern VR rehabilitation system: design comparison for usability and engagement. In Haptics: Science, Technology, Applications: 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics (eds Seifi, H. et al.) 274–282 (Springer, 2022).
Bortone, I. et al. Wearable haptics and immersive virtual reality rehabilitation training in children with neuromotor impairments. IEEE Trans. Neural Syst. Rehabil. Eng. 26, 1469–1478 (2018).
Bianchi, M. et al. Design and preliminary affective characterization of a novel fabric-based tactile display. In 2014 IEEE Haptics Symposium (HAPTICS) 591–596 (IEEE, 2014).
Bortone, I. et al. Serious game and wearable haptic devices for neuro motor rehabilitation of children with cerebral palsy. In Converging Clinical and Engineering Research on Neurorehabilitation II: Proc. 3rd International Conference on NeuroRehabilitation (eds Ibáñez, J. et al.) 443–447 (Springer, 2017).
Pezent, E., Fani, S., Clark, J., Bianchi, M. & O’Malley, M. K. Spatially separating haptic guidance from task dynamics through wearable devices. IEEE Trans. Haptics 12, 581–593 (2019).
Bianchi, M. A fabric-based approach for wearable haptics. Electronics 5, 44 (2016).
Demofonti, A., Carpino, G., Zollo, L. & Johnson, M. J. Affordable robotics for upper limb stroke rehabilitation in developing countries: a systematic review. IEEE Trans. Med. Robot. Bionics 3, 11–20 (2021).
Choi, S. & Kuchenbecker, K. J. Vibrotactile display: perception, technology, and applications. Proc. IEEE 101, 2093–2104 (2013).
Muaddi, H. et al. Clinical outcomes of robotic surgery compared to conventional surgical approaches (laparoscopic or open): a systematic overview of reviews. Annals Surg 273, 467–473 (2021).
Lo, A. C. et al. Robot-assisted therapy for long-term upper-limb impairment after stroke. New Engl. J. Med. 362, 1772–1783 (2010).
Smail, L. C., Neal, C., Wilkins, C. & Packham, T. L. Comfort and function remain key factors in upper limb prosthetic abandonment: findings of a scoping review. Disabil. Rehabil. Assist. Technol. 16, 821–830 (2021).
Brown, J. D. et al. Touching reality: bridging the user-researcher divide in upper-limb prosthetics. Sci. Robot. 8, eadk9421 (2023).
Lederman, S. J. & Jones, L. A. Tactile and haptic illusions. IEEE Trans. Haptics 4, 273–294 (2011).
Platkiewicz, J., Lipson, H. & Hayward, V. Haptic edge detection through shear. Sci. Rep. 6, 23551 (2016).
Ujitoko, Y. & Ban, Y. Survey of pseudo-haptics: haptic feedback design and application proposals. IEEE Trans. Haptics 14, 699–711 (2021).
Ernst, M. O. & Bülthoff, H. H. Merging the senses into a robust percept. Trends Cogn. Sci. 8, 162–169 (2004).
Muender, T., Bonfert, M., Reinschluessel, A. V., Malaka, R. & Döring, T. Haptic fidelity framework: defining the factors of realistic haptic feedback for virtual reality. In Proc. 2022 CHI Conference on Human Factors in Computing Systems 1–17 (ACM. 2022).
Hale, K. & Stanney, K. Deriving haptic design guidelines from human physiological, psychophysical, and neurological foundations. IEEE Comput. Graph. Appl. 24, 33–39 (2004).
EPFL. Stretchable Pumps for soft Machine https://www.epfl.ch/labs/lmts/lmts-research/stretchable-pumps-for-soft-machine/ (2023).
Pezent, E. et al. Tasbi: multisensory squeeze and vibrotactile wrist haptics for augmented and virtual reality. In 2019 IEEE World Haptics Conference (WHC) 1–6 (IEEE, 2019).
Casini, S. et al. Design and realization of the CUFF - clenching upper-limb force feedback wearable device for distributed mechano-tactile stimulation of normal and tangential skin forces. In 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1186–1193 (2015).
Trinitatova, D. & Tsetserukou, D. TouchVR: a wearable haptic interface for VR aimed at delivering multi-modal stimuli at the user’s palm. In SA '19: SIGGRAPH Asia 2019 XR 42–43 (ACM, 2019).
FundamentalVR. FundamentalVR showcases haptx gloves https://fundamentalsurgery.com/company-updates/fundamental-surgery-showcases-haptx/ (2024).
Create the Future. Conveying language through haptics: a multi-sensory approach https://contest.techbriefs.com/2019/entries/consumer-products/9921 (2022).
Julius, D. & Patapoutian, A. A Nobel Prize for understanding the molecular basis of sensing pain and touch. Curr. Sci. 121, 1274–1277 (2021).
Asakawa, S., Guerreiro, J., Ahmetovic, D., Kitani, K. M. & Asakawa, C. The present and future of museum accessibility for people with visual impairments. In Proc. 20th International ACM SIGACCESS Conference on Computers and Accessibility 382–384 (ACM, 2018).
Simner, J. & Ludwig, V. U. The color of touch: a case of tactile–visual synaesthesia. Neurocase 18, 167–180 (2012).
Acknowledgements
The authors acknowledge the support of NSF grants CMMI-2144809 (D.J.P.) and CMMI-1830146 (M.K.O.).
Author information
Authors and Affiliations
Contributions
J.J.F. and M.K.O. contributed substantially to the discussion, writing, and editing of this manuscript and managed the submission process. J.J.F., Z.A.Z. and M.K.O. developed figures for the manuscript. J.P.C., D.J.P., D.J.L., C.P. and Z.A.Z. contributed substantially to the writing and editing of this manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Bioengineering thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Fleck, J.J., Zook, Z.A., Clark, J.P. et al. Wearable multi-sensory haptic devices. Nat Rev Bioeng 3, 288–302 (2025). https://doi.org/10.1038/s44222-025-00274-w
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s44222-025-00274-w
This article is cited by
-
Deformable materials and structures in wearable haptic interfaces
Nature Reviews Materials (2026)
-
Haptic feedback that rings true
Nature Electronics (2025)


